基于余氯和THMs的管网水质服务水平模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了对管网水质运行情况进行评价,优化管网水质,本研究中采用扩展余氯-I/O模型和THMs-I/O模型作为计算基础,建立管网水质服务水平-加氯总费用多目标优化模型。此外,由于水质监测点在反映实际管网水质服务水平时存在误差,故本论文对管网水质服务水平进行了修正。
     首先,为使余氯-I/O模型在余氯快慢反应共存时仍适用,并且提高THMs各组分的计算效率,本文推导了扩展余氯-I/O模型和THMs-I/O模型。采用管网末端的饮用水和水厂滤后水各自进行了加氯实验。结果表明当初始余氯质量浓度大于某个阈值后,快反应在0.5小时内基本完成,水质监测点的余氯质量浓度与加氯点上参与慢反应的初始余氯质量浓度符合线性比例关系。基于实验结果,本文提出了扩展余氯-I/O模型的适用条件。在中试管网中验证扩展余氯-I/O模型,结果表明扩展余氯-I/O模型优于传统的余氯-I/O模型。采用基于余氯消耗的THMs各组分生成模型拟合THMs各组分的质量浓度。考虑温度、初始余氯质量浓度和溴离子质量浓度为影响因素,采用正交实验观察三因素对模型中的THMs各组分线性比例系数的影响。实验结果表明,THMs各组分线性比例系数受溴离子质量浓度的影响最大,而受温度和初始余氯质量浓度的影响较小。在中试管网中验证THMs-I/O模型,结果显示实测值与预测值间的相对误差在9%以内。
     其次,为研究管网水质运行情况的评价模型,本文引入余氯服务水平概念,初步探讨了管网水质服务水平评价函数,改进了二次加氯优化模型。参考余氯服务水平和《生活饮用水卫生标准》,建立了THMs各组分的服务水平。考虑加权平均值、加权连乘值和加权标准差三类函数,用于建立关联余氯及THMs各组分服务水平的管网水质服务水平表达式。本文采用管网水质服务水平-加氯总费用多目标模型对管网水质运行情况进行评价。结合一管网算例,采用EPANET_MSX模拟余氯衰减和THMs各组分生成,利用实数编码的非支配排序遗传算法(NSGA-Ⅱ)进行优化,得到各种情况下的Pareto前沿面。计算结果表明,加权平均表达式为关联余氯和THMs服务水平的最优方式。二次加氯点布置于水塔出水口和管网末端即可,过多的二次加氯点不仅不能显著提高管网水质服务水平,还会加大加氯总费用。余氯衰减系数对pareto面的影响最大,故改善水质更换老旧管道是提高管网水质服务水平且节省加氯总费用最可行的方法。
     最后,本文研究了水质监测点在反映实际管网水质服务水平时存在误差的现象,探讨了管网水质服务水平的修正。模拟结果表明,随着水质监测点数量的增加,误差有减小的趋势,但不呈现单调递减。当水质监测点数量较多时,误差可忽略。论文比较了水质监测点覆盖率和水质监测点数量占管网节点总数的比率拟合误差的效果,结果显示后者较优。通过一大型管网验证,结果表明修正后的管网水质服务水平更加接近于实际管网水质服务水平。
     本论文得到了水体污染控制与治理重大专项:饮用水水质监控预警及应急技术研究与示范(2008ZX07420-004)、潮汐影响地区饮用水安全保障技术集成与示范(2009ZX07424-001)和山地丘陵城市饮用水安全保障共性技术研究与示范(2009ZX07424-004)以及国家自然科学基金(51208455)的资助。
To evaluate and optimize the water quality in water distribution systems, extensional residual chlorine-I/O model and THMs-I/O model were studied and used as the calculation basis to build the multi-objective optimization model beween service level of water quality in water distribution systems and chlorination costs. In addition, there are errors when water quality monitoring stations respond the real service level of water quality in water distribution systems. Therefore, the service level of water quality in water distribution system was corrected in this study.
