NZVI/SBA-15复合材料的合成及其对水中硝基苯去除机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米零价铁(NZVI)具有粒径小、比表面积大、反应活性高的特点,在环境修复与治理领域受到人们的广泛关注。但是,NZVI面临的易团聚、易被氧化的缺点限制了其在实际中的广泛应用。因此,提高NZVI的稳定性、保持其活性是目前的研究热点之一。
     本文以有序介孔材料SBA-15作为载体负载NZVI增强其在空气中的稳定性,保持其活性,同时利用SBA-15的吸附性能来提高污染物的去除速率。采用等体积浸渍—焙烧—氢气还原法合成出一种集吸附和还原于一体的SBA-15负载NZVI复合材料(NZVI/SBA-15),通过X射线衍射(XRD)、透射电镜(TEM),氮气吸附/脱附等对材料进行结构表征。论文进一步考察了复合材料对水中微量硝基苯的吸附降解性能,讨论了不同反应条件对硝基苯降解效率的影响,并研究了硝基苯的反应途径及复合材料对硝基苯的降解机理。结果表明:
     (1)随着铁负载量的增加,复合材料的有序度逐渐减弱,比表面积、孔容孔径也逐渐降低,但仍保持介孔材料的特性。纳米铁以α-Fe0的形态均匀单一的分散在SBA-15的孔道内。未负载的NZVI团聚现象严重,粒径较大。
     (2)反应12h后,SBA-15、NZVI、NZVI/SBA-15复合材料对溶液中硝基苯的去除率分别为51.59%、56.01%、94.94%。复合材料对硝基苯较高的去除率归因于载体吸附和NZVI还原的协同作用。
     (3)溶液中硝基苯的去除率随着铁负载量及复合材料的投加量增加而提高,酸性条件有利于降解反应的进行,碱性条件阻碍反应的进行,随着溶液初始浓度的逐渐增大,硝基苯的去除率逐渐降低。
     (4)硝基苯的降解途径是:硝基苯→亚硝基苯→苯基羟胺→苯胺。NZVI直接还原硝基苯以及Fe2+辅助还原硝基苯是该体系主要的反应机理。
Due to its tiny size, its large surface area and high surface reactivity, NZVI has been considered as a promising environmental remediation technology. However, NZVI is prone to agglomerate and easily oxidized by oxygen when exposed to air, leading to restrict its application. Therefore, the study on the enhancement of the stability of NZVI and its high surface reactivity has become the hot topics in related researches.
     In this present study, we chose SBA-15 as a support material to produce stable NZVI dispersions. Moreover, due to its high adsorption capacity SBA-15 can increase the degradation efficiency of pollutants dramatically. The NZVI/SBA-15 composite was synthesized by incipient wetness impregnation, calcinations and reduction, which exhibited the synergetic effect of high adsorption capacity of SBA-15 and high reducibility of NZVI. The NZVI/SBA-15 composite was characterized by X-ray diffraction(XRD), transmission electron microscopy(TEM), and N2 adsorption/desorption. Furthermore, the adsorption and degradation process of nitrobenzene on NZVI/SBA-15 composite was investigated, and the effect factors of nitrobenzene removal were discussed. The pathway of NZVI reducing nitrobenzene and the reduction mechanism of nitrobenzene was also researched. The results showed that:
     (1) with increasing the percentage of iron species in NZVI/SBA-15 composite, the orderity、the BET surface area and the total pore volume decreased, but still maintained the structure of SBA-15.α-Fe0 nanoparticles were well dispersed in the channels of SBA-15. However, agglomeration of iron particals unsupported took place, leading to increase its partical size.
     (2) The removal rate of nitrobenzene from aqueous solution on SBA-15, NZVI and NZVI/SBA-15 composite was 51.59%.56.01% and 94.94% respectively after 12h of reaction. The nitrobenzene removal rate by the NZVI/SBA-15 composite was enhanced apparently owing to the synergetic effect of high adsorption capacity of SBA-15 and high reducibility of NZVI.
     (3) The removal rate of nitrobenzene increased as the percentage of iron species in NZVI/SBA-15 composite and dosage increased. The acidic condition was conducive to enhancement of reaction rate, but the alkaline condition prevented the reaction rate. The removal rate of nitrobenzene decreased as the initial concentration of nitrobenzene increased.
