无机/聚合物复合微球的设计、合成及形貌控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,由于无机/聚合物复合(微球)材料可以用做涂料、阻燃材料、光阻材料、活性物质载体、催化材料及光学器件等,吸引了学术界和工业界的广泛关注。在这类复合材料中,惰性的聚合物是一种理想的载体,既有利于活性物质的接触,又有利于材料的回收和重复使用;而无机组分的引入不仅提高了聚合物复合材料的力学性能,同时也赋予了复合材料以功能性。复合微球的形貌是影响其功能性的一个重要因素,不同的形貌结构具有不同的功能性和应用领域。例如,单分散微球自组装可以形成三维有序胶体晶体,用于制备光子晶体和作为多孔材料的模板,但目前单分散微球的自组装方法有待进一步开发,自组装工艺、胶体晶体膜强度也有待进一步的完善。中空型微球可以作为载体,实现活性物质的包封和控制释放,如何有效制备和精细控制中空结构仍需要深入研究。非球形微球具有与球形微球不同的堆积类型,可用于改善材料的光学性能,形成生物材料的自组装构造单元,调控悬浮液的流变性能和设计新型复合材料等。目前对非球形聚合物微球的制备方法、形成机理以及微球形貌的可控性都有待深入研究。金属/聚合物复合微球可以发挥纳米金属粒子的功能性,但如何对聚合物微球进行表面修饰以满足纳米粒子和聚合物载体的有效复合也需要进一步的研究。
     本论文即围绕着上述几类无机/聚合物复合材料的制备和微球的形貌控制,依次开展了多重Pickering乳液模板法制备无机/聚合物中空微球的研究;细乳液聚合法制备SiO2/P(MMA-co-St)非球形复合微球的研究;双原位细乳液聚合法制备SiO2/聚合物纳米复合微球的合成、性能及其形貌控制的研究:Janus型无机/聚合物复合微球的设计与合成;采用两步分散聚合法制备银/聚合物复合微球的研究;单分散聚合物微球的无皂乳液聚合法合成、自组装及以其为模板制备多孔材料的研究。主要有如下七个方面的研究成果:
     (1)用表面改性的双亲性SiO2纳米粒子作为Pickering乳化剂制备W/O/W型乳液;以此多重乳液为模板,引发中间油相的单体聚合,一步制备中空微球。此方法中,首先制备W/O型乳液,在碱性条件下,正硅酸乙酯(TEOS)在油/水界面原位水解生成SiO2纳米粒子,接着在油/水界面被Y-甲基丙烯酰氧丙基三甲氧基硅烷(MPS)部分改性得到双亲性SiO2纳米粒子。在此体系中再加入外水相,利用双亲性SiO2纳米粒子作为Pickering乳化剂,得到稳定的多重乳液。中间的油相单体苯乙烯(St)聚合后,可一步得到中空微球。表面改性时间影响SiO2粒子的大小和最终中空微球的壁厚;MPS的用量和油/水体积比影响SiO2纳米粒子的表面改性效果。
     (2)采用种子细乳液聚合方法,以MPS为功能单体,MMA为单体,TEOS为SiO2粒子的前驱体,首先得到SiO2纳米粒子交联的SiO2/PMMA种子微球。继续滴加第二种单体St聚合,得到非球形SiO2/聚合物复合微球。结果表明,交联剂的用量和种类对微球的形貌影响很大。若不加MPS,SiO2/PMMA种子微球没有交联,复合微球呈核壳结构;而加入MPS后,SiO2/PMMA种子微球被SiO2纳米粒子交联,种子微球上出现多个聚苯乙烯鼓包,复合微球呈梅花状结构;若再加入另外一种交联剂DVB,复合微球呈花生状。
     (3)以十二烷基硫酸钠(SDS)为乳化剂,正十六烷(HD)为助稳定剂,MMA、丙烯酸丁酯(BA)为聚合单体,TEOS为前驱体通过双原位细乳液聚合法制备了SiO2/聚(甲基丙烯酸甲酯-丙烯酸丁酯)复合微球。结果表明,复合微球呈树莓状,原位生成的SiO2纳米粒子位于其壳层,大小约20nm,均匀分散在聚合物基质中,彼此之间没有团聚。聚合物纳米复合物薄膜的透光率在400-800nm范围内为70-80%左右,与纯聚合物薄膜相当。SiO2纳米粒子的引入,提高了聚合物的机械性能,并且改善了阻燃性能。
     (4)采用双原位细乳液聚合方法合成了Janus结构的复合微球。研究发现,形成Janus型复合微球的关键是水溶性引发剂的使用。这样,在水中形成的初级自由基,扩散到细乳液液滴的界面,从而在界面处引发单体聚合,并促使TEOS和聚合物之间发生相分离。此时在碱性催化剂作用下TEOS发生水解缩合反应生成SiO2,即可得到一半为PS、另一半为SiO2的Janus复合微球。
     (5)以MMA为单体,以TEOS为SiO2粒子的前驱体,以MPS为改性剂,采用双原位细乳液聚合方法,使单体的聚合反应和TEOS水解缩合生成SiO2粒子的反应同时进行,一步制备出不同形貌结构的SiO2/聚合物微球。研究发现,乳化剂的用量影响聚合反应体系的稳定性和复合微球的形貌结构。在适宜的SDS用量下,MPS的用量影响着相分离的过程和最终复合微球的形貌结构。高MPS含量时,得到中空结构的复合微球,SiO2纳米粒子分布在微球的壳层;低MPS含量时,得到的复合微球呈“碗”状结构,聚合物构成了“碗”的底部。
     (6)提出了一种合成纳米Ag/PS复合微球的简单方法。首先以苯乙烯、衣康酸和丙烯腈为单体,以乙醇/水为反应介质,制备出表面含有羧基和氰基的PS微球。再将AgNO3水溶液滴入到上述制备的PS微球分散液中。银离子被静电吸附到微球表面,接着被加入的水合肼原位还原成约50nm的银粒子,得到纳米Ag/PS复合微球。结果表明,与未加丙烯腈单体相比,微球表面引入的氰基提高了银粒子在微球表面的附着能力。制备的纳米Ag/PS复合微球具有良好的催化性能。
     (7)采用无皂乳液聚合法合成出单分散性的PS微球,通过漂浮自组装法制备了自支撑胶体晶体膜,进而以此为模板制备了多孔材料。研究发现,以乙醇/水混合物为分散介质,可以降低微球自组装的温度,能够在15min内得到三维有序结构的胶体晶体。以环氧氯丙烷为交联剂,可得到自支撑的胶体晶体膜。以此胶体晶体为模板,采用渗透法填充前驱液Ti(i-OPr)4,制备了骨架为棒状结构的三维有序TiO2多孔材料。
In recent years, inorganic/polymer nanocomposites (microspheres) have attracted extensive academic and industrial attention because of their applications in coating materials, fire-retardant materials, photoresist materials, catalytic materials, optical devices, etc. In the inorganic/polymer nanocomposites, polymer component acts as an ideal carrier which is easy access to active substances and favors the recovery and reultilization of materials. The introduction of inorganic component not only improves the mechanical properties of polymer composites, but also imparts the functionality to composite materials. The morphology of composite particles plays an important role on their functionality. For example, monodisperse microspheres are the most studied and best established example as the self-assembling building blocks to successfully fabricate three dimensionally (3D) ordered colloidal crystals, which can be used as the removable templates to fabricate 3D macroporous materials. However, the self-assembly method need to be further developed and the colloidal crystals film need to be strengthened. Hollow nanostructural microspheres have giant commercial applications including encapsulation and controlled release of sensitive materials, such as drugs, cosmetics, DNA, energy storage and conversion, and catalysis. However, the feasibility of preparation and control of hollow microspheres deserve further investigation. The stacking types of nonspherical particles are different from those of spherical particles so that nonspherical particles can be used to improve the optical properties of materials, act as self-assembly blocks for biological structural materials, control the rheological properties of suspensions, and design composite materials. Although the synthesis of nonspherical inorganic nanoparticles has been widely studied, the preparation, formation mechanism, and morphology control of nonspherical polymer microspheres still deserve further study.
     A series of research work on the preparation and microsphere morphology control of the above mentioned inorganic/polymer composite materials have been carried out. We studied the synthesis of inorganic/polymer hollow microspheres templated from multiple Pickering emulsions; the preparation, morphology control, and properties of SiO2/polymer composite microspheres via double in situ miniemulsion polymerization; the design and synthesis of Janus inorganic/polymer composite microspheres via double in situ miniemulsion polymerization; the synthesis and properties of nano silver particles/polymer composite microspheres by a two-step dispersion polymerization; and the synthesis and self assembly of monodisperse polymer microspheres to prepare colloidal crystal and further porous materials. The main results on the seven aspects of the research work are as follows:
     (1) Stable W/O/W multiple emulsions were successfully prepared by using the in situ formed amphiphilic silica particles as the Pickering emulsifier. Inorganic/polymer hollow spheres were fabricated after the polymerization of interlayer oil monomers. The water-in-oil (W/O) emulsions were first prepared by using the mixture of styrene, tetraethoxysilane (TEOS), hexadecane, and y-(trimethoxysilyl) propyl methacrylate (MPS) as the oil phase, and aqueous triethylamine solution as the inner water phase, respectively. By the hydrolysis-condensation of TEOS under basic conditions, silica particles were formed and modified by MPS at the O/W interface. W/O/W emulsions were fabricated by adding water as the outer phase. Finally, hybrid hollow microspheres were obtained after the further polymerization of the interlayer phase. The results showed that the time of surface functionalization had great effects on the size of silica particles and then the wall thickness of hollow microspheres. The modification level of silica nanoparticles were influenced by the content of MPS and volume ration of W/O phase of the primary W/O emulsions.
     (2) The SiO2/polymer seed microspheres were fabricated via in situ miniemulsion polymerization of MMA using MPS as functional monomer and in situ hydrolysis-condensation reaction of TEOS under basic conditions, and non-spherical polymer particles were obtained after styrene monomer was added dropwise and initiated to polymerize. The results showed that the addition of crosslinking agent divinylbenzene (DVB) and the contents of SDS and MPS in the formulation have great effects on the morphology of microspheres. The hybrid microspheres have a core-shell structure without the use of MPS and turn into a plum-like structure in the presence of MPS. If both DVB and MPS were added, the microspheres showed a peanut-shaped morphology.
     (3) SiO2/polymer nanocomposite microspheres were prepared by double in situ miniemulsion polymerization in the presence of methyl methacrylate, butyl acrylate, MPS, and TEOS. By taking full advantage of phase separation between the growing polymer particles and TEOS, inorganic/polymer microspheres were fabricated successfully in a one-step process. The formation of SiO2 particles and the polymerization of organic monomers took place simultaneously. The results showed that nanocomposite microspheres had a raspberry-like structure with silica nanoparticles on the shells of polymer microspheres. The silica particles of about 20 nm were highly dispersed within the nanocomposite films without aggregations. The transmittance of nanocomposite film was comparable to that of the copolymer film at around 70-80% from 400 to 800 nm. The mechanical properties and the fire retardant behavior of the polymer matrix were improved by the incorporation of silica nanoparticles.
     (4) Inorganic/polymer Janus microspheres were fabricated successfully in a one-step process by miniemulsion polymerization. Our method involved the in situ miniemulsion polymerization of styrene and the in situ hydrolysis-condensation of TEOS under basic conditions. The use of water-soluble initiator plays a key role on the formation of Janus-type microspheres. Thus, the primary radicals form in the water medium, spread to the interface of miniemulsion droplets, and initiate the polymerization of monomer at the interface. With the phase separation between the growing polystyrene particles and TEOS, Janus microspheres consisting of a silica hemisphere and a polystyrene hemisphere were obtained. The Janus microspheres showed the amphiphilicity due to the different chemical composition of each hemisphere.
