PVDF膜载钯/铁双金属催化剂制备及对氯乙酸脱氯研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜载纳米钯/铁双金属颗粒对氯代有机物还原脱氯作用已经得到了认可,为了提高催化还原的效率,针对聚偏氟乙烯(PVDF)膜的疏水性进行改性,本文主要从PVDF膜的表面改性,到PVDF载体膜的基体改性和表面改性相结合,制备PVDF膜载纳米Pd/Fe双金属催化剂。
     采用扫描电子显微镜(SEM)、能谱分析(EDS)和红外光谱(FT-IR)对复合膜的颗粒膜表面形貌及表面基团组成进行了分析,以一氯乙酸(MCAA)为目标污染物考察复合膜的催化还原脱氯效果。
     在PVDF膜表面改性中,分别采用对PVDF膜载体亲水化处理后涂敷方法和直接原位聚合方法制备不同的PVDF膜载纳米Pd/Fe双金属催化剂,通过扫描电镜(SEM)对膜的表面形态进行表征结果表明,亲水化处理与交联处理影响了复合膜上纳米钯/铁双金属颗粒的分散状态,膜载铁量的测定进一步证明,经过亲水化处理涂敷方法比原位聚合方法在载铁量上更具有优势,不同膜对一氯乙酸脱氯研究表明,Pd/Fe还原膜对微量一氯乙酸均具有一定的降解能力,相比原位聚合工艺的脱氯率60.5%,涂敷方法脱氯率可达77%。就本实验条件对比发现,浸涂工艺具有一定的实际应用前景,经改性后的PVDF膜载纳米Pd/Fe双金属体系对于降解含氯有机物也具有一定的实用价值。
     在PVDF载体膜中,结合PVDF膜基体改性(主要是掺杂纳米颗粒,Al2O3)和表面涂覆改性寻求合适的PVDF复合膜制备过程。添加的纳米Al2O3有利于增强PVDF膜的亲水性,基体改性后的PVDF膜载铁量相对于商品膜有一定程度的提高,对一氯乙酸的降解也具有一定优势,加入纳米颗粒的复合膜还是相对稳定的。
Membrane-immobilized Pd/Fe nanoparticles play an important role in reducing chlorinated organics for its efficiency and convenience. Polyvinylidene fluoride (PVDF) membrane was modified in order to improve membrane hydrophilicity to enhance dechlorination efficiency of iron. From the PVDF commodity membrane surface modification, to the self-made PVDF membrane the base and surface modification Membrane-immobilized Pd/Fe nanoparticles were prepared in this study.
     Particle shape and specific surface area of membrane-immobilized Pd/Fe nanoparticles were studied by Scanning Electron Microscope (SEM), Enengy Distribution Spectra (EDS) and Fourier Transform Infrared (FT-IR) spectrometer method. Membrane-immobilized Pd/Fe nanoparticles were used to dechlorinate monochloroacetic acid (MCAA) as the target pollutants.
     In the PVDF commodity membrane surface modification, two kinds of modified PVDF membrane-immobilized Pd/Fe nanoparticles by hydrophilization dip -coating method, in situ method respectively were prepared and characterized, two kinds of modified PVDF membrane-immobilized Pd/Fe nanoparticles were used to dechlorinate monochloroacetic acid, the morphology of membrane -immobilized Pd/Fe by scanning electron microscope (SEM) was characterized. Through compare research, we found that the distribution of Pd/Fe nanoparticles was best and the dechlorination effect of monochloracetic acid was highest in hydrophilization PVDF membrane-immobilized Pd/Fe nanoparticles. Compared to in situ process of the degradation rate of 60.5%, degradation rate of hydrophilization dip-coating method was up to 77%. Modified PVDF membrane-immobilized Pd/Fe nanoparticles by hydrophilization dip-coating method for the degradation of chlorine-containing organic compounds also have some practical value.
     In the self-made PVDF membrane, the combination of modified PVDF membrane-based (mainly doped nanoparticles, Al2O3) and dip-coating method to seek modification of the PVDF complex membrane preparation. Nanoparticles doped in the base of membrane were enhanced of the hydrophilicity of PVDF membrane.Through compare research, we found that the distribution of Pd/Fe nanoparticles was better and the dechlorination effect of monochloracetic acid was higher in modification PVDF membrane-immobilized Pd/Fe nanoparticles, adding the composite nanoparticles membrane was relatively stable.