     (4) The pathway of nitrobenzene reduction by NZVI was described as:nitrobenzene→nitrosobenzene→phenylhyoxylamine→aniline. It was the Fe2+ associated with the iron in the NZVI/SBA-15 composite that was mainly responsible for nitrobenzene reduction.
引文
[1]Wang C B, Zhang W X. Synthesizing Nanoscale Iron Particles for Rapid and Complete Dechlorination of TCE and PCBs. Environmental Science & Technology,1997,31(7):2154~ 2156
    [2]周庆祥,林海英,肖军平.纳米零价铁在环境修复中的应用.安徽农业科学,2008,36(1):283-284,331
    [3]白少元,王明玉.零价纳米铁在水污染修复中的研究现状及讨论.净水技术,2008,27(1):35~40,53
    [4]程荣,王建龙,张伟贤.纳米金属铁降解有机卤化物的研究进展.化学进展,2006,18(1):93~99
    [5]Zhang W X. Nanoscale iron particles for environmental remediation:an overview. Journal of Nanoparticle Research,2003,5(3):323~332
    [6]耿兵,李铁龙,金朝晖,漆新华.壳聚糖稳定纳米铁的制备及其对地表水中Cr(Ⅵ)的去除性能.高等学校化学学报,2009,30(4):796-799
    [7]张敬畅,刘慷,曹维良.纳米粒子的特性、应用及制备方法.石油化工高等学校学报,2001,14(2):21~26
    [8]侯春凤,葛小鹏,周岩梅,李一,王东升,汤鸿霄.纳米铁颗粒物表征及其对2,4-二氯苯酚的脱氯降解性能.科学通报,2009,54(23):3623~3629
    [9]Zhang X, Lin YM, Shan XQ, Chen ZL. Degradation of 2,4,6-trinitrotoluene (TNT) from explosive wastewater using nanoscale zero-valent iron. Chemical Engineering Journal,2010, 158(3):566~570
    [10]Zheng T, Zhan J, He J, Day C, Lu Y, McPherson GL. Reactivity characteristics of nanoscale zerovalent iron-silica composites for trichloroethylene remediation. Environmental Science & Technology,2008,42(12):4494~4499
    [11]Barnes RJ, Riba O, Gardner MN, Scott TB, Jackman SA, Thompson IP. Optimization of nano-scale nickel/iron particles for the reduction of high concentration chlorinated aliphatic hydrocarbon solutions. Chemosphere,2010,79(4):448~454
    [12]Amir A, Lee W. Enhanced reductive dechlorination of tetrachloroethene by nano-sized zero valent iron with vitamin B12. Chemical Engineering Journal,2011,170(2-3):492~497
    [13]Liu Z, Zhang F S. Nano-zerovalent iron contained porous carbons developed from waste biomass for the adsorption and dechlorination of PCBs. Bioresource Technology,2010, 101(7):2562~2564
    [14]Tong M, Yuan S, Long H, Zheng M, Wang L, Chen J. Reduction of nitrobenzene in groundwater by iron nanoparticles immobilized in PEG/nylon membrane. Journal of Contaminant Hydrology,2011,122(1-4):16~25
    [15]刘振中,刘振兴.纳米级零价铁去除水中硝酸盐的应用.安徽农业科学,2008,36(32):14271~14272,14280
    [16]廖娣劫,杨琦,尚海涛.纳米铁去除水中硝酸盐的动力学研究.环境工程学报,2009,3(6):985~989
    [17]Ryu A, Jeong S W, Jang A, Choi H. Reduction of highly concentrated nitrate using nanoscale zero-valent iron:Effects of aggregation and catalyst on reactivity. Applied Catalysis B:Environmental,2011,105(1-2):128~135
    [18]Cao J, Elliott D, Zhang W X. Perchlorate reduction by nanoscale iron particles. Journal of Nanoparticle Research,2005,7(4):499~506
    [19]Xiong Z, Zhao D, Pan G. Rapid and complete destruction of perchlorate in water and ion-exchange brine using stabilized zero-valent iron nanoparticles. Water Research,2007, 41(15):3497~505
    [20]赵宗山,刘景富,邰超,周群芳,胡敬田,江桂斌.离子交换树脂负载零价纳米铁快速降解水溶性偶氮染料.中国科学(B辑:化学),2008,38(1):60-66
    [21]樊静,梁峰,邵小静,郭延辉.超声波协同纳米铁对偶氮染料橙黄G的脱色研究.环境工程学报,2008,2(10):1312~1316