     (5) A facile and effective approach has been developed to prepare hybrid hollow/bowl-type SiO2/PMMA microspheres via the double in situ miniemulsion polymerization by taking full advantage of phase separation. The results showed that the content of emulsifiers had great effect on the stability of polymerization and then the morphology of the as-prepared microspheres. At a given content of SDS, MPS content had a great impact on the morphologies of hybrid microspheres. The hybrid particles had a "bowl-type" structure without MPS. With more and more MPS in the formulation, hybrid microspheres changed into a collapsed hollow structure. Silica nanoparticles with size of about 20 nm were on the outer shells of polymer microspheres.
     (6) A facile method for the preparation of silver/polystyrene (Ag/PS) composite microspheres was discovered. PS microspheres with carboxyl and nitrile groups on the surfaces were synthesized via a two-step dispersion copolymerization of styrene, itaconic acid, and acrylonitrile in ethanol/water media. Ag/PS composite microspheres were prepared successively by the addition of AgNO3 aqueous solution to the dispersion since Ag+ions were absorbed on the modified surfaces of PS microspheres, and then reduced to silver nanoparticles by aqueous hydrazine hydrate. The results showed that Ag nanoparticles with size of about 50 nm located on the shell of PS microspheres due to the interaction between the carboxyl and nitrile groups of PS microspheres and the in situ formed silver nanoparticles. The as-prepared Ag/PS microspheres showed good catalytic properties.
     (7) A rapid and facile method of preparing free-standing colloidal crystals from monodisperse charged polystyrene (PS) microspheres was proposed. Mixed solvents (ethanol/water) were used as the dispersion medium in the self-assembly process of colloidal crystals. By a simple "floating self-assembly" method, PS microspheres floated on the surface of liquid and self-assembled into large area of three-dimensional (3D) ordered colloidal crystals within 15 min. Then epichlorohydrin was added in as a cross-linking agent to strengthen the colloidal-crystal film. The obtained colloidal-crystal film was free-standing and could be easily transferred to other substrates. Using tetrabutyl titanate as a titania precursor,3D porous TiO2 materials with rodlike skeletal structure were fabricated from the prepared free-standing colloidal crystal.
引文
[1](a) Bourgeat-Lami E, Espiard P, Guyot A. Poly(ethyl acrylate) latexes encapsulating nanoparticles of silica:1. Functionalization and dispersion of silica. Polymer,1995,36: 4385-4389; (b) Espiard P, Guyot, A. Poly(ethyl acrylate) latexes encapsulating nanoparticles of silica:2. Grafting process onto silica. Polymer 1995,36:4391-4395; (c) Espiard P, Guyot A, Perez J, Vigier G, et al. Poly(ethyl acrylate) latexes encapsulating nanoparticles of silica:3. Morphology and mechanical properties of reinforced films. Polymer,1995,36:4397-4403.
    [2]Zhang K, Chen HT, Chen X, et al. Monodisperse silica-polymer core-shell microspheres via surface grafting and emulsion polymerization. Macromol Mater Eng,2003,288:380-385.
    [3]Zeng Z, Yu J, Guo ZX. Preparation of epoxy-functionalized polystyrene/silica core-shell composite nanoparticles. J Polym Sci, Part A:Polym Chem,2004,42:2253-2262.
    [4]Ding XF, Wang ZC, Han DX, et al. An effective approach to synthesis of poly (methyl methacrylate)/silica nanocomposites. Nanotechnology,2006,17:4796-4801.
    [5]Landfester K, Synthesis of colloidal particles in miniemulsions. Annu Rev Mater Res,2006,36: 231-279.
    [6]Asua JM. Miniemulsion polymerization. Prog Polym Sci,2002,27:1283-1346.
    [7]Schork FJ, Luo YW, Smulders W, et al. Miniemulsion polymerization. Adv Polym Sci,2005, 175:129-255.
    [8]Asua JM, Miniemulsion polymerization. Prog Polym Sci,2002,27:1283-1346.
    [9]Torini L, Argillier JF, Zydowicz N. Interfacial polycondensation encapsulation in miniemulsion. Macromolecules,2005,38:3225-3236.
    [10]Antonietti M, Landfester K. Polyreactions in miniemulsions. Prog Polym Sci,2002,27:689.
    [11]Schork FJ, Luo YW, Smulders W, et al. Miniemulsion Polymerization. Adv Polym Sci,2005, 175:129-255
    [12]D. Crespy, K. Landfester. Anionic polymerization of ε-caprolactam in miniemulsion:synthesis and characterization of polyamide-6 nanoparticles. Macromolecules,2005,38:6882-6887.
    [13]Pecher J, Mecking S. Nanoparticles from step-growth coordination polymerization. Macromolecules,2007,40:7733-7735.
    [14]Tiarks F, Landfester K, Antonietti M. One-step preparation of polyurethane dispersions by miniemulsion polyaddition. J Polym Sci. Part A, Polym Chem,2001,39:2520-2524.
    [15]Qumener D, Hroguez V, Gnanou Y. Bicompartmentalized polymer particles by tandem ROMP and ATRP in miniemulsion. Macromolecules,2005,38:7977-7982.
    [16]Qumener, Hroguez V, Gnanou Y. Design of PEO-based ruthenium carbene for aqueous metathesis polymerization. Synthesis by the "macromonomer method" and application in the miniemulsion. J Polym Sci, Part A Polym Chem,2006,44:2784-2793.
    [17]Cauvin S, Ganachaud F. On the preparation and polymerization of p-Methoxystyrene miniemulsions in the presence of excess ytterbium triflate. Macromol Symp,2004,215: 179-189.
    [18]强伟丽,王祎龙,贺枰,徐宏.细乳液法合成单核核壳结构氧化硅/聚苯乙烯复合微球.功能材料.2007,38:272-275.
    [19]Ruuge EK, Rusetski AN. Magnetic fluids as drug carriers:targeted transport of drugs by a magnetic field. J Magn Magn Mater,1993,122:335-339.
    [20](a) Hubbuch JJ, Thomas ORT. High-gradient magnetic affinity separation of trypsin from porcine pancreatin. Biotechnol Bioeng,2002,79:301-313; (b) Bucak S, Jones DA, Laibinis PE, Hatton TA. Protein separations using colloidal magnetic nanoparticles. Biotechnol Prog, 2003,19:477-484; (c) Lubbe AS, Bergemann C, Brock J, et al. Physiological aspects in magnetic drug-targeting. J Magn Magn Mater,1999,194:149-155.
    [21]Chen ZJ, Peng K, Mi YL. Preparation and properties of magnetic polystyrene microspheres. J Appl Polym Sci,2007,103:3660-3666.
    [22]Zhang SW, Zhou SX, Weng YM, et al. Synthesis of silanol-functionalized latex nanoparticles through miniemulsion copolymerization of styrene and y-methacryloxypropy ltrimethoxysilane. Langmuir,2005,21:2124-2128.
    [23]Qiao, XG, Chen M, Zhou J, et al. Synthesis of raspberry-like silica/polystyrene/silica multilayer hybrid particles via miniemulsion polymerization. J Polym Sci, Part A, Polym Chem,2007,45:1028-1037.
    [24]van Blaaderen A. Materials science:colloids get complex. Nature,2006,439; 545-546.
    [25]Koo HY, Yi DK, Yoo SJ, et al. A snowman-like array of colloidal Dimers for antireflecting surfaces. Adv Mater,2004,16:274-277.
    [26]Glotzer SC. Materials science:some assembly required. Science,2004,306:419-420.
    [27]Jogun SM, Zukoski CF. Rheology and microstructure of dense suspensions of plate-shaped colloidal particles. J Rheol,1999,43:847-871.
    [28]Noble PF, Cayre OJ, Alargova RG, et al. Fabrication of "hairy" colloidosomes with shells of polymeric microrods. J Am Chem Soc,2004,126:8092-8093.
    [29]Kim JW, Larsen RJ, Weitz DA, et al. Uniform nonspherical colloidal particles with tunable shapes. Adv. Mater,2007,19:2005-2009.
    [30]Okubo M, Fujibayashi T, Yamada M, et al. Micron-sized, monodisperse, snowman/confetti-shaped polymer particles by seeded dispersion polymerization. Colloid Polym Sci,2005,283:1041-1045.
    [31]Reculusa S, Mingotaud C, Bourgeat-Lami E, et al. Synthesis of daisy-shaped and multipod-like silica/polystyrene nanocomposites. Nano Lett,2004,4:1677-1682.
    [32]Sheu HR, El-Aasser MS, Vanderhoff JW. Phase separation in polystyrene latex interpenetrating polymer networks. J Polym Sci Part A Polym Chem,1990,28:629-651.
    [33]Mock EB, Bruyn HD, Hawkett BS, et al. Synthesis of anisotropic nanoparticles by seeded emulsion polymerization. Langmuir,2006,22:4037-4043.
    [34]Pfau A, Sander R, Kirsch S. Orientational ordering of structured polymeric nanoparticles at interfaces. Langmuir,2002,18:2880-2888.
    [35]Teruhisa F, Masayoshi O. Preparation and thermodynamic stability of micron-sized, monodisperse composite polymer particles of disc-like shapes by seeded dispersion polymerization. Langmuir,2007,23:7958-7962.
    [36]Champion JA, Katare YK, Mitragotri S. Making polymeric micro-and nanoparticles of complex shapes. PNAS,2007,104:11901-11904.
    [37]Dendukuri D, Pregibon DC, Collins J, et al. Continuous-flow lithography for high-throughput microparticle synthesis. Nat Mater,2006,5:365-369.
    [38]Dhananjay D, Kim T, Alan HT, et al. Controlled synthesis of nonspherical microparticles using microfluidics. Langmuir,2005,21:2113-2116.
    [39]Nie ZH, Li W, Seo M. Janus and ternary particles generated by microfluidic synthesis:design, synthesis, and self-assembly. J Am Chem Soc,2006,128:9408-9412.
    [40]Naohiko S, Yoshimi K, Masayoshi O. Revisiting the morphology development of solvent-swollen composite polymer particles at thermodynamic equilibrium. Langmuir,2006, 22:9397-9402.
    [41]Takuya T, Reiko N, Yoshimi K. Effect of molecular weight on the morphology of polystyrene/poly(methyl methacrylate) composite particles prepared by the solvent evaporation method. Langmuir,2008,24:12267-12271.
    [42]Manoharan VN, Elsesser MT, Pine DJ. Dense packing and symmetry in small clusters of microspheres. Science,2003,301:483-487.
    [43]Yi Gi-Ra, Manoharan VN, Michel E, et al. Colloidal clusters of silica or polymer microspheres. Adv Mater,2004,16:1204-1208.
    [44]Wang LK, Xia LH, Li G, et al. Photochemical surface patterning by the thiolene reaction. Angew Chem Int Ed,2008,47:4725-4728.
    [45]Jang JH, Ullal CK, Kooi SE, et al. Shape control of multivalent 3D colloidal particles via interference lithography. Nano Lett,2007,7:647-651.
    [46]Takahara YK, Ikeda S, Ishino S. Asymmetrically modified silica particles, a simple particulate surfactant for stabilization of oil droplets in water. J Am Chem Soc,2005,127:6271-6275.
    [47]Qiang W, Wang Y, He P, et al. Synthesis of asymmetric inorganic/polymer nanocomposite particles via localized substrate surface modification and miniemulsion polymerization. Langmuir,2008,24:606-608.
    [48]Lu W, Chen M, Wu LM. One-step synthesis of organic-inorganic hybrid asymmetric dimer particles via miniemulsion polymerization and functionalization with silver. J Colloid Interface Sci,2008:328:98-102.
    [49]王祎龙.上海交通大学博士学位论文[P],2009.
    [50]Qiang WL, Wang YL, He P, et al. Synthesis of asymmetric inorganic/polymer nanocomposite particles via localized substrate surface modification and miniemulsion polymerization. Langmuir 2008,24,606-608.