引文
1 J. Y. Hu, Z. S. Wang, W. J. Ng, et al. Disinfection By-Products in Water Produced by Ozonation and Chlorination. Environ. Monitor. Assess, 1999, 59: 81~93
    2 US Environmental Protection Agency, Stage1 Disinfectants and Disinfection By-Products Rule, EPA Document no. 815-F98-010, GPO, Washington, DC, 1998
    3 WHO, Revision of the WHO Guidelines for Drinking Water Quality, WHO, Geneva, 1991
    4 B. F. Scott, D. Mactavish, C. Spencer, et al. Haloacetic Acids in Canadian Lake Waters and Precipitation. Environ. Sci. Technol, 2000, 34: 4266~4272
    5 R. M. Hozalski, L. Zhang, W. A. Arnold. Reduction of Haloacetic Acids by Fe0: Implications for Treatment and Fate. Environmental Science and Technology 2001, 35(11): 2258~2263
    6 R. W. Gillham, S. F. O’Hannesin. Modern Trends in Hydrology, International Association of Hydrologists Conference; IAH: Hamilton, ON Canada, 1992; pp10
    7 R. W. Gillham, S. F. O'Hannesin. Enhanced Degradation of Halogenated Aliphatics by Zero-Valent Iron. Ground Water, 1994, 32(6): 958~967
    8 J. P. Fennelly, A. L. Roberts. Reaction of 1,1,1-Trichloroethane with Zero-Valent Metals and Bimetallic Reductants. Environmental Science and Technology 1998, 32: 1980
    9 C. B. Wang, W. Zhang. 15th Meeing of the North American Catalysis Society, May18-23, 1997, Chicago, IL
    10 Y. Xu, W. X. Zhang. Subcolloidal Fe/Ag Particles for Reductive Dehalogenation of Chlorinated Benzenes. Ind. Eng. Chem. Res., 2000, 39(7): 2238~2244
    11 R. Muftikian, Q. Fernando, N. Korte. A Method for the Rapid Dechlorination of Low Molecular Weight Chlorinated Hydrocarbons in Water. Water Research 1995, 29(10): 2434
    12 D. W. Elliott, W. X. Zhang. Field Assessment of Nanoscale BimetallicParticles for Groundwater Treatment. Environmental Science Technology. 2001,35(24): 4922~4926
    13 S. Kidambi, M. L. Bruening, Multilayered Polyelectrolyte Films Containing Palladium Nanoparticles: Synthesis, Characterization, and application in Selective Hydrogenation. Chemistry of Materials. 2005, 17(2): 301~307
    14 J. Xu, D. Bhattacharyya. Membrane-based Bimetallic Nanoparticles for Environmental Remediation: Synthesis and Reactive Properties. Environmental Progress. 2005, 24(4): 358~366
    15 J. Xu, D. Bhattacharyya. Fe/Pd Nanoparticle Immobilization in Microfiltration Membrane Pores: Synthesis, Characterization, and Application in the Dechlorination of Polychlorinated Biphenyls. Industrial Engineering Chemistry Research. 2007, 46(8): 2348~2359
    16 C. H. Du, Y. Y. Xu, B. K. Zhu. Structure Formation and Characterization of PVDF Hollow Fiber Membranes by Melt-Spinning and Stretching Method. Applied Polymer Science, 2007, 106:1793~1799
    17 G. L. Ji, C. H. Du, B. K. Zhu, et al. Preparation of Porous PVDF Membrane via Thermally Induced Phase Separation with Diluent Mixture of DBP and DEHP
    18唐广军,孙本惠.聚偏氟乙烯膜的亲水性改性研究进展,化工进展, 2004, 23: 480~485
    19王庐岩,钱英等.聚偏氟乙烯膜分离膜改性研究进展,膜科学与技术,膜科学与技术, 2002, 22: 52~57