    [22]Zhang X, Lin S, Chen Z, Megharaj M, Naidu R. Kaolinite-supported nanoscale zero-valent iron for removal of Pb2+ from aqueous solution:reactivity, characterization and mechanism.Water Research,2011,45(11):3481~3488
    [23]Ponder SM, Darab JG, Mallouk TE. Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, Nanoscale Zero-valent Iron. Environmental Science & Technology,2000, 34(12):2564~2569
    [24]柳听义,赵林,谭欣,刘涉江,黄宇,齐云.纳米零价铁去除垃圾渗滤液中铬(Ⅵ)的性能及机理研究.环境化学,2010,29(3):429-433
    [25]贾汉忠,宋存义,李晖.纳米零价铁处理地下水污染技术研究进展.化工进展,2009,28(11):2028~2034
    [26]付丰连.零价铁处理污水的最新研究进展.工业水处理,2010,30(6):1-3
    27.陈郁,全燮.零价铁处理污水的机理及应用.环境科学研究,2000,13(5):24~26,37
    [28]孙伟民,张广成,李俨,李东东,李佩佩,刘柏辰.纳米材料在水处理中的应用.材料开发与应用,2011,26(4):65-69
    [29]高树梅,王晓栋,秦良,罗斯,赵欣,刘树深.改进液相还原法制备纳米零价铁颗粒. 南京大学学报(自然科学版),2007,43(4):358~364
    [30]Fang Z, Chen J, Qiu X, Qiu X, Cheng W, Zhu L. Effective removal of antibiotic metronidazole from water by nanoscale zero-valent iron particles. Desalination,2011, 268(1-3):60~67
    [31]Zhang Z, Hao Z, Yang Y, Zhang J, Wang Q, Xu X. Reductive denitrification kinetics of nitrite by zero-valent iron. Desalination,2010,257(1-3):158~162
    [32]Song H, Carraway ER. Catalytic hydrodechlorination of chlorinated ethenes by nanoscale zero-valent iron. Applied Catalysis B:Environmental,2008,78(1-2):53~60
    [33]Liu Y, Majetich SA, Tilton RD, Sholl DS, Lowry GV. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environmental Science & Technology,2005,39(5):1338~1345
    [34]Hwang Y H, Kim D G, Shin H S. Mechanism study of nitrate reduction by nano zero valent iron. Journal of Hazardous Materials,2011,185(2-3):1513~1521
    [35]李铁龙,刘海水,金朝晖,康海燕,刘振英,王薇.纳米铁去除水中硝酸盐氮的批试验.吉林大学学报(工学版),2006,36(2):264~268
    [36]Choe S, Chang Y Y, Hwang K-Y, Khim J. Kinetics of reductive denitrification by nanoscale zero-valent iron. Chemosphere,2000,41(8):1307~1311
    [37]郭轶琼,宋丽.重金属废水污染及其治理技术进展.广州化工,2010,38(4):18-20
    [38]张鑫.纳米零价铁去除水中重金属离子的研究进展.化学研究,2010,21(3):97-100
    [39]Li X Q, Cao J, Zhang W X. Stoichiometry of Cr(VI) immobilization using nanoscale zerovalent iron (NZVI):a study with High-Resolution X-Ray Photoelectron Spectroscopy (HR-XPS). Industrial & Engineering Chemistry Research,2008,47(7):2131~2139
    [40]陈芳艳,唐玉斌,吕锡武,毛莉,梁林林.纳米零价铁对水中Cr(Ⅵ)的还原动力学研究.化学世界,2007,48(3):144-147
    [41]Kanel SR, Greneche JM, Choi H. Arsenic(V) removal kom groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environmental Science & Technology, 2006,40(6):2045~2050
    [42]Jiemvarangkul P, Zhang W X, Lien H L. Enhanced transport of polyelectrolyte stabilized nanoscale zero-valent iron (NZVI) in porous media. Chemical Engineering Journal,2011, 170(2-3):482~491
    [43]Kim H, Hong H J, Jung J, Kim S H, Yang J W. Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (NZVI) immobilized in alginate bead. Journal of Hazardous Materials,2010,176(1-3):1038~1043
    [44]邱心泓,方战强.修饰型纳米零价铁降解有机卤化物的研究.化学进展,2010, 22(2/3):291~297
    [45]庞龙,周庆祥,苏现伐.纳米零价铁修饰技术研究进展.化工进展,2011,30(6):1361~1368