    [51]Dinsmore, AD, Hsu MF, Nikolaides MG., et al. Colloidosomes:selectively permeable capsules composed of colloidal particles. Science,2002,298:1006-1009.
    [52]Bink BP, Clint JH. Solid wettability from surface energy components:Relevance to Pickering emulsions. Langmuir,2002,18:1270-1273.
    [53]Madivala B, Vandebril S, Fransaer J, et al. Exploiting particle shape in solid stabilized emulsions. Soft Matter,2009,5:1717-1727.
    [54]Guillot S, Bergaya F, Azevedo C, et al. Internally structured Pickering emulsions stabilized by clay mineral particles. J Colloid Interf Sci,2009,333:563-569.
    [55]Kim JW, Lee D, Shum HC, et al. Colloid surfactants for emulsion stabilization. Adv Mater, 2008,20:3239-3243.
    [56]Madivala B, Fransaer J, Vermant J. Packing, flipping, and buckling transitions in compressed monolayers of ellipsoidal latex particles. Langmuir,2009,25:2718-2728.
    [57]Yin YD, Lu Y, Xia YN. A self-assembly approach to the formation of asymmetric dimers from monodispersed spherical colloids. J Am Chem Soc,2001,123:771-772.
    [58]Hosein ID, Liddell CM. Convectively assembled asymmetric dimer-based colloidal crystals. Langmuir,2007,23:8810-8814.
    [59]刘睿,杜中杰,乔金梁等.聚合物异形粒子的制备与形态表征及应用.高分子材料科学与工程,2005,21:189-192.
    [60]Lou XW, Archer LA, Yang ZC. Hollow micro-/nanostructures:synthesis and applications. Adv Mater,2008,20:3987-4019
    [61]Xu XL, Asher SA. Polymerized polyHEMA photonic crystals:pH and ethanol sensor materials. J Am Chem Soc,2004,126:7940-7945.
    [62]Guan GJ, Zhang ZP, Wang ZY, et al. Single-hole hollow polymer microspheres toward specific high-capacity uptake of target species. Adv Mater,2007,19:2370-2374.
    [63]Frank C, Caruso RA, MOhwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science,1998,282:1111-1114.
    [64]Lou XW, Archer LA, Yang ZC. Hollow micro-/nanostructures, synthesis and applications. Adv Mater,2008,20:3987.
    [65]Zimmermann C, Feldmann C, Wanner M, et al. Nanoscale gold hollow spheres through a microemulsion approach. Small 2007,3:1347-1349.
    [66]Han J, Song GP, Guo R. A facile solution route for polymeric hollow spheres with controllable size. Adv Mater,2006,18:3140-3144.
    [67](a) Collins AM, Spickermann C, Mann S. Synthesis of titania hollow microspheres using non-aqueous emulsions. J Mater Chem,2003,13:1112-1114; (b) Fujiwara M, Shiokawa K, Tanaka Y, et al. Preparation and formation mechanism of silica microcapsules (hollow sphere) by water/oil/water interfacial reaction. Chem Mater,2004,16:5420-5426; (c) Li WJ, Sha XX, Dong WJ, et al. Synthesis of stable hollow silica microspheres with mesoporous shell in nonionic W/O emulsion. Chem Commun,2002,2434-2435.
    [68]Hong K, Park S. Characterization of ovalbumin-containing polyurethane microcapsules with different structures. Polymer Testing,2000,19:975-984.
    [69]Hong K, Park S. Melamine resin microcapsules containing fragrant oil:synthesis and characterization. Mater Chem Phys,1999,58:128-131.
    [70]Hong K, Park S. Preparation of polyurea microcapsules with different diamine and their characteristics. Mater Res Bull,1999,34:963-969.
    [71]Park S, Shin YS, Lee JR. Preparation and characterization of microcapsules containing lemon oil. J Colloid Interf Sci,2001,241:502-508.
    [72]Hong K, Nakayama K, Park S. Effects of protective colloids on the preparation of poly (L-lactide)/poly (butylene succinate) microcapsules. Euro Polym J,2002,38:305-311.
    [73]Hildebrand GE, Tack JW. Microencapsulation of peptides and proteins. Int J Pharm,2000,196: 173-176.
    [74](a) Nisisako T, Okushima S, Torii T. Controlled formulation of monodisperse double emulsions in a multiple-phase microfluidic system. Soft Matter,2005,1:23-27; (b) Chu LY, Utada AS, Shah RK, et al. Controllable monodisperse multiple emulsions. Angew Chem Int Ed, 2007,46:8970-8974; (c) Chen HY, Zhao Y, Song YS, Jiang L. One-step multicomponent encapsulation by compound-fluidic electrospray. J Am Chem Soc,2008,130:7800-7801.
    [75]BP. Binks (Ed.), Modern Aspects of Emulsion Science, The Royal Society of Chemistry, Cambridge,1998.
    [76]Pickering SU. Emulsions. Journal of the Chemical Society,1907,91:2001-2021.
    [77]Torres LG, Iturbe R, Snowden MJ, et al. Preparation of o/w emulsions stabilized by solid particles and their characterization by oscillatory rheology. Colloids Surf A,2007,302: 439-448.
    [78]Zhang J, Chen KQ, Zhao HY. PMMA colloid particles armored by clay layers with PDMAEMA polymer brushes. J Polym Sci, Part A, Polym Chem,2008,46:2632-2639.
    [79]Kim SH, Yi GR, Kim KH, et al. Photocurable Pickering emulsion for colloidal particles with structural complexity. Langmuir,2008,24:2365-2371.
    [80]He YJ, Yu XY. Preparation of silica nanoparticle-armored polyaniline microspheres in a Pickering emulsion. Mater Lett,2007,61:2071-2074.
    [81]He YJ. Preparation of polyaniline/nano-ZnO composites via a novel Pickering emulsion route. Powder Technology,2004,147:59-63.
    [82]Jeng J, Chen TY, Lee CF, et al. Growth mechanism and pH-regulation characteristics of composite latex particles prepared from Pickering emulsion polymerization of aniline/ZnO using different hydrophilicities of oil phases. Polymer,2008,49:3265-3271.
    [83]Yang S, Liu HR, Zhang ZC. A facile route to hollow superparamagnetic magnetite/polystyrene nanocomposite microspheres via inverse miniemulsion polymerization. J Polym Sci Part A Polym Chem,2008,46:3900-3910.
    [84]蒋峰景,浦鸿汀.Fe3O4/聚苯乙烯中空微球磁性复合微粒的制备及其磁流变性能的研究.功能材料,2007,38:11486-1189.
    [85]Chen T, Colver PJ, Bon SAF. Organic/inorganic hybrid hollow spheres prepared from TiO2-stabilized Pickering emulsion polymerization. Adv Mater,2007,19:2286-2289.
    [86]He XD, Ge XW, Liu HR, et al. Synthesis of cagelike polymer microspheres with hollow core/porous shell structures by self-assembly of latex particles at the emulsion droplet interface. Chem Mater,2005,17:5891-5892.
    [87]Bon SAF, Chen T. Pickering stabilization as a tool in the fabrication of complex nanopatterned silica microcapsules. Langmuir,2007,23:9527-530.
    [88]Kowalski A, V Martin. USP,4,427,836,1984.
    [89]Kowalski A, V Martin. USP,4,469,825,1984.
    [90]Yuan CD, Miao AH, Cao JW, et al. Preparation of monodispersed hollow polymer particles by seeded emulsion polymerization under low emulsifier conditions. J Appl Polym Sci,2005,98: 1505-1509.
    [91]郝冬梅,唐小真,刘成岑.中空乳胶粒子的制备-碱处理.高分子材料科学与工程,2001,1:146-149.
    [92]Okubo M. Process for Producing hollow polymer latex particles[P]. US 4910229,1990.
    [93]Okubo M, Mori H, Ito A. Effect of polymer composition on the production of cationic multihollow polymer particles by the stepwise acid/alkali method. Colloid Polym Sci,1999, 277:589-594
    [94]Okubo M, Shiozak M, Tsujihiro, et al. Preparation of micron-size monodisperse polymer particles by seeded polymerization utilizing the dynamic monomer swelling method. Colloid Polym Sci,1991,269:222-227.
    [95]Okubo M, Shiozak M. Production of micron-size monodisperse polymer particles by seeded polymerization utilizing dynamic swelling method with cooling process. Polym International, 1993,30:469-474.
    [96]Okubo M, Minami H. Control of hollow size of micron-sized monodispersed polymer particles having a hollow structure. Colloid Polym Sci,1996,274:433-438.
    [97]Okubo M, Minami H. Formation mechanism of micron-sized monodispersed polymer particles having a hollow structure. Colloid Polym Sci,1997,275:992-997.
    [98]Okubo M, Minami H, Yamanoto Y. Penetration/release behaviors of various solvents into/from micron-sized monodispersed hollow polymer particles. Colloid Surf A,1999,153:405-411.
    [99]McDonald C J. USP,4973670,1990
    [100]McDonald CJ, Bouck K, Chaput AB, et al. Emulsion polymerization of voided particles by encapsulation of a nonsolvent. Macromolecules,2000,33:1593-1605.
    [101]van Zyl AJP, Bosch RFP, McLeary JB, et al. Synthesis of styrene based liquid-filled polymeric nanocapsules by the use of RAFT-mediated polymerization in miniemulsion. Polymer,2005, 46:3607-3615.
    [102]Stewart S, Liu GJ. Hollow Nanospheres from polyisoprene-block-poly(cinnamoylethyl methacrylate)-block-poly(tert-butyl acrylate). Chem Mater,1999,11:1048-1054.
    [103]Caruso F, Caruso FA, Mohwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science,1998,282:1111-1114.
    [104]Caruso RA, Susha A, Caruso F. Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach. Chem Mater,2001,13:109-116.
    [105]Omi S, Katami K, Yamamoto A, et al. Synthesis of polymeric microspheres employing SPG emulsification technique. J Appl Polym Sci,1994,51:1-8.
    [106]Omi S, Ma GH, Nagai M. Macromol Symp.2000,151:319-330.
    [107]Ma GH, Omi S, Dimonie VL. Study of the preparation and mechanism of formation of hollow monodisperse polystyrene microspheres by SPG (Shirasu Porous Glass) emulsification technique. J Appl Polym Sci,2002,85:1530-1543.
    [108]Omi S, Matsuda A, Imamura K, et al. Synthesis of monodisperse polymeric microspheres including polyimide prepolymer by using SPG emulsification technique. Colloids Surf A,1999, 153:373-381.
    [109]Ma GH, Nagai M, Omi S. Study on preparation and morphology of uniform artificial polystyrene-poly(methyl methacrylate) composite microspheres. J Colloid Interf Sci,1999, 214:264-282.
    [110]Ma GH, Nagai M, Omi S. Effect of lauryl alcohol on morphology of uniform polystyrene-poly (methyl methacrylate) composite microspheres prepared by porous glass membrane emulsification. J Colloid Interf Sci,1999,219:110-128.
    [111]谢锐,褚良银,陈文梅,等.膜乳化法制备单分散高分子微球和微囊的研究进展.高校化学工程学报,2002,17:400-405.
    [112]穆锐,邓爱民,尾见信三.用SPG膜乳化法合成单分散性高分子微粒子,高分子材料科学与工程,2003,19:82-84.
    [113]谢晓峰,范星河.大分子单体聚N-乙烯甲酰胺与苯乙烯共聚合成热敏性功能高分子微球.高分子学报,2001,(3):347-350.
    [114]Yap FL, Zhang Y. Assembly of polystyrene microspheres and its application in cell micropatterning. Biomaterials,2007,28:2328-2338.