     Firstly, in order to make the residual chlorine-I/O models suitable in residual chlorine slow and fast reaction coexistence and improve computational efficiency of optimization model, extensional chlorine-I/O model and THMs-I/O model were derivated. The experiments were conducted to investigate chlorine decay with tap water at the end of the pipe network and filtrated water of water plant. The results showed that fast reaction of chlorine decay basically finish when initial chlorine mass concentration is above some value. Therefore, the chlorine mass concentration of water quality monitoring stations is linearly proportional relationship with initial mass concentration in slow reaction on chlorination boosters. Moreover, extensional chlorine-I/O model was presented in the pilot-scale water distribution system. The results showed that the extensional chlorine-I/O model is better than traditional chlorine-I/O model. In addition, to match generation of THMs, formation model of THMs based on chlorine consumption was proposed. The effect of three factors including temperature, initial chlorine concentration and bromine ion concentration, on proportional coefficient of the linear model were studied. Experiment results showed that bromine ion concentration had the most effect on the proportional coefficient of the linear model, and the proportional coefficient was independent on temperature and initial chlorine concentration. Moreover, the THMs-I/O model was proved in the pilot-scale water distribution systems and the simulation results showed that the error between real value and predictive value is below9%.
     Secondly, to study an evaluation model of water quality in water distribution systems, concept of residual chlorine servicel level was proposed to study the evaluation function of residual service level and improve the optimization model in rechlotination. By reference to chlorine performance and "Standards for Drinking Water Quality", service level of each component of THMs was established. Three kinds of expressions, which named weighted average value, standard deviation and multiplication, were used to measure service level of water quality. Multi-objective optimization model of service level of water quality and rechlorination cost was proposed. Chlorine decay and THMs generation were simulated using EPANETMSX. An improved non-dominated sorted genetic algorithm-Ⅱ with integer code was adopted to optimize the model, and pareto fronts could be obtained under different conditions. Results showed that the weighted average expression was the optimal way to correlate residual chlorine and THMs formation. It was enough that boosters be located on outlet of water tower and end of water distribution systems. Too much number of boosters can not significantly improve service level of water quality, but can increase total cost of rechlorination. Therefore, improving water quality and replacement of old pipes was the most feasible method to improve service level of water quality and save total cost of rechlorination.
     Finally, as there are errors when water quality monitoring stations respond the real service level of water quality in water distribution systems, the service level of water quality in water distribution system was corrected in this study. The results showed that, with the number of water quality monitoring stations increases, the errors tended to decrease and it was not monotonically decrease.The errors would be ignored when the number of water quality monitoring stations was large. In this thesis, chlorine monitoring coverage and ratio between the number of chlorine monitoring stations and node number of water distribution system were used to compare their measurement errors. The results showed that later could be better to measure the errors. By verifying a water distribution system in a large-sized city, the results showed that the corrected service level formula of water quality is closer to the real service level of water quality. The corrected service level formula of water quality was providing a theoretical foundation for running and controlling water distribution systems.
     This thesis was kindliy supported by National Major Project of Science&Technology Ministry of China (2008ZX07420-004,2009ZX07424-001and2009ZX07424-004) and National Natural Science Foundation of China (No.51208455).
引文
[1]中华人民共和国环境保护部.2008中国环境状况公告[N],2009.
    [2]同帜,贾红建,李海红等.钱塘江流域水质发展趋势研究[J].水资源与水工程学报,2006,17(5):80-83.
    [3]陈国光,沈依云,孟明群等.上海市供水水质现状和2012年供水水质达标步骤与措施[J].给水排水,2010,36(11):24-31.
    [4]童祯恭.管网水质二次污染剖析[J].华东交通大学学报,2004,21(4):45-48.
    [5]曹邦卿,韩建秀,孙昊.城市供水管网系统水质二次污染的原因及防治对策[J].南阳师范学院学报(自然科学版),2003,2(6):58-60.