    [46]Schrick B, Blough JL, Jones AD, Mallouk TE. Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic Nickel-iron nanoparticles. Chemistry of Materials,2002, 14(12):5140~5147
    [47]Xu X, Wo J, Zhang J, Wu Y, Liu Y. Catalytic dechlorination of p-NCB in water by nanoscale Ni/Fe. Desalination,2009,242(1-3):346~354
    [48]Jovanovic GN, Znidarsic Plazl P, Sakrittichai P, Al-Khaldi K. Dechlorination of p-Chlorophenol in a Microreactor with Bimetallic Pd/Fe Catalyst. Industrial & Engineering Chemistry Research,2004,44(14):5099~5106
    [49]Lee C, Sedlak DL. Enhanced formation of oxidants from bimetallic Nickel-iron nanoparticles in the presence of oxygen. Environmental Science & Technology,2008, 42(22):8528~8533
    [50]Zhang W H, Quan X, Zhang Z Y. Catalytic reductive dechlorination of p-chlorophenol in water using Ni/Fe nanoscale particles, Journal of Environmental Science,2007,19(3):362~ 366
    [51]黄园英,刘菲,汤鸣皋,沈照理.纳米级Ni/Fe颗粒降解四氯化碳批实验研究.山东农业大学学报(自然科学版),2004,35(4):565-568
    [52]徐新华,卫建军,汪大晕Pd/Fe及纳米Pd/Fe对氯酚的脱氯研究.中国环境科学,2004,24(1):76~80
    [53]徐新华,刘永,卫建军,汪大翠.纳米级Pd/Fe双金属体系对水中2,4-二氯苯酚脱氯的催化作用.催化学报,2004,25(2):138~142
    [54]Hoch LB, Mack EJ, Hydutsky BW, Hershman JM, Skluzacek JM, Mallouk TE. Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium. Environmental Science & Technology,2008, 42(7):2600~2605
    [55]Tseng H H, Su J G, Liang C. Synthesis of granular activated carbon/zero valent iron composites for simultaneous adsorption/dechlorination of trichloroethylene. Journal of Hazardous Materials,2011,192(2):500~506
    [56]Chang C, Lian F, Zhu L. Simultaneous adsorption and degradation of y-HCH by NZVI/Cu bimetallic nanoparticles with activated carbon support. Environmental Pollution, 2011,159(10):2507~2514
    [57]Zhu H, Jia Y, Wu X, Wang H. Removal of arsenic from water by supported nano zero-valent iron on activated carbon. Journal of Hazardous Materials,2009,172(2-3):1591~ 1596
    [58]Zhan J, Zheng T, Piringer G, Day C, McPherson GL, Lu Y. Transport characteristics of nanoscale functional zerovalent iron/silica composites for in situ remediation of trichloroethylene. Environmental Science & Technology,2008,42(23):8871~8876
    [59]Qiu X, Fang Z, Liang B, Gu F, Xu Z. Degradation of decabromodiphenyl ether by nano zero-valent iron immobilized in mesoporous silica microspheres. Journal of Hazardous Materials,2011,193:70~81
    [60]Jiang Z, Lv L, Zhang W, Du Q, Pan B, Yang L. Nitrate reduction using nanosized zero-valent iron supported by polystyrene resins:Role of surface functional groups. Water Research,2011,45(6):2191~2198
    [61]尹丽京,李益民,张璐吉,彭远飞,应哲兰.羟基铝柱撑膨润土负载纳米铁还原Cr(Ⅵ).环境科学,2009,30(4):1055~1059
    [62]陈征贤,金晓英,苏锦,王清萍,陈祖亮.膨润土负载纳米铁去除水中甲基橙的研究.福建师范大学学报(自然科学版),2011,27(4):107~111
    [63]Choi H, Agarwal S, Al-Abed SR. Adsorption and simultaneous dechlorination of PCBs on GAC/Fe/Pd:mechanistic aspects and reactive capping barrier concept. Environmental Science & Technology,2008,43(2):488~493
    [64]GA. L. Effects of alcohols, anionic and nonionic surfactants on the reduction of PCE and TCE by zero-valent iron. Water Research,2001,35(6):1453~1460