    [115]Xu XL, Goponenko AV, Asher SA. Polymerized polyHEMA photonic crystals, pH and ethanol sensor materials. J Am Chem Soc,2008,130:3113-3119.
    [116]Photonic Crystals. Advances in design, fabrication, and characterization (Eds, K. Busch, S. Lolkes, R. B. Wehrspohn, H. Foll), Wiley Weinheim 2004.
    [117]Stein A, Li F, Denny NR. Morphological control in Ccolloidal crystal templating of inverse opals, hierarchical structures, and shaped particles. Chem Mater,2008,20:649-666.
    [118]宋晓岚,曲鹏,王海波,等.介孔材料的制备、表征、组装及其应用.材料导报,2004,18:28-30.
    [119]李艳华,曾冬铭,黄可龙.有序大孔材料的制备及其应用.化学进展.2008,20:245-252.
    [120]Van BA, Ruel R, Wiltzius P. Template-directed colloidal crystallization. Nature,1997,385: 321-324.
    [121]Lytle JC, Stein A. Annual Reviews of Nano Research:Recent Progress in Syntheses and Applications of Inverse Opals and Related Macroporous Materials Prepared by Colloidal Crystal Templating. NJ:World Scientific Publishing Co:River Edge,2006.1-79.
    [122]Zakhidov AA, Baughman RG, Iqbal Z, et al. Carbon structures with three-dimentional periodicity at optical wavelengths. Science,1998,282:897-901.
    [123]Orlin DV, Abraham ML. Colloidal crystals as templates for porous materials. Curr Opin Colloid Interface Sci,2000,5:56-63.
    [124]Dimitrov AS, Nagayama K. Colloidal crystal Films:advances in universality and perfection. J Am Chem Soc,2003,125:15589-15598.
    [125]赵玉翠,郑经堂,李石.胶晶模板法合成三维有序大孔TiO2.化工新型材料,2008,36:61-62.
    [126]Vickreva O, Kalinina O, Kumacheva E. Colloid crystal growth under oscillatory shear. Adv Mater,2000,12:110-112.
    [127]王晓冬,仪桂云.漂浮法制备SiO2有序大孔材料.高等学校化学学报,2007,28:1759-1761.
    [128]Xu X, Friedman G, Humfeld KD, et al. Materials aspects of photonic crystals. Adv Mater,2001, 13:1681-1684.
    [129]Stein A, Li F, Denny NR. Morphological control in colloidal crystal templating of inverse opals, hierarchical structures, and shaped particles. Chem Mater,2008,20:649-666.
    [130]辛颖,刘志锋,雅菁.用聚苯乙烯微球模板组装有序多孔氧化锌薄膜.硅酸盐学报,2007,35(4):410-415.
    [131]Huang L, Wang Z, Sun J, et al. Fabrication of ordered porous structures by self-assembly of zeolite nanocrystals, J Am Chem Soc,2000,122:3530-3531.
    [132]Dong W, Bongard H, Tesche B, et al. Inverse opals with a skeleton structure:photonic crystals with two complete bandgaps. Adv Mater,2002,14:1457-1460.
    [133]King JS, Gaillot DP, Graugnard E, et al. Conformally back-filled, non-close-packed inverse-opal photonic crystals. Adv Mater,2006,18:1063-1067.
    [134]Woo SW, Dokko K, Sasajima K, et al. Three-dimensionally ordered macroporous carbons having walls composed of hollow mesosized spheres. Chem Commun,2006,39:4099-4101.
    [135]Hosein ID, Liddell CM. Convectively assembled nonspherical mushroom cap-based colloidal crystals. Langmuir,2007,23:8810-8814.
    [136]Sun ZQ, Chen X. Nonspherical colloidal crystals fabricated by the thermal pressing of colloidal crystal chips. Langmuir,2005,21:8987-8991.
    [137]Sadakane M, Asanuma T, Kubo J, et al. Facile procedure to prepare three-dimensionally ordered macroporous (3DOM) perovskite-type mixed metal oxides by colloidal crystal templating method. Chem Mater,2005,17:3546-3551.
    [138]Thakuria H, Borah BM, Das G. Macroporous metal oxides as an efficient heterogeneous catalyst for various organic transformations:A comparative study. J Mol Catal A:Chem,2007, 274:1-10.
    [139]尹强,廖菊芳,王崇太,等.三维有序大孔H3PW12O40-SiO2功能材料的制备、表征及催化性能研究.化学学报,2007,65:2103-2108.
    [140]梁冰,钟家柽,朱俊等.PMMA光子晶体及PMMA/TiO2光子晶体的制备及表征.功能材料,2005,36:1167-1169.
    [141]Ruhl T, Spahn P, Hermann C, et al. Double-inverse-opal photonic crystals:the route to photonic bandgap switching. Adv Funct Mater,2006,16:885-890.
    [142]Li B, Zhou J, Li L, et al. Ferroelectric inverse opals with electrically tunable photonic band gap. Appl Phys Lett,2003,83:4704-4706.
    [143]Kuai SL, Bader G, Ashrit PV. Tunable electrochromic photonic crystals. Appl Phys Lett,2005, 86:221110/1-221110/3.
    [144]Acciarri M, Barberini R, Canevali C, et al. Ruthenium (Platinum)-doped Tin dioxide inverted opals for gas sensors. Chem Mater,2005,17:6167-6171.
    [145]Song YY, Zhang D, Gao W, et al. Nonenzymatic glucose detection by using a three-dimensionally ordered, macroporous platinum template. Chem Eur J,2005,11: 2177-2182.
    [146]Chen HH, Suzuki H, Sato O, et al. Biosensing capability of gold-nanoparticle-immobilized three-dimensionally ordered macroporous Film. Appl Phys A,2005,81:1127-1130.
    [147]Woo SW, Dokko K, Kanamura K. Preparation and characterization of three dimensionally ordered macroporous Li4Ti5O12 anode for Lithium batteries. Electrochim Acta,2007,53: 79-82.
    [148]Dino T, Eduardo E, Isabel S, et al. Three-dimensionally ordered macroporous Lithium manganese oxide for rechargeable Lithium batteries. Chem Mater,2008,20:4783-4790.
    [149]Li X, Tao F, Jiang Y, et al.3D ordered macroporous cuprous oxide:fabrication, optical, and photoelectrochemical properties. J Colloid Interface Sci,2007,308:460-465.
    [150](a) Akolekar, DB, Hind AR, Bhargava SK. Synthesis of macro-, meso-, and microporous carbons from natural and synthetic sources, and their application as adsorbents for the removal of quaternary. J Colloid Interface Sci,1998,199:92; (b) Malynych S, Luzinov I, Chumanov G, Poly(vinyl pyridine) as a universal surface modifier for immobilization of nanoparticles. J Phys Chem,2002,106:1280-1285.
    [151]Shipway AN, Katz E, Willner I. Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem,2000,1:18-52.
    [152]Sun T, Seff K. Silver clusters and chemistry in zeolites. Chem Rev,1994,94:857-870.
    [153](a) Clusters and Colloids; Schmid, G, Ed; VCH, Weinheim, Germany,1994; (b) Lewis LN, Chemical catalysis by colloids and clusters. Chem Rev,1993,93:2693-2730.
    [154](a) Selvan T, Spatz JP, Klok HA, et.al. Mineralization of gold nanoparticles in a block copolymer microemulsion. Chem Eur J,1996,2:1552-1555.
    [155](a) Chen CW, Serizawa T, Akashi M, Preparation of platinum colloids on polystyrene nanospheres and their catalytic properties in hydrogenation. Chem Mater,1999,11:1381-1389; (b) Pathak S, Greci MT, Kwong RC, et al. Synthesis and applications of palladium-coated poly (vinylpyridine) nanospheres. Chem Mater,2000,12:1985.
    [156]Barnickel P, Wokaun A, Silver coated latex spheres. Mol Phys,1989,67:1355-1372.
    [157]Schueler PA, Ives JT, DeLaCroix F, et al. Physical structure, optical resonance, and surface-enhanced Raman scattering of silver-island films on suspended polymer latex particles. Anal Chem,1993,65:3177-3186.
    [158]Mayer ABR, Grebner W, Wannemacher R. Preparation of silver-latex composites. J Phys Chem B,2000,104:7278-7285.
    [159](a) Lianos P, Thomas JK. Small CdS particles in inverted micelles. J Colloid Interface Sci, 1987,117:505-512; (b) Zhang ZB, Cheng HM, Ma JM. Synthesis of silver-coated silica nanoparticles in nonionic reverse micelles. J Mater Sci Lett,2001,20:439-440.
    [160]Shibata S, Aoki K, Yano T, Yamane M. Preparation of silica microspheres containing Ag nanoparticles. J Sol-Gel Sci Technol,1998,11:279-287.
    [161]Pol VG, Srivastava DN, Palchik O, et al. Sonochemical deposition of silver nanoparticles on silica spheres. Langmuir,2002,18:3352-3357.
    [162]Warshawsky A, Upson DA, Zerovalent metal polymer composites. Ⅰ. Metallized beads. J Polym Sci A:Polym Chem,1989,27:2963-2994.
    [163](a) Dokoutchaev A, James JT, Koene SC, et al. Thompson ME, Colloidal metal deposition onto functionalized polystyrene microspheres. Chem. Mater,1999,13:2389-2399; (b) Westcott SL, Oldenburg SJ, Lee TR, Halas NJ. Adsorption and diffusion of supercritical carbon dioxide in slit pores. Langmuir,2000,16:6921-6926.
    [164]Kobayashi Y, Salgueirino-Maceira V, Liz-Marzan LM. Deposition of silver nanoparticles on silica spheres by pretreatment steps in electroless plating. Chem Mater,2001,13:1630.
    [165]Ji T, Lirtsman VG, Avny Y, Davidov D. Preparation, characterization, and application of Au-shell/polystyrene beads and Au-shell/magnetic beads. Adv Mater,2001,13:1253-1256.
    [166]Dong AG, Wang YJ, Tang Y, et al. Fabrication of compact silver nanoshells on polystyrene spheres through electrostatic attraction. Chem Commun,2002,350-351.
    [167]Zhang J, Liu J, Wang S, et al. Methods to coat polystyrene and silica colloids with metal.2004, 14:1089-1096.
    [168](a)张立德,牟季美.纳米材料和纳米结构[M].北京,科学出版社,2001.3; (b)Zaiter VS, Filimonov DS, Presnyakor IA. Characterazition and modification of fillers for paints and coatings. J Colloid Interface Sci,1999,212:49-57; (c)李亚栋,贺蕴普,钱逸泰.银纳米粒子的制备及其表面特性研究.化学物理学报,1999,8:465-468.
    [169]Zhao W, Zhang QY, Zhang JP, Zhang HP. Preparation and thermal decomposition of PS/AG microspheres. Polym Composite,2009,30:891-896.
    [170]Lee JH, Mahmoud MA, Sitterle V, et al. Facile preparation of highly-scattering metal nanoparticle-coated polymer microbeads and their surface plasmon resonance. J Am Chem Soc,2009,131:5048-5049.
    [171]Kim JW, Lee JE, Kim SJ, et al. Synthesis of silver/polymer colloidal composites from surface-functional porous polymer microspheres. Polymer,2004,45:4741-4747.
    [172]Chen CW, Chen MQ, Serizawa T, et al. In-situ formation of silver nanoparticles on poly(N-isopropylacrylamide)-coated polystyrene microsphere. Adv Mater,1998,10: 1122-1126.
    [173]Cheng XJ, Tjong SC, Zhao Q, et al. Facile method to prepare monodispersed Ag/polystyrene composite microspheres and their properties. J Polym Sci Part A:Polym Chem,2009,47: 4547-4554.
    [174]Kim JW, Lee JE, Ryu JH, et al. Synthesis of silver/polymer colloidal composites from surface-functional porous polymer microspheres. Polymer,2004,39:4741-4747.