    [6]童祯恭,刘遂庆,陶涛.供水管网中管材对水质影响的探讨[J].城市公用事业,2006,1(2):22-24.
    [7]李欣,王郁萍,赵洪宾.给水管道材质对供水水质的影响[J].哈尔滨工业大学学报,2001,33(5),592-595.
    [8]金俊武.供水管网中水质监测点优化选址研究[D].杭州:浙江大学,2012.
    [9]张冬梅.肠致病性大肠杆菌致病机制的研究进展[J].中国公共卫生学报,2001,1(4):27-30.
    [10]张月清,王正仪,卢思奇等.兰氏贾第虫及兰氏贾第鞭毛虫病的研究[J].北京第二医学院学报,1984,2(6):117-121.
    [11]张龙现,蒋金书.隐孢子虫和隐孢子虫病研究进展[J].寄生虫与医学昆虫学报,2001,8(3):184-192.
    [12]谷康定,唐非,张水兵.水中病毒对饮水消毒剂抗性的试验研究[J].同济医科大学学报,2001,30(6):538-540.
    [13]生活饮用水卫生标准,中华人民共和国卫生部[S].2006.
    [14]许保玖.给水处理理论[M].北京:中国建筑工业出版社.2000.
    [15]Herren-Freund S L, Khoury M D, Olson G, et al. The carcinogenicity of trichloroethylene and its metabolites, trichloroacetic acid and dichloroacetic acid in mouse liver[J]. Toxicol Appl Pharmacol. 1987,90:183-189.
    [16]DeAngelo A B, Daniel F B, Most B M, et al. The carcinogenicity of dichloroacetic acid in the male Fischer 344 rat[J]. Toxicology,1996,114:207-221.
    [17]毛洁,王懿霖,张怡琼,应亮.2009-2010年上海市生活应用水突发污染事件分析[J].环境健康杂志,2011,28(3):245-247.
    [18]Boccelli D L, Tryby M E, Uber J G, etal. Optimal scheduling of booster distribution in water distribution systems[J]. Journal of Water Resources Planning and Management,1998,124(2):99-111.
    [19]Munavalli G R, Mohan Kumar M S. Optimal scheduling of multiple chlorine sources in water distribution systems[J]. Journal of Water Resources Planning and Management,2003,129(6):493-504
    [20]Propato M. Operation of booster disinfection systems:from offline design to online control[D]. Italy: University of Florence,1995.
    [21]Propato M, Uber J G. Linear least-squares formulation for operation of booster disinfection systems[J].2004,130 (1):53-62.
    [22]Polycarpou M M, Uber J G, Zhong W et al. Feedback control of water quality[J]. IEEE Control Systems Magazine,2002,48 (6):68-87.
    [23]Zhong W, Polycarpou M M, Uber J G et al. Adaptive control of water quality in water distribution networks[J]. IEEE Transactions on control systems technology,2006,14(1):149-156.
    [24]Vicente R R, Gustavo A, Cruz G D, et al. Two-stage stochastic approach to the optimal location of booster disinfection stations[J]. Industrial and Engineering Chemistry Reasearch,2007,46 (19): 6284-6292.
    [25]Tryby M E, Boccelli D L, Uber J G, et al. Facility location model for booster disinfection of water supply networks[J]. Journal of Water Resources Planning and Management,2002,128 (5):322-333.
    [26]Prasad T D, Walters G A, Savic D A. Booster disinfection of water supply networks:multiobjective approach[J]. Journal of Water Resources Planning and Management,2004,130(5):367-376.
    [27]Carrico B, Singer P C. Impact of booster chlorination on chlorine decay and THM production:simulated analysis[J]. Journal of Environmental Engineering,2009,135(10):928-935.
    [28]Elshorbagy W E, Hany A Q, Elsheamy K. Simulation of THM species in water distribution systems[J]. Water research,34(13):3431-3439.