    [65]Alessi DS, Li Z. Synergistic effect of cationic surfactants on perchloroethylene degradation by zero-valent iron. Environmental Science & Technology,2001,35(18):3713~ 3717
    [66]Bai X, Ye Z F, Qu Y Z, Li Y F, Wang Z Y. Immobilization of nanoscale Fe0 in and on PVA microspheres for nitrobenzene reduction. Journal of Hazardous Materials,2009, 172(2-3):1357~1364
    [67]Zhu B W, Lim T T, Feng J. Influences of amphiphiles on dechlorination of a trichlorobenzene by nanoscale Pd/Fe:adsorption, reaction kinetics, and interfacial interactions. Environmental Science & Technology,2008,42(12):4513~4519
    [68]王薇,金朝晖,李铁龙.包覆型纳米铁的制备及其去除三氯乙烯的研究.中国环境科学,2009,29(8):811~815
    [69]Xiong Z, Zhao D, Pan G. Rapid and controlled transformation of nitrate in water and brine by stabilized iron nanoparticles. Journal of Nanoparticle Research,2009,11(4):807~ 819
    [70]Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature,1992, 359(6397):710~712
    [71]Kumar N, Konova PM, Naydenov A, Heikilla T, Salmi T, Murzin DY. Synthesis of novel Ag modified MCM-41 mesoporous molecular sieve and beta zeolite catalysts for ozone decomposition at ambient temperature. Catalysis Letters,2004,98(l):57~60
    [72]Lehmann T, Wolff T, Zahn VM, Veit P, Hamel C, Seidel-Morgenstern A. Preparation of Ni-MCM-41 by equilibrium adsorption - catalytic evaluation for the direct conversion of ethene to propene. Catalysis Communications,2011,12(5):368~374
    [73]Lu W, Lu G, Luo Y, Chen A. A novel preparation method of ZnO/MCM-41 for hydrogenation of methyl benzoate. Journal of Molecular Catalysis A:Chemical,2002, 188(1-2):225~231
    [74]吴淑杰,郭晔,阚秋斌.MCM-41负载磷钨酸的制备与表征.光谱实验室,2011,28(5):2504~2506
    [75]Zhao XS, Lu GQ, Millar GJ. Advances in mesoporous molecular sieve MCM-41. Industrial & Engineering Chemistry Research,1996,35(7):2075~2090
    [76]Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society,1998, 120(24):6024~6036
    [77]黄勇,谌伟庆,石秋杰,孙戊晨.介孔分子筛SBA-15在催化领域的应用进展.化工进展,2009,28(12):2140~2145
    [78]赵起龙,沈健,袁兴东,杨立娜.介孔分子筛SBA-15的研究进展.广州化工,2005,33(1):12~15
    [79]黄海凤,褚翔,卢晗锋,张波,李瑛,陈银飞.MCM-41和SBA-15动态吸附VOCs特性和穿透模型.高校化学工程学报,2011,25(2):219-224
    [80]余锋伟,卢信清,唐海军,张碧军,金李莉,代伟.有序介孔材料SBA-15吸附分离污水中铬离子的研究.上海化工,2010,35(10):1-4
    [81]Tang T, Zhao Y, Xu Y, Wu D, Xu J, Deng F. Functionalized SBA-15 materials for bilirubin adsorption. Applied Surface Science,2011,257(14):6004~6009
    [82]李常丽,张庆红,王野,万惠霖.限域于SBA-15孔道内的活性相聚集形态.催化学报,2008,29(1):37~40
    [83]庄大英,金勇,喻宁亚,秦亮生,刘建福,银董红.有机官能化介孔硅基材料负载纳米金催化剂的制备及其催化性能.催化学报,2009,30(9):896-900
    [84]李春晶,李剑,沈健,魏田升,陈南,段大少.Nb-SBA-15介孔分子筛催化剂的制备及其催化性能.石化技术与应用,2010,28(1):9-11
    [85]Yang C M, Liu P H, Ho Y F, Chiu C Y, Chao K J. Highly dispersed metal nanoparticles in functionalized SBA-15. Chemistry of Materials,2002,15(1):275~280
    [86]Huang H, Ji Y, Qiao Z, Zhao C, He J, Zhang H. Preparation, characterization, and application of magnetic Fe-SBA-15 mesoporous silica molecular sieves. Journal of automated methods & management in chemistry,2010,2010:1~7