    [175]Santa de Maria LC, Souza JDC, Aguiar MRMP, et al. Synthesis, characterization, and bactericidal properties of composites based on crosslinked resins containing silver. J Appl Polym Sci,2008,107:1879-1886.
    [1]a) An K, Hyeon T. Synthesis and biomedical applications of hollow nanostructures. Nano Today.2009,4:359-373; b) Tamber H, Johansen P, Merkle HP, Gander B, Formulation aspects of biodegradable polymeric microspheres for antigen delivery. Adv Drug Delivery Rev,2005,57:357-376; c)李建军,张成亮,丁书江,屈小中,杨振忠.模板法制备复合中空微球.高等学校化学学报.2009,30:1904-1906.
    [2]a) Zhao Y, Jiang L. Hollow micro/nanomaterials with multilevel interior structures. Adv Mater,2009,21:1-18; b)张艳萍,褚莹.模板法合成核壳功能材料.化学进展,2007,19:35-41.
    [3]Lou XW, Archer LA, Yang ZC. Hollow micro-/nanostructures:synthesis and applications. Adv Mater,2008,20:3987-4019.
    [4]Garti N, Aserin A. Structural polymorphism in a four-component nonionic microemulsion. Adv Colloid Interface Sci,1996,65:37-69.
    [5]a) Fujiwara M, Shiokawa K, Tanaka Y, Nakahara Y. Preparation and formation mechanism of silica microcapsules (hollow sphere) by water/oil/water interfacial reaction. Chem Mater, 2004,16:5420-5426; b) Utada AS, Lorenceau E, Link DR, Kaplan PD, Stone HA, Weitz DA. Monodisperse double emulsions generated from a microcapillary device. Science,2005, 308:537-541.
    [6]a) Nisisako T, Okushima S, Torii T. Controlled formulation of monodisperse double emulsions in a multiple-phase microfluidic system. Soft Matter,2005,1:23-27; b) Chu LY, Utada AS, Shah RK, Kim JW, Weitz DA. Controllable Monodisperse Multiple Emulsions. Angew Chem Int Ed,2007,46:8970-8974; c) Chen HY, Zhao Y, Song YS, Jiang L. One-step multicomponent encapsulation by compound-fluidic electrospray. J Am Chem Soc, 2008,130:7800-7801.
    [7]a) Mason TG, Wilking JN, Meleson K, Chang CB, Graves SM. Nanoemulsions:formation, structure, and physical properties. J Phys-Condens Mat,2006,18:R635-R666; b) Benichou AA, Garti N. Double emulsions stabilized with hybrids of natural polymers for entrapment and slow release of active matters. Adv Colloid Interface Sci,2004,108/109:29-41.
    [8]Hanson JA, Chang CB, Graves SM, Li ZB, Mason TG, Deming TJ. Copy-number variations associated with neuropsychiatric conditions. Nature,2008,455:85-88.
    [9]Pickering S U, CXCVI.-Emulsions. J Chem Soc,1907,91:2001-2021.
    [10]a) Chen M, Zhou SX, You B, Wu LM. A novel preparation method of raspberry-like PMMA/SiO2 hybrid microspheres. Macromolecules,2005,38:6411-6417; b) Song XM, Zhao YL, Wang HT, Du QG, Fabrication of polymer microspheres using titania as a photocatalyst and Pickering stabilizer. Langmuir,2009,258:4443-4449; c) Cheng XJ, Zhao Q, Yang YK, Tjong SC, Li RKY. A facile method for the synthesis of ZnS/polystyrene composite particles and ZnS hollow micro-spheres. J Mater Sci,2010,45:777-782; d) Walther A, Hoffmann M, Muller AHE. Emulsion polymerization using Janus particles as stabilizers. Angew Chem Int Ed,2008,47:711-714; e) Chena JH, Chenga CY, Chiua WY, Leec CF, Liang NY. Synthesis of ZnO/polystyrene composites particles by Pickering emulsion polymerization, Eur Polym J,2008,44:3271-3279; f) He YJ. Synthesis of polyaniline/nano-CeO2 composite microspheres via a solid-stabilized emulsion route. Mater Chem Phys,2005,92:134-137; g) Voorn DJ, Ming W, van Herk AM, Polymer-clay nanocomposite latex particles by inverse pickering emulsion polymerization stabilized with hydrophobic montmorillonite platelets. Macromolecules,2006,39:2137-2143; h) Fujii S, Okada M, Sawa H, Furuzono T, Nakamura Y. Hydroxyapatite nanoparticles as particulate emulsifier:fabrication of hydroxyapatite-coated biodegradable microspheres. Langmuir, 2009,25:9759-9766.
    [11]韩晓洁.SiO2高官能化改性和应用及核壳结构粒子的制备[M].北京化工大学,2009.
    [12]杨飞,王君,蓝强,孙德军,李传宪.Pickering乳状液的研究进展.化学进展,2009,21:1418-1426.
    [1](a) Lu Y, Yin YD, Xia YN. Adv Mater.2001,13:415-420; (b) Koo HY, Yi DK, Yoo SJ, Kim DY. Snowman-like array of colloidal dimers for antireflecting surfaces._Adv Mater,2004,16: 274-277; (c) Sacanna S, Rossi L, Kuipers B. WM, Philipse AP. Fluorescent monodisperse silica ellipsoids for optical rotational diffusion studies. Langmuir,2006,22:1822-1827. (d) Murphy CJ, Jana NR. Controlling the aspect ratio of inorganic nanorods and nanowires. Adv Mater,2002,14:80-82.
    [2](a) Gu H, Yang Z, Gao J, Chang CK, Xu B. J Am Chem Soc,2005,127:34-35; (b) Glotzer SC. Some assembly required. Science,2004,306:419-420; (c) Tsonchev S, Schatz GC, Ratner MA. Hydrophobically-driven self-assembly:a geometric packing analysis. Nano Lett, 2003,3:623-626.
    [3](a) Pignon F, Magnin A, Piau JM. Thixotropic behavior of clay dispersions:combinations of scattering and rheometric techniques. J Rheol,1998,42:1349-1373; b) Jogun SM, Zukoski CF. Rheology and microstructure of dense suspensions of plate-shaped colloidal particles. J. Rheol,1999,43:847-871.
    [4](a) Noble PF, Cayre OJ, Alargova RG, Velev OD, Paunov VN. Fabrication of "hairy" colloidosomes with shells of polymeric microrods. J Am Chem Soc,2004,126:8092-8093; (b) Liu J, Huang X, Sulieman KM, Sun F, He X. Solution-based growth and optical properties of self-assembled monocrystalline ZnO ellipsoids. J Phys Chem B,2006,110: 10612-10618.
    [5](a) Manoharan VN, Elsesser MT, Pine DJ. Dense packing and symmetry in small clusters of microspheres. Science,2003,301:483-487; b) Yi GR, Manoharan VN, Michel E, Elsesser MT, Yang SM, Pine DJ. Colloidal clusters of silica or polymer microspheres. Adv Mater, 2004,16:1204-1208; (c) Yi GR, Thorsen T, Manoharan VN, Hwang MJ, Jeon SJ, Pine DJ, Quake SR, Yang SM. Generation of uniform colloidal assemblies in soft microfluidic devices. Adv Mater,2003,15:1300-1304.
    [6](a) Rolland JP, Maynor BW, Euliss LE, Exner AE, Denison GM, DeSimone JM. Direct fabrication and harvesting of monodisperse shape-specific nanobiomaterials. J Am Chem Soc, 2005,127:10096-10100; b) Bae C, Moon J, Shin H, Kim J, Sung MM. Fabrication of monodisperse asymmetric colloidal clusters by using contact area lithography (CAL). J Am Chem Soc,2007,129:14232-14239.
    [7](a) Xu S, Nie Z, Seo M, Lewis P, Kumacheva E, Stone HA, Garstecki P, Weibel DB, Gitlin I, Whitesides GM. Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Angew Chem Int Ed,2005,44:724-728; (b) Nie Z, Li W, Seo M, Xu S, Kumacheva E. Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors. J Am Chem Soc,2006,128:9408-9412; (c) Dendukuri D, Pregibon DC, Collins J, Hatton TA, Doyle PS. Continuous-flow lithography for high-throughput microparticle synthesis. Nat Mater,2006,5:365-369.
    [8](a) Fujibayashi T, Okubo M. Preparation and thermodynamic stability of micron-sized, monodisperse composite polymer particles of disc-like shapes by seeded dispersion polymerization. Langmuir,2007,23:7958-7962; (b) Mock EB, Bruyn HD, Hawkett BS, Gilbert RG, Zukosk CF. Synthesis of anisotropic nanoparticles by seeded emulsion polymerization. Langmuir,2006,22:4037-4043.
    [9](a) Qiang WL, Wang YL, He P, Xu H, Gu HC, Shi DL. Synthesis of asymmetric inorganic/polymer nanocomposite particles via localized substrate surface modification and miniemulsion polymerization. Langmuir,2008,24:606-608; (b) Yu H, Chen M, Rice P, Wang S, White R, Sun S. Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. Nano Lett, 2005,5:379-382; (c) Ge J, Hu Y, Zhang T, Yin Y. Superparamagnetic composite colloids with anisotropic structures. J Am Chem Soc,2007,129:8974-8975; (d) Camargo P, Xiong Y, Ji L, Zuo J, Xia Y. Facile synthesis of tadpole-like nanostructures consisting of Au heads and Pd tails. J Am Chem Soc,2007,129:15452-15453.
    [10](a) Zheng YB, Wang YH, Wang SJ, Huan CH. A. Fabrication of nonspherical colloidal particles via reactive ion etching of surface-patterned colloidal crystals. Colloids Surf A, 2006,277:27-36; (b) Wang LK, Xia LH, Li G, Ravaine S, Zhao XS. Patterning the surface of colloidal microspheres and fabrication of nonspherical particles. Angew Chem Int Ed,2008, 47:4725-4728.
    [11](a) Skjeltorp AT, Ugelstad J, Ellingsen T. Preparation of nonspherical, monodisperse polymer particles and their self-organization. J Colloid Interface Sci,1996,113:577-582; (b) Okubo MYamashita T, Minami H, Konishi Y. Preparation of micron-sized monodispersed highly monomer-"adsorbed" polymer particles having snow-man shape by utilizing the dynamic swelling method with tightly cross-linked seed particles. Colloid Polym Sci,1998,276: 887-892; (c) Sheu HR, El-Aasser MS, Vanderhoff JW. Phase separation in polystyrene latex interpenetrating polymer networks. J Polym Sci Part A:Polym Chem,1990,28:653-667.
    [12]Kim J-W, Larsen RJ, Weitz DA. Uniform nonspherical colloidal particles with tunable shapes. Adv Mater,2007,19:2005-2009; (b) Kim J-W, Larsen RJ, Weitz DA. Synthesis of nonspherical colloidal particles with anisotropic properties. J Am Chem Soc,2006,128: 14374-14377.
    [13](a) Zhang JA, Yang JJ, Wu QY, Wu MY, Liu NN, Jin ZL, Wang YF. SiO2/polymer hybrid hollow microspheres via double in ditu miniemulsion polymerization. Macromolecules,2010, 43:1188-1190; (b) Zhang JA, Liu NN, Wang MZ, Ge XW, Wu MY, Yang JJ, Wu QY, Jin ZL. Preparation and characterization of polymer/silica nanocomposites via double in situ miniemulsion polymerization. J Polym Sci Part A:Polym Chem,2010,48:3128-3134; (c) Zhang JA, Wu MY, Wu QY, Yang JJ, Liu NN, Jin ZL. Facile fabrication of inorganic/polymer Janus microspheres by miniemulsion polymerization. Chem Lett,2010,39:206-207.
    [14]Sheu HR, El-Aasser MS, Vanderhoff JW. Uniform nonspherical latex particles as model interpenetrating polymer networks. J Polym Sci Part A:Polym Chem,1990,28:629-651.