    20 Q. M. Zhang, V. Bharti, G. Kavarnos, et al. "Poly (Vinylidene Fluoride) (PVDF) and its Copolymers", Encyclopedia of Smart Materials, Volumes 1-2, John Wiley & Sons, 807~825
    21 A.Vinogradov, M. Schwartz. "Piezoelectricity in Polymers", Encyclopedia of Smart Materials, Volumes 1-2, John Wiley & Sons, 780~792
    22肖玲.聚合物多孔膜的亲水化改性.硕士学位论文,浙江大学, 2007.5
    23 S. P. Nunes, K. V. Penemann. Ultrafiltration Membranes from PVDF/PMMA Blends. Membr. Sci. , 1992, 73: 25~35
    24 N. A. Ochoa, J. Marchese. Effect of Hydrophilicity on Fouling of an Emulsified Oil Wastewater with PVDF/PMMA Membrane. Membr. Sci. ,2003, 226: 203~211
    25 J. F. Hester, P. Banerjee, A. M. Mayes. Preparation of Protein-Resistant Surfaces on Polyvinylidene Fluoride Membranes via Surface Segregation. Macromolecules, 1999, 32: 1643~1650
    26 J. F. Hester, A. M. Mayes. Design and Performance of Foul-Resistant Poly (vinylidene fluoride) Membranes Prepared in a Single-Step by Surface Segregation. Membr. Sci, 2002, 202: 119~135
    27 J. F. Hester, P. Baneree, Y. Y. Won, et al. ATRP of Amphiphilic Graft Copolymers Based on PVDF and Their Use as Membrane Additives. Macromoecules, 2002, 35: 7652~7661
    28 J. F. Hester, S. C. Olugebefola, A. M. Mayes. Preparation of pH-Responsive Polymer Membranes by Self-Organization. Membr. Sci. ,2002, 208: 375~388
    29 Ariya Akthakul, Richard F Salinaro, Anne M Mayes. Antifouling polymer membranes with subnanometer size selectivity. Macromolecules, 2004, 37: 7663~7668
    30方少明,王明花等.两亲聚合物的合成及其在聚偏氟乙烯膜改性中的应用.膜科学与技术, 2007, 27(3): 25~29
    31王淑梅.聚偏氟乙烯超滤膜的改性及其凝胶机理的研究.硕士学位论文,北京工业大学, 2003.5
    32周羽中,王湛等. PVDF/CA共混微滤膜的研制.膜科学与技术, 2007, 27(5): 31~35
    33芦艳,于水利等.有机膜的无机改性及其性能研究.环境科学, 2007,28(2): 371
    34 S. P. Roux, E. P. Jacobs, A. J. van Reenen, et al. Hydrophilisation of Polysulphone Ultrafiltration Membranes by Incorporation of Branched PEO-block-PSU Copokymers. Membrane Science, 2006, 276(1-2): 8~15
    35董声雄,洪俊明.聚偏氟乙烯超滤膜的制备及亲水改性,福州大学学报(自然科学版). 1998, 26(6): 119~122
    36 D. Detlef, S. Eberhard. Heterogeneous Modification of Ultrafiltration Membranes Made from PVDF and their Characterization. Membr Sci , 1993, 78: 45~51
    37 P. Wang, K. L. Tan, E. T. Kang, et al. Plasma induced Immobilization of Poly (ethylene glycol) onto Poly(vinylidene fluoride) Microporous Membrane. Membr. Sci., 2002, 195: 103~114
    38陆晓峰,汪庚华,梁国明.聚偏氟乙烯超滤膜的辐照接枝改性研究.膜科学与技术, 1998 , 18 (6): 54~57
    39 M. Daniel, M. Joachim, P. Neeta. Membrane Post Treatment, EP:1654053, 2006
    40 Parna Mukherjee, Kimberly L. Jones, Jones, et al. Surface Modification of Nanofiltration Membranes by Ion Implantation. membrane science 254 (2005): 303~310
    41周洁.聚偏氟乙烯膜的亲水改性及处理低浓度含油废水的研究.南京理工大学硕士学位论文. 2005: 10~19
    42白鹭.膜生物反应器中聚偏氟乙烯膜表面改性及污染的研究.硕士学位论文.东华大学, 2007.1
    43 D. J. Brose. Hydrophilec Polyvinylidene Fluoride Membranes, USP: 5476590, 1995
    44陈炜.聚偏氟乙烯(PVDF)平板膜的制备工艺及化学改性的研究.硕士学位论文,浙江大学, 2003.1