    [87]Khodakov AY, Griboval Constant A, Bechara R, Zholobenko VL. Pore size Effects in fischer tropsch synthesis over Cobalt-Supported mesoporous silicas. Journal of Catalysis, 2002,206(2):230~241
    [88]Khodakov AY, Bechara R, Griboval Constant A. Fischer-Tropsch synthesis over silica supported cobalt catalysts:mesoporous structure versus cobalt surface density. Applied Catalysis A:General,2003,254(2):273~288
    [89]段洪敏,葛庆杰,徐东彦,徐恒泳.Co负载量对Co/SBA-15催化剂在Fischer-Trosch合成反应中性能的影响.石油化工,2009,38(7):716-722
    [90]Haderlein SB, Schwarzenbach RP. Adsorption of substituted nitrobenzenes and nitrophenols to mineral surfaces. Environmental Science & Technology,1993,27(2):316~ 326
    [91]Dai Y, Mihara Y, Tanaka S, Watanabe K, Terui N. Nitrobenzene-adsorption capacity of carbon materials released during the combustion of woody biomass. Journal of Hazardous Materials,2010,174(1-3):776~781
    [92]Bhatkhande DS, Pangarkar VG, Beenackers AACM. Photocatalytic degradation of nitrobenzene using titanium dioxide and concentrated solar radiation:chemical effects and scaleup. Water Research,2003,37(6):1223~1230
    [93]Boyd SA, Sheng G, Teppen BJ, Johnston CT. Mechanisms for the adsorption of substituted nitrobenzenes by smectite clays. Environmental Science & Technology,2001, 35(21):4227-4234
    [94]Liu S, Wang R. Modified activated carbon with an enhanced nitrobenzene adsorption capacity. Journal of Porous Materials,2011,18(1):99~106
    [95]Latifoglu A, Gurol MD. The effect of humic acids on nitrobenzene oxidation by ozonation and O3/UV processes. Water Research,2003,37(8):1879~ 1889
    [96]Wei W, Sun R, Cui J, Wei Z. Removal of nitrobenzene from aqueous solution by adsorption on nanocrystalline hydroxyapatite. Desalination,2010,263(1-3):89~96
    [97]Cui S, Liu X, Liu Y, Shen X, Lin B, Han G. Adsorption properties of nitrobenzene in wastewater with silica aerogels. Science China Technological Sciences,2010,53(9):2367~ 237
    [98]林中祥,程康华.萃取法去除硝基苯生产废水中的硝基酚.环境导报,2000,(2):18-20
    [99]李劲,叶齐政,郭香会,齐军.电流体直流放电降解水中硝基苯的研究.环境科学,2001,22(5):99~101
    [100]王竞,周集体,张劲松,张爱丽,吕红.假单胞菌JX165及其完整细胞对硝基苯的好氧降解.中国环境科学,2001,21(2):144-147
    [101]Mu Y, Rozendal RA, Rabaey K, Keller Jr. Nitrobenzene removal in bioelectrochemical systems. Environmental Science & Technology,2009,43(22):8690-8695
    [102]He F, Zhao D. Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environmental Science & Technology,2005,39(9):3314~3320
    [103]He F, Zhao D. Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environmental Science & Technology,2007, 41(17):6216~6221
    [104]那娟娟,冉均国,苟立,苏葆辉,李维俊.超声波/纳米铁粉协同脱氯降解四氯化碳.化工进展,2005,24(12):1401~1404
    [105]邱罡,谢凝子,陈少瑾,吴双桃.FeO对土壤中对氯硝基苯和对硝基甲苯的还原.生态环境,2008,17(4):1509~1513
    [106]Yang GCC, Lee H L. Chemical reduction of nitrate by nanosized iron:kinetics and pathways. Water Research,2005,39(5):884~894
    [107]Shih Y H, Hsu C Y, Su Y Y. Reduction of hexachlorobenzene by nanoscale zero-valent iron:kinetics, pH effect, and degradation mechanism. Separation and Purification Technology, 2011,76(3):268~274