    [15]Liu YL, Hsu CY, Wang ML, Chen HS. A novel approach of chemical functionalization on nano-scaled silica particles. Nanotechnology,2003,14:813-819.
    [16]Huang H, Zhang H, Li J, Cheng S, Hu F, Tan B, Miniemulsion copolymerization of styrene and butyl acrylate initiated by redox system at lower temperature-preparation and polymerization of miniemulsion. J Appl Poly Sci,1998, (68):2029-2039.
    [17]Barnette D T, Schork FJ. Continuous miniemulsion polymerization. Chem Eng Prog,1987, (6):25-30.
    [18]Shang XY, Zhu ZK, Yin J, Ma XD. Compatibility of soluble polyimide/silica hybrids induced by a coupling agent. Chem Mater,2002,14:71-77.
    [19]Jang J, Ha H. Fabrication of hollow polystyrene nanospheres in microemulsion polymerization using triblock copolymers. Langmuir,2002,18:5613-5618.
    [20]Sedjo RA, Mirous BK, Brittain WJ. Synthesis of polystyrene-block-poly(methyl methacrylate) brushes by reverse atom transfer radical polymerization, Macromolecules, 2000,33:1492-1493.
    [21]Kashiwagi T, Morgan AB, Antonucci JM, VanLandingham MR, Harris RH, Awad WH, Shields JR. Thermal and flammability properties of a silica-poly(methylmethacrylate) nanocomposite. J Appl olym Sci,2003,89:2072-2078.
    [22]Liu YL, Hsu CY, Wang ML, Chen HS. A novel approach of chemical functionalization on nano-scaled silica particles. Nanotechnology,2003,14:813-819.
    [23]Liu YL, Hsu CY, Hsu KY. Poly(methylmethacrylate)-silica nanocomposites films from surface-functionalized silica nanoparticles. Polymer,2005,46:1851-1856.
    [1]Balazs A C,Emrick T, Russell T P. Nanoparticle polymer composites:where two small worlds meet. Science 2006,314:1107-1110.
    [2](a)Winey KI, Vaia RA. Polymer nanocomposites, MRS Bull.2007,32:314-347. (b) Krishnamoorti R, Vaia R A. Polymer nanocomposites. J Polym Sci Part B:Polym Phys,2007, 45:3252-3256
    [3]Caseri, W. In Hybrid Materials. Synthesis, Characterization, and Applications; Kickelbick, G, Ed, Wiley-VCH:Weinheim, Germany,2007; Chapter 2.
    [4]Schadler LS. Nanocomposite Science and Technology; Wiley-VCH:Weinheim, Germany, 2003; Chapter 2; (b) Schadler LS, Kumar S K, Benicewicz BC, Lewis SL, Harton SE. Designed interfaces in polymer nanocomposites:A fundamental viewpoint. MRS Bull,2007, 32:335-340; (c) Schadler LS, Brinson LC, Sawyer WG. Polymer nanocomposites:a small part of the story. JOM,2007,59:53-60.
    [5]Schaefer DW, Justice R S. How nano are nanocomposites? Macromolecules,2007,40:8501.
    [6]Zou H, Wu SH, Shen J. Polymer/silica nanocomposites:preparation, characterization, properties, and applications. Chem. Rev.2008,108:3893-3957.
    [7](a) Tiarks F, Landfester K, Antonietti M. Silica nanoparticles as surfactants and fillers for latexes made by miniemulsion polymerization. Langmuir,2001,17:5775-5780; (b) Watanabe M, Tamai T. Formation of Metal Nanoparticles on the Surface of Polymer Particles Incorporating Polysilane by UV Irradiation. Langmuir,2007,23:3062-3066; (c) Watanabe M, Tamai T. Acrylic polymer/silica organic-inorganic hybrid emulsions for coating materials: Role of the silane coupling agent. J Polym Sci Part A:Polym Chem,2006,44:4736-4742.
    [8](a) Liu J, Gao Y, Wang FD, Wu M. Preparation and characteristics of nonflammable polyimide materials. J Appl Polym Sci,2000,75:384-389; (b) Liu J, Gao Y, Wang FD, Li DC, Xu J. Preparation and characteristic of a new class of silica/polyimide nanocomposites. J Mater Sci,2002,37:3085-3088; (c) Hsiue GH, Liu YL, Liao HH. Flame-retardant epoxy resins:An approach from organic-inorganic hybrid nanocomposites. J Polym Sci Part A: Polym Chem,2001,39:986-996; (d) Chiang CL, Ma CCM. Synthesis, characterization, thermal properties and flame retardance of novel phenolic resin/silica nanocomposites, Polym Degrad Stab,2004,83:207-214. (e) Hibshman C, Cornelius CJ, Marand E. The gas separation effects of annealing polyimide-organosilicate hybrid membranes. J Membr Sci, 2003,211:25-40; (f) Hibshman C, Mager M, Marand E. Effects of feed pressure on fluorinated polyimide-organosilicate hybrid membranes. J Membr Sci,2004,229:73-80.
    [9](a) Liu YL, Hsu CY, Wang ML, Chen HS. A novel approach of chemical functionalization on nano-scaled silica particles, Nanotechnology,2003,14:813-819; (b)Liu YL, Hsu CY, Su YH, Lai JY. Chitosan-silica complex membranes from sulfonic acid functionalized silica nanoparticles for pervaporation dehydration of ethanol-water solutions. Biomacromolecules, 2005,6:368-373; (c) Su YH, Liu YL, Sun YM, Lai JY, Wang DM, Gao Y, Liu BJ, Guiver MD. Proton exchange membranes modified with sulfonated silica nanoparticles for direct methanol fuel cells. J Membr Sci,2007,296:21-28.
    [10]Khayet M, Villaluenga JPG, Valentin JL, Lopez-Manchado MA, Mengual JI, Seoane, B. Filled poly(2,6-dimethyl-1,4-phenylene oxide) dense membranes by silica and silane modified silica nanoparticles:characterization and application in pervaporation. Polymer, 2005,46:9881-9891.
    [11](a) Jang J, Ha J, Lim B. Synthesis and characterization of monodisperse silica-polyaniline core-shell nanoparticles. Chem Commun,2006,1622-1623; (b) Su YL, Preparation of polydiacetylene/silica nanocomposite for use as a chemosensor. React Funct Polym,2006,66: 967-973.
    [12]Neoh KG, Tan KK, Goh PL, Huang SW, Kang ET, Tan KL. Electroactive polymer-Si02 nanocomposites for metal uptake. Polymer,1999,40:887-893.
    [13]Kim JW, Larsen RJ, Weitz DA. Synthesis of nonspherical colloidal particles with anisotropic properties. J Am Chem Soc,2006,128:14374-14377.
    [14](a) Erdem B, Sudol ED, Dimonie V L, EI-Aasser. Encapsulation of inorganic particles via miniemulsion polymerization. I. Dispersion of titanium dioxide particles in organic media using OLOA 370 as stabilizer. J Polym Sci Polym Chem,2000,38:4419-4430; (b) Erdem B, Sudol ED, Dimonie VL, EI-Aasser. Encapsulation of inorganic particles via miniemulsion polymerization. III. Characterization of encapsulation, J Polym Sci Polym Chem,2000,38: 4431-4440; (c) Erdem B, Sudol ED, Dimonie VL, EI-Aasser. Encapsulation of inorganic particles via miniemulsion polymerization. III. Characterization of encapsulation. J Polym Sci Polym Chem,2000,38:4441-4450.
    [15]Hoffmann D, Landfester K, Antonietti M. Encapsulation of magnetite in polymer particles via the miniemulsion polymerization process. Magnetohydrodynamics,2001,37:217-221.
    [16]Tan CJ, Chua HG, Ker KH, Tong YW. Preparation of bovine serum albumin surface-imprinted submicrometer particles with magnetic susceptibility through core-shell miniemulsion polymerization. Anal Chem,2008,80:683-692.
    [17]Lu S, Ramos J, Forcada J. Self-stabilized magnetic polymeric composite nanoparticles by emulsifier-free miniemulsion polymerization. Langmuir,2007,26:12893-12900.
    [18]Zhang MQ, Rong MZ, Friedrich K. In Handbook of Organic-Inorganic Hybrid Materials and Nanocomposites; Nalwa, H. S., Ed, Ameican Scientific Publishers:Stevenson Ranch, CA, 2003,2(113-150).
    [19]Tiarks F, Landfester K, Antonietti M. Silica nanoparticles as surfactants and fillers for latexes made by miniemulsion polymerization. Langmuir,2001,17:5775-5780.
    [20]Zhang S W, Zhou SX, Weng YM, Wu LM. Synthesis of silanol-functionalized latex nanoparticles through miniemulsion copolymerization of styrene and y-methacryloxypropyltrimethoxysilane. Langmuir,2005,21:2124-2128.
    [21]Zhou J, Zhang SW, Qiao XG, Li XQ, Wu LM. Nanopore microspheres prepared by a cationic surfmer in the miniemulsion polymerization of styrene. J Polym Sci Part A:Polym Chem, 2006,44:3202-3209.
    [22]Qiang WL, Wang YL, He P, Xu H, Gu HC, Shi DL. Synthesis of asymmetric inorganic/polymer nanocomposite particles via localized substrate surface modification and miniemulsion polymerization. Langmuir,2008,24:606-610.
    [23]Qiao XG, Chen M, Zhou J, Wu LM. Facile fabrication of hybrid nanoparticles surface grafted with multi-responsive polymer brushes via block copolymer micellization and self-catalyzed core gelation, J Polym Sci Part A:Polym Chem,2007,45:1028-
    [24]Zou H, Wu SS, Shen J. Polymer/silica nanocomposites:preparation, characterization, properties, and applications. Chem Rev,2008,108:3893-3957.
    [25]Shang XY, Zhu ZK, Yin J, Ma XD. Compatibility of soluble polyimide/silica hybrids induced by a coupling agent. Chem Mater,2002,14:71-77.
    [26]Park YW, Lee DS. Mechanical and thermal properties of ceramic-modified poly(amide imide). J Appl Polym Sci,2004,94:1780-1788.
    [27]Zhang JA, Yang JJ, Wu QY, Wu MY, Liu NN, Jin ZL, Wang YF. SiO2/polymer hybrid hollow microspheres via double in situ miniemulsion polymerization. Macromolecules,2010, 43:1188-1190.
    [28]Liu YL, Hsu CY, Wang ML, Chen HS. A novel approach of chemical functionalization on nano-scaled silica particles. Nanotechnology,2003,14:813-819.
    [29]Liu YL, Hsu CY, Hsu KY. Poly(methylmethacrylate)-silica nanocomposites films from surface-functionalized silica nanoparticles. Polymer,2005,46:1851-1856.
    [30]Kashiwagi T, Morgan AB, Antonucci JM, VanLandingham, MR, Harris RH, Awad WH, Shields JR. Thermal and flammability properties of a silica-poly(methylmethacrylate) nanocomposite. J Appl Polym Sci,2003,89:2072-2078.
    [31]Caseri W. In Hybrid Materials. Synthesis, characterization, and applications; Kickelbick, G., Ed, Wiley-VCH:Weinheim, Germany,2007; Chapter 2, pp 49-86.
    [32]Mammeri F, Le Bourhis E, Rozes L, Sanchez C. Mechanical properties of hybrid organic-inorganic materials. J Mater Chem,2005,15:3787-3811.
    [33]Crosby AJ, Lee JY. Polymer nanocomposites:the "nano" effect on mechanical properties. Polym Rev,2007,47:217-229.
    [34]Morgan AB, Wilkie CA. Eds. Flame Retardant Polymer Nanocomposites; John Wiley & Sons:Hoboken, NJ,2007; Chapter 10,285-324.