    45王闻宇,陈莉等. N-异丙基丙烯酰胺水凝胶对聚偏氟乙烯中空纤维膜的智能改性研究.化工新型材料, 2006,34(6): 15~18
    46王海芳.基于超分子化学作用的PVDF膜改性及其在处理低浓度含油废水中的应用研究.博士学位论文,南京理工大学, 2006.6
    47 M. C. Clochard, J. Begue, A. Lafon, et al. Tailoring Bulk and Surface Grafting of Poly(acrylic acid)in Electron-Irradiated PVDF. Polymer, 2004, 45: 8683~8694
    48 S. Holmberg, J. H. Nasman, et al. Synthesis and Properties of Sulfonated cross Linked Poly (vinylidenefluoride)-Graft-Styrene Membrane. Polym. Adv. Techn., 1998, 9: 121~127
    49 M. J. Swanson. A Unique Photochemical Approach for Polymer Surface Modification. Polymer Surface Interfaces, 1995(1): 19~25
    50 K. Jokela. Temperature-dependent X-ray Scattering Studies on Radiation Grafted and Sulfonated Poly (vinylidene floride). Mater. Sci. Forum, 2000: 321~324
    51 M. Rafik, A. Mas, A. Elharfi, et al. Modification de PVDF Membrane Par Plasmad Acide Acrylique Et De Nanoflourobutylethylene, Eur. Polym., 2000, 361911 ~1919
    52 S. Akhtar. Coatings Reduce Rhe Fouling of Microfiltration Membranes. Jmembr Sci, 1995, 107(3): 209~218
    53杨虎,许振良等.聚偏氟乙烯膜表面丙烯酸接枝改性研究.膜科学与技术, 2006, 26(4): 24~26
    54 G. J. Ross, J. F. Watts, M. P. Hill, et al. Surface Modification of Poly (vinylidene fluoride) by Alkaline Treatment (1)The Degradation Mechanism. Polymer , 2000, 41: 1685~1696
    55宋来洲,张尊举等.改性聚偏氟乙烯微滤膜深度处理城市污水的研究.中国给水排水, 2006, 22(13): 38~41
    56韩珣,黎雁.聚偏氟乙烯中空纤维膜化学接枝改性研究.膜科学与技术, 2007, 27(2): 15~19
    57 Masahide Taniguchi, Georges Belfort. Low Protein Fouling Synthetic Membranes by UV-assisted Surface Grafting Modification: Varying Monomer Type. Membrane Science, 231(2004): 147~157
    58 John Pieracc. Photochemical Modification of 10kDa Polyethersulfone Ultrafiltration Membranes for Reduction of Biofouling. Membrane Science , 156(1999): 223~240
    59 E. K. James, M. Supatpong, P. P. John, et al. Photochemical Modification of Poly(ether sulfone) and Sulfonated Poly(sulfone) Nanofiltraation Membranes for Control of Fouling by Matural Organic Matter. Desalination, 132(2000): 133~142
    60李晓,陆晓峰.射线辐照接枝丙烯酸改性PVDF超滤膜.膜科学与技术, 2007, 27(2): 49~51
    61 A. Bhattacharya. Radiation and Industrial Polymers. Prog. Polym. Sci., 2000, 25: 371~401
    62 S. Hietala, E. Skou, F. Sundholm. Gas Permeation Properties of Radiation Grafted and Sulfonated Poly-vinylidene Fluoride. Membranes Polymer, 1999, 40:5567~ 5573
    63 D. I. Ostrovskii, L. M. Torell, M. Paronen, et al. Water Sorption Properties of and the State of Water in PVDF Based Proton Conducting Membranes. Solid State Ionic, 1997, 97: 315~321
    64 N. Tzanetakis, J. Varcoe, R. Sslade, et al. Salt Splitting with Radiation Grafted PVDF Anion-Exchange Membrane. ElectrochemistryCommunication, 2003, (5):115~119
    65左丹英,刘富等.聚偏氟乙烯微孔膜一步法亲水化改性研究.膜科学与技术, 2006, 26(3): 41~45
    66陈剑,李继定等.低温等离子体接枝改性PVDF膜.膜科学与技术, 2007, 27(1): 23~26
    67蔡报祥,于水利,卢艳. PVDF/纳米Al2O3共混超滤膜的制备及其性能.哈尔滨工业大学学报, 2007, 39(6): 879~882

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700