    [108]Shi L N, Zhang X, Chen Z L. Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Research,2011,45(2):886~892
    [109]Huang YH, Zhang TC. Effects of low pH on nitrate reduction by iron powder. Water Research,2004,38(11):2631~2642
    [110]Geng B, Jin Z, Li T, Qi X. Kinetics of hexavalent chromium removal from water by chitosan-Fe0 nanoparticles. Chemosphere,2009,75(6):825~830
    [111]Satapanajaru T, Chompuchan C, Suntornchot P, Pengthamkeerati P. Enhancing decolorization of reactive black 5 and reactive red 198 during nano zerovalent iron treatment. Desalination,2011,266(1-3):218~230
    [112]Hofstetter TB, Neumann A, Schwarzenbach RP. Reduction of nitroaromatic compounds by Fe(Ⅱ) species associated with iron-rich smectites. Environmental Science & Technology, 2005,40(1):235~242
    [113]陈宜菲,陈少瑾.利用零价铁还原土壤中硝基苯类化合物的研究.环境科学学报,2007,27(2):241~246
    [114]Hung H M, Ling FH, Hoffmann MR. Kinetics and mechanism of the enhanced reductive degradation of nitrobenzene by elemental iron in the presence of ultrasound. Environmental Science & Technology,2000,34(9):1758~1763
    [115]Agrawal A, Tratnyek PG. Reduction of nitro aromatic compounds by zero-valent iron metal. Environmental Science & Technology,1995,30(1):153~160
    [116]Li Y P, Cao H B, Liu C M, Zhang Y. Electrochemical reduction of nitrobenzene at carbon nanotube electrode. Journal of Hazardous Materials,2007,148(1-2):158~163
    [117]Mu Y, Yu H Q, Zheng J C, Zhang S J, Sheng G P. Reductive degradation of nitrobenzene in aqueous solution by zero-valent iron. Chemosphere,2004,54(7):789~794
    [118]Hwang I, Batchelor B. Reductive dechlorination of tetrachloroethylene by Fe(Ⅱ) in cement slurries. Environmental Science & Technology,2000,34(23):5017~5022
    [119]Erbs M, Bruun Hansen HC, Olsen CE. Reductive dechlorination of carbon tetrachloride using iron(Ⅱ) iron(Ⅲ) hydroxide sulfate (Green Rust). Environmental Science & Technology, 1998,33(2):307~311
    [120]Amonette JE, Workman DJ, Kennedy DW, Fruchter JS, Gorby YA. Dechlorination of carbon tetrachloride by Fe(Ⅱ) associated with goethite. Environmental Science & Technology, 2000,34(21):4606~4613
    [121]Li FB, Li XM, Zhou SG, Zhuang L, Cao F, Huang DY. Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide. Environmental Pollution,2010,158(5):1733~1740.
    [122]Pecher K, Haderlein SB, Schwarzenbach RP. Reduction of polyhalogenated methanes by surface-bound Fe(Ⅱ) in aaqueous suspensions of iron oxides. Environmental Science & Technology.2002,36(8):1734~1741
    [123]Huang YH, Zhang TC. Reduction of nitrobenzene and formation of corrosion coatings in zerovalent iron systems. Water Research,2006,40(16):3075~3082
    [124]陈超,王向宇,常影,刘惠玲,纳米钯/铁双金属颗粒对一氯乙酸的脱氯.材料科学与工艺,2009,17(4):535-538
    [125]Xu X, Zhou M, He P, Hao Z. Catalytic reduction of chlorinated and recalcitrant compounds in contaminated water. Journal of Hazardous Materials,2005,123(1-3):89~93

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700