    [35]Yang F, Nelson GL. Polymer/silica nanocomposites prepared via extrusion. Polym Adv Technol.2006,17:320-326.
    [36]Shanumuganathan K, Deodhar S, Dembsey N, Fan Q, Calvert PD, Warner SB, Patra PK. Flame retardancy and char microstructure of nylon-6/layered silicate nanocomposites. J Appl Polym Sci,2007,104:1540-1547.
    [37]Kashiwagi T, Morgan AB, Antonucci JM, VanLandingham M. R, Harris RH, Awad WH, Shields JR. Thermal and flammability properties of a silica-poly(methylmethacrylate) nanocomposite. J Appl Polym Sci,2003,89:2072-2078.
    [38]Schmid A, Peter S, Armes SP, Leite CAP, Galembeck F. Synthesis and characterization of film-forming colloidal nanocomposite particles prepared via surfactant-free aqueous emulsion copolymerization. Macromolecules,2009,42:3721-3728.
    [39]Schmid A, Tonnar J, Armes SP. A new highly efficient route to polymer-silica colloidal nanocomposite particles. Adv Mater,2008,20:3331-3336.
    [1]Perro A, Reculusa S, Ravaine S, Bourgeat-Lamic E, Duguet E, Design and synthesis of Janus micro-and nanoparticles. J Mater Chem,2005,15:3745-3760.
    [2]Wurm F, Kilbinger AFM, Polymeric Janus Particles. Angew Chem Int Ed,2009,48: 8412-8421.
    [3]Walther A, Hoffmann M, Muller AHE, Emulsion polymerization using Janus particles as stabilizers. Angew Chem Int Ed,2008,47:711-714.
    [4]Walther A, Muller AHE. Janus particles. Soft Matter,2008,4:663-668.
    [5]Fustin CA, Abetz V, Gohy JF. Triblock terpolymer micelles:A personal outlook. Eur Phys J E,2005,16:291-302.
    [6]Cho I, Lee KW. Morphology of latex particles formed by poly(methyl methacrylate)-seeded emulsion polymerization of styrene. J Appl olym Sci,1985,30:1903-1926.
    [7]Okubo M, Yamashita T, Minami H, Konishi Y. Preparation of micron-sized monodispersed highly monomer-"adsorbed" polymer particles having snow-man shape by utilizing the dynamic swelling method with tightly cross-linked seed particles. Colloid Polym Sci,1998, 276:887-892.
    [8]Sheu HR, El-Aasser MS, Vanderhoff JW. Uniform nonspherical latex particles as model interpenetrating polymer networks. J Polym Sci Part A:Polym Chem,1990,28:653-667.
    [9]Ni H, Ma G, Nagai M, Omi S. Novel method to prepare charged mosaic membrane by using dipole—like microspheres. I. Preparation and characterization of poly(4-vinylpyridine/ n-butyl acrylate) seed latex with high solid content by soap-free emulsion polymerization. J Appl Polym Sci.2000,76:1731-1740.
    [10]Duda Y, Vazquez F, Modeling of composite latex particle morphology by off-lattice Monte Carlo simulation. Langmuir,2005,21:1096-1102.
    [11]Pfau A, Sander R, Kirsch S. Orientational ordering of structured polymeric nanoparticles at interfaces. Langmuir,2002,18:2880-2894.
    [12]Lu W, Chen M, Wu LM, One-step synthesis of organic-inorganic hybrid asymmetric dimer particles via miniemulsion polymerization and functionalization with silver. J Colloid Interface Sci,2008,328:98-102.
    [13]Zhang K, Chen HT, Chen X, Chen ZM, Cui ZC, Yang B. Ag nanoparticles-coated silica-PMMA core-shell microspheres and hollow PMMA microspheres with Ag nanoparticles in the interior surfaces. Macromol Mater Eng,2003,288:380-385.
    [14]Kim JW, R. Larsen RJ, Weitz DA. Synthesis of nonspherical colloidal particles with anisotropic properties. J Am Chem Soc,2006,128:14374-14377.
    [15]Takahara YK, Ikeda S, Ishino S, Tachi K, Ikeue K, Sakata T, Hasegawa T, Mori H, Matsumura M, Ohtani B. Asymmetrically modified silica particles:a simple particulate surfactant for stabilization of oil droplets in water. J Am Chen Soc,2005,127:6271-6275.
    [1]Giulio M, Aldo P, Marco S, Ezio A, Elisa Z, Elena F. Hybrid nanocomposites containing silica and PEO segments:preparation through dual-curing process and characterization. Polymer,2005,46:2872-2879.
    [2]Watanabe M, Tamai T. Sol-gel reaction in acrylic polymer emulsions:The effect of particle surface charge. Langmuir,2007,23:3062-3066.
    [3]Watanabe M, Tamai T. Acrylic polymer/silica organic-inorganic hybrid emulsions for coating materials:Role of the silane coupling agent. J Polym Sci, Part A:Polym Chem, 2006,44:4736-4742.
    [4]Reynolds CH, Annan N, Beshah K, Huber JH, Shaber SH, Lenkinski RE, Wortman JA. Gadolinium-loaded nanoparticles:new contrast agents for magnetic resonance imaging. J Am Chem Soc,2000,122:8940-8945.
    [5]Davies R, Schurr GA, Meenan P, Nelson RD, Bergna HE, Brevett CAS, Goldbaum RH. Engineered particle surfaces. Adv Mater,1998,10:1264-1270.
    [6]Fujii S, Read ES, Binks BP, Armes SP. Stimulus-responsive emulsifiers based on nanocomposite microgel particles, Adv Mater,2005,17:1014-1018.
    [7]Zhao Y, Jiang L. Hollow micro/nanomaterials with multilevel interior structures. Adv Mater, 2009,21:1-18.
    [8]Fujii S, Armes SP, Binks BP, Murakami R. Stimulus-responsive particulate emulsifiers based on lightly cross-linked poly(4-vinylpyridine)-silica nanocomposite microgels. Langmuir,2006,22:6818-6825.
    [9]Liu YL, Hsu CY, Wang ML, Chen HS. A novel approach of chemical functionalization on nano-scaled silica particles. Nanotechnology,2003,14:813-819.
    [10]Liu YL, Hsu CY, Su YH, Lai JY. Chitosan-silica complex membranes from sulfonic acid functionalized silica nanoparticles for pervaporation dehydration of ethanol-water solutions. Biomacromolecules,2005,6:368-373.
    [11]Su YH, Liu YL, Sun YM, Lai JY, Wang DM, Gao Y, Liu BJ, Guiver MD. Proton exchange membranes modified with sulfonated silica nanoparticles for direct methanol fuel cells. J Membr Sci,2007,296:21-28.
    [12]Frank C, Caruso RA, MOhwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science,1998,282:1111-1114.
    [13]Chen, T.; Colver, P. J, Bon, S. A. F. Organic-inorganic hybrid hollow spheres prepared from TiO2-stabilized Pickering emulsion polymerization. Adv Mater,2007,19:2286-2289.
    [14]Schmid A, Tonnar J, Armes SP. A new highly efficient route to polymer-silica colloidal nanocomposite particles. Adv Mater,2008,20:3331-3336.
    [15]Landfester K. Miniemulsion polymerization and the structure of polymer and hybird nanoparticles. Angew Chem Int Ed,2009,48:4488-4507.
    [16]Zhou J, Zhang SW, Qiao XG, Li XQ, Wu LM. Synthesis of SiO2/poly (styrene-co-butylacrylate) nanocomposite microspheres via miniemulsion polymerization. J Polym Sci Part A:Polym Chem,2006,44:3202-3209.
    [17]Qiao XG, Chen M, Zhou J, Wu LM. Synthesis of raspberry-like silica/polystyrene/silica multilayer hybrid particles via miniemulsion polymerization. J Polym Sci, Part A:Polym Chem,2007,45:1028-1037.
    [18]Qiang WL, Wang YL, He P, Xu H, Gu HC, Shi DL. Synthesis of asymmetric inorganic/polymer nanocomposite particles via localized substrate surface modification and miniemulsion polymerization. Langmuir,2008,24:606-608.
    [19]Lu W, Chen M, Wu LM. One-step synthesis of organic-inorganic hybrid asymmetric dimer particles via miniemulsion polymerization and functionalization with silver. J Colloid Interface Sci,2008,328:98-102.
    [20]Zhang K, Chen HT, Chen X, Chen ZM, Cui ZC, Yang B. Monodisperse silica-polymer core-shell microspheres via surface grafting and emulsion polymerization. Macromol Mater Eng,2003,288:380-385.
    [1]Choudhury A. Polyaniline/silver nanocomposites:Dielectric properties and ethanol vapour sensitivity. Sensors Actuat B-Chem 2009,138:318-325.
    [2]Zeng R, Rong MZ, Zhang MQ, Liang HC, Zeng HM. Laser ablation of polymer-based silver nanocomposites. Appl Surf Sci,2002,187:239-247.
    [3]Sezer A, Gurudas U, Collins B, Mckinlay A, Bubb DB. Nonlinear optical properties of conducting polyaniline and polyaniline-Ag composite thin films. Chem Phys Lett,2009,477: 164-168.
    [4]Jana S, Pande S, Panigrahi S, Praharaj S, Basu S, Pal A, Pal T. Exploitation of electrostatic field force for immobilization and catalytic reduction of o-nitrobenzoic acid to anthranilic acid on resin-bound silver nanocomposites. Langmuir,2006,22:7091-7095.
    [5]Jana S, Ghosh SK, Nath S, Pande S, Praharaj S, Panigrahi S, Basu S, Endo T, Pal T. Synthesis of silver nanoshell-coated cationic polystyrene beads:A solid phase catalyst for the reduction of 4-nitrophenol. Appl Catal A,2006,313:41--48.
    [6]Zhao W, Zhang QY, Zhang JP, Zhang HP, Preparation and thermal decomposition of PS/AG microspheres. Polym Composite,2009,30:891-900.
    [7]Lee JH, Mahmoud MA, Sitterle V, Sitterle J, Meredith JC. Facile preparation of highly-scattering metal nanoparticle-coated polymer microbeads and their surface plasmon resonance. J Am Chem Soc,2009,131:5048-5049.
    [8]Kim JW, Lee JE, Su-Jin Kim SJ, Lee JS, Ryu JH, Kima J, Han, Chang IS, Suh KD. Synthesis of silver/polymer colloidal composites from surface-functional porous polymer microspheres. Polymer,2004,45:4741-4747.
    [9]Chen CW, Chen MQ, Serizawa T, Akash M. In-situ formation of silver nanoparticles on poly(N-isopropylacrylamide)-coated polystyrene microsphere. Adv Mater,1998,10: 1122-1126.
    [10]Cheng XJ, Tjong SC, Zhao Q, Li RKY. Facile method to prepare monodispersed Ag/polystyrene composite microspheres and their properties. J Polym Sci Part A:Polym Chem,2009,47: 4547-4554.
    [11]Kim JW, Lee JE, Ryu JH, Lee JS, Kim SJ, Han SH, Chang IS, Kang HH, Suh KD, Synthesis of silver/polymer colloidal composites from surface-functional porous polymer microspheres. J Polym Sci Part A:Polym Chem,2004,39:2551-2566.
    [12]Santa de Maria LC, Souza JDC, Aguiar MRMP, Wang SH, Mazzei JL, Felzenszwalb I, Amico SC. Synthesis, characterization, and bactericidal properties of composites based on crosslinked resins containing silver. J Appl Polym Sci,2008,107:1879-1886.
    [13]Dong AG, Wang YJ, Tang Y, Ren N, Yang WL, Gao Z. Fabrication of compact silver nanoshells on polystyrene spheres through electrostatic attraction. Chem Commun,2002,4:350-351.
    [14]Li P, Xu J, Wang Q, Wu C. Surface functionalization of polymer latex particles:4. tailor-making of aldehyde-functional poly(methylstyrene) latexes in an emulsifier-free system. Langmuir, 2000,16:4141-4147.
    [15]Ober CK, Lok KP. Polym Sci,1990,35,87-104.
    [16]Horak D, Preparation and control of surface properties of monodisperse micrometer size beads by dispersion copolymerization of styrene and butyl methacrylate in polar media. J Polym Sci Part A:Polym Chem,1995,33:2329-2338.
    [17]Yang WL, Yang D, J. H. Hu JH, Wang CC, Fu SK. Dispersion copolymerization of styrene and other vinyl monomers in polar solvents. J Polym Sci Part A:Polym Chem,2001,39:555-561.
    [18]Song JS, Tronc F, Winnik MA. Polymer,2006,39:8318-8325.
    [19]Song JS, Winnik MA. Cross-linked, monodisperse, micron-sized polystyrene particles by two-stage dispersion polymerization. Macromolecules,2005,38:8300-8306.
    [20]Song JS, L. Chagal L, Winnik MA. Monodisperse micrometer-size carboxyl-functionalized polystyrene particles obtained by two-stage dispersion polymerization. Macromolecules,2006, 39:5729-5737.
    [21]Slistan-Grijalva A, Herrera-Urbina R, Rivas-Silva JF, Avalos-Borja M, Castillon-Barraza FF, Posada-Amarillas A. Synthesis of silver nanoparticles in a polyvinylpyrrolidone (PVP) paste, and their optical properties in a film and in ethylene glycol. Mater Res Bull,2008,43:90-96.
    [22]Zhang K, Fu Q, Fan JH, Zhou DH. Preparation of Ag/PS composite particles by dispersion polymerization under ultrasonic irradiation. Mater Lett,2005,59:3682-3686.
    [23]Kawaguchi S, Ito K. Dispersion polymerization. Adv Polym Sci,2005,175:299-328.
    [24]Dokoutchaev A, James JT, Koene SC, Pathak S, Surya GK, Thompson ME. Colloidal metal deposition onto functionalized polystyrene microspheres. Chem. Mater,1999,11:2389-2399.
    [25]Teranish T, I. Kiyokawa I, Miyake M, A Synthesis of monodisperse gold nanoparticles using linear polymers as protective agents. Adv Mater,1998,10:596-599.
    [26]Griffith Freeman R, Grabar KC, Allison KJ, Bright RM, Davis JA, Guthrie AP, Hommer MB,. Jackson MA, Smith PC, Walter DG, Natan MJ. Self-assembled metal colloid monolayers:an approach to SERS substrates. Science,1995,267:1629-1632.
    [27]Grabar KC, Griffith Freeman R, Hommer MB, Natan MJ. Preparation and characterization of Au colloid monolayers. Anal Chem,1995,67:735-743.
    [28]Ung T, Giersig M, Dunstan D, Mulvaney P. Spectroelectrochemistry of colloidal silver. Langmuir, 1997,13:1773-1782.
    [29]Lee D, Cohen RE, Rubner MF, Antibacterial properties of Ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles. Langmuir 2005,21: 9651-9659.
    [30]Wen F, Zhang WQ, Wei GW, Wang Y, Zhang JZ, Zhang MC, Shi LQ. Synthesis of noble metal nanoparticles embedded in the shell Layer of core-shell poly(styrene-co-4-vinylpyridine) micospheres and their application in catalysis. Chem Mater,2008,20:2144-2150.
    [31]Lu Y, Mei Y, Schrinner M, Ballauff M, MOller MW, Breu MW. In situ formation of Ag nanoparticles in spherical polyacrylic acid brushes by UV irradiation. J Phys Chem C,2007, 111:7676-7682.
    [32]Jana NR, Sau TK, Pal T. Growing small silver particle as redox catalyst. J Phys Chem B,1999, 103:115-121.
    [33]Jana NR, Pal T. Redox catalytic properties of palladium nanoparticles:surfactant and electron donor-acceptor effects. Langmuir,1999,15:3458-3463.
    [1]Norris DJ, Vlasov YA. Chemical approaches to three-dimensional semiconductor photonic crystals. Adv Mater,2001,13:371-376.
    [2]Lopez C. Materials aspects of photonic crystals. Adv Mater,2003,15:1679-1704.
    [3]Zeng F, Sun ZW, Wang CY, Ren BY, Liu XX, Tong Z. Fabrication of inverse opal via ordered highly charged colloidal spheres. Langmuir,2002,18:9116-9120.
    [4]Joannopoulous JD Villeneuve PR, Fan S. Photonic crystal:putting a new twist on light. Nature, 1997,386:143-149.
    [5]Reese CE, Mikhonin AV, Kamenjicki M, Tikhonov A, Asher SA. Nanogel nanosecond photonic crystal optical switching. J Am Chem Soc,2004,126:1493-1496.
    [6]Lu LH, Eychmuller A. Ordered macroporous bimetallic nanostructures:design, characterization, and applications, Acc Chem Res,2008,41:244-253.
    [7]Honda M, Kataoka K, Seki T, Takeoka Y. Confined stimuli-responsive polymer gel in inverse opal polymer membrane for colorimetric glucose sensor. Langmuir,2009,25:8349-8356.
    [8]Liu YF, Wang SP, Lee JW, Kotov NA. A floating self-assembly route to colloidal crystal templates for 3D cell scaffolds. Chem Mater,2005,17:4918-4924.
    [9]Meseguer F. Colloidal crystals as photonic crystals. Colloid Surf A,2005,270-271:1-7.
    [10]Boguslavsky L, Baruch S, Margel S. Synthesis and characterization of polyacrylonitrile nanoparticles by dispersion/emulsion polymerization process. J Colloid Interface Sci,2005,289: 71-85.
    [11]Park SH, Xia Y. Assembly of mesoscale particles over large areas and its application in fabricating tunable optical filters. Langmuir,1999,15:266-273.
    [12]Park SH, Qin D, Xia Y. Crystallization of mesoscale particles over large areas. Adv Mater 10: 1028-1032.
    [13]Jiang P, Bertone JF, Hwang KS, Colvin VL. Single-crystal colloidal multilayers of controlled thickness. Chem Mater,1999,11:2132-2140.
    [14]Donselaar LN, Philipse AP, Suurmond J. Concentration-dependent sedimentation of dilute magnetic fluids and magnetic silica dispersions. Langmuir,1997,13:6018-6025.
    [15]Xia YN, Gates B, Yin YD, Lu Y. Monodispersed colloidal spheres:old materials with new application. Adv Mater,2000,12:693-713.
    [16]Gates B, Qin D, Xia Y. Assembly of nanoparticles into opaline structures over large areas. Adv Mater,1999,11:466-469.
    [17]Velev OD, Lenhoff AM, Kaler EW. A class of microstructured particles through colloidal crystallization. Science,2000,287:2240-2243.
    [18]Retsch M, Zhou ZC, Rivera S, Kappl M, Zhao XS, Jonas U, Li Q. Fabrication of large-area, transferable colloidal monolayers utilizing self-assembly at the air/water interface. Macromol Chem Phys,2009,210:230-241.
    [19]Jiang P, McFarland MJ. Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating. J Am Chem Soc,2004,126:13778-13786.
    [20]Im SH, Lim YT, Suh DJ, Park OO. Three-dimensional self-assembly of colloids at water-air interface:a novel technique for the fabrication of photonic bandgap crystals. Adv Mater,2002,14: 1367-1369.
    [21]Mihi A, Ocana M, Miguez H. Oriented colloidal-crystal thin films by spin-coating microspheres dispersed in volatile media. Adv Mater,2006,18:2244-2249.
    [22]Wang J, Cao Y, Feng Y, Yin F, Gao JP. Multiresponsive inverse-opal hydrogels. Adv Mater, 2007,19:3865-3871.
    [23]Kim SH, Jeon SJ, Yi GR, Heo CJ, Choi JH, Yang SM. Optofluidic assembly of colloidal photonic crystals with controlled sizes, shapes, and structures. Adv Mater,2008,20:1649-1655.
    [24]Ling XY, Phang IY, Maijenburg W, Schnherr H, Reinhoudt DN, Vancso G, Huskens J. Free-standing 3D supramolecular hybrid particle structures. Angew Chem Int Ed,2009,48: 983-987.
    [25]Podsiadlo P, Kaushik AK, Arruda EM, Waas AM, Shim BS, Xu JD, Nandivada H, Pumplin BG, Lahann J, Ramamoorthy A, Kotov NA. Ultrastrong and stiff layered polymer nanocomposites. Science,2007,318:80-83.
    [26]Hu ZB, Lu XH, Gao J. Hydrogel opals. Adv Mater,2001,13:1708-1712.
    [27]Sadakane M, Horiuchi T, Kato N, Takahashi C, Ueda W. Facile preparation of three-dimensionally ordered macroporous alumina, iron oxide, chromium oxide, manganese oxide, and their mixed-metal oxides with high porosity, Chem Mater,2007,19,5779-5785.
    [28]Song JS, Chagal L, Winnik MA. Monodisperse micrometer-size carboxyl-functionalized polystyrene particles obtained by two-stage dispersion polymerization. Macromolecules,2006, 39,5729-5737.
    [29]Li P, Xu J, Wang Q, Wu C. Surface functionalization of polymer latex particles:tailor-making of aldehyde-functional poly(methylstyrene) latexes in an emulsifier-free system. Langmuir,2000, 16:4141-4147.
    [30]Im SH, Park OO, Effect of evaporation temperature on the quality of colloidal crystals at the water-air interface. Langmuir,2002,18:9642-9646.
    [31]Wang XD, Dong P, Yi GY, The mechanism of self-assembly of polystyrene submicrospheres at water-air interface. Acta Phys Sin,2007,56:3017-3021.
    [32]Wang XD, Dong P, Yi GY. Evaporation self-assembly method to fabricate high-quality polystyrene microsphere colloid crystal. Acta Phys Sin,2006,55:2092-2098.
    [33]Krieger IM, O'Neill FM. Diffraction of light by arrays of colloidal spheres. J Am Chem Soc, 1968,90:3114-3120.
    [34]Li X, Tao FF, Jiang Y, Xu Z.3-D ordered macroporous cuprous oxide:fabrication, optical, and photoelectrochemical properties. J Colloid Interface Sci,2007,308:460-465.
    [35]Ye YH, LeBlanc F, Hache A, Truong VV. Self-assembling three-dimensional colloidal photonic crystal structure with high crystalline quality. Appl Phys Lett,78:52-54.
    [36]McGrath JG, Bock RD, Cathcart JM, Lyon LA, Self-assembly of "paint-on" colloidal crystals using poly(styrene-co-N-isopropylacrylamide) spheres. Chem Mater,2007,19:1584-1591.
    [37]Tarhan Ⅱ, Watson GH. Analytical expression for the optimized stop bands of fcc photonic crystals in the scalar-wave approximation. Phys Rev B,1996,54:7593-7597.
    [38]Asher SA, Holtz J, Liu L, Wu ZJ. Self-assembly motif for creating submicron periodic materials. polymerized crystalline colloidal arrays. J Am Chem Soc,1994116:4997-4998.
    [39]Stein A, Li F, Denny NR. Morphological control in colloidal crystal templating of inverse opals, hierarchical structures, and shaped particles. Chem Mater,2008,20:649-666.
    [40]Sasagawa M, Nosaka Y. Studies on the effects of Cd ion sources and chelating reagents on atomic layer CdS deposition by successive ionic layer adsorption and reaction (SILAR) method. Phys Chem Chem Phys,2001,3:3371-3376.
    [41]Xu Y, Zhu X, Dan Y, Moon JH, Chen VW, Johnson AT, Perry JW, Yang S. Electrodeposition of three-dimensional titania photonic crystals from holographically patterned microporous polymer templates. Chem Mater,2008,20:1816-1823.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700