    [29]迟海燕.城市供水管网氯的优化配置[D].天津:天津大学,2004.
    [30]鲁宁波.城市供水管网二次加氯优化及算法实现[D].哈尔滨:哈尔滨工业大学,2006.
    [31]邓涛.供水系统加氯模式优化理论与计算方法[D].哈尔滨:哈尔滨工业大学,2007.
    [32]李莉.基于水质安全的城市输配水系统二次加氯优化与分析[D].杭州:浙江大学,2008
    [33]马力辉,刘遂庆,信昆仑.城市供水管网二次加氯研究进展[J].环境污染与防治,2006,28(9):693-697.
    [34]刘渊,王慧斌,崔建国.供水管网多点加氯优化选址方法的研究[J].太原理工大学学报,2006, 37(5):561-564.
    [35]张念卿.配水管网二次加氯优化及水质风险度分析[D].杭州,浙江大学,2011.
    [36]黄雅芳.城市配水管网二次加氯的优化研究[D].长沙:湖南大学,2005.
    [37]童祯恭.供水管网水质模拟与安全分析方法和应用研究[D].上海:同济大学,2005.
    [38]马立辉.供水管网余氯优化控制决策支持系统研究[D].上海:同济大学,2007.
    [39]王丹宁,赵明,赵洪宾.应用灰色聚类模型对给水管网水质的综合评价[J].重庆建筑大学学报,2007,29(6):98-100.
    [40]王丹宁,赵洪宾,丛颖.应用模糊数学模型对给水管网水质的综合评价[J].给水排水,2007,33(1):103-105.
    [41]童祯恭,方菊,谌贻胜.供水管网水质评价方法的探讨及其应用[J].环境科学与技术,2011,34(9):201-204.
    [42]李娜娜.基于SOM算法的城市给水管网水质评价[D].哈尔滨:哈尔滨工业大学,2008.
    [43]王晓光,周慧,张有君.支持向量机的给水管网水质综合评价研究[J].沈阳理工大学学报,2012,31(3):63-67.
    [44]Lee B H. Locating monitoring stations in water distribution systems [J]. J. AWWA,1991,83(7): 60-66.
    [45]Huang Y D, Zhang T Q, Wu X G. A hybrid PSO based method for optimizing water quality monitor stations in water distribution systems [C]. WCICA 2006:Sixth World Congress on Intelligent Control and Automation,2006:1-12.
    [46]Woo H M, Yoon J H, Doo Y C. Optimal monitoring sites based on water quality and quantity in water distribution systems [C]. World Water Congress 2001,2001.
    [47]Kumar A, Kansal M L, Arora G. Identification of monitoring stations in water distribution system[J]. Journal of Environmental Engineering,1997,123(8):746-752.
    [48]Al-Zahrani M A, Moied K. Locating optimum water quality monitoring stations in water distribution system[C]. Proceedings of the ASCE Annual Conference on Water Resources Planning and Management Bridging the Gap Meeting the World's Water and Environmental Resources Challenges[C]. US ASCE, 2001.
    [49]周书葵,许仕荣.城市供水管网水质监测点优化选址的研究[J].南华大学学报(自然科学版),2004,18(3):62-66.
    [50]郭姣,信昆仑.供水管网水质监测点优化布置[J].城市公用事业,2007,21(4):21-24.
    [51]韩云峰.城市供水管网水质在线监测系统的研究[D].哈尔滨:哈尔滨工业大学,2004.
    [52]李飞宇.城市给水管网水质安全性评价体系研究[D].哈尔滨:哈尔滨工业大学,2008.
    [53]李斌.城市输配水管网水质变化的动态模拟[D].长沙:湖南大学,2002.
    [54]周书葵.城市供水SCADA系统管网监测点优化布置的研究[D].长沙:湖南大学,2003.
    [55]马力辉,信昆仑,刘遂庆.供水管网水质监测点综合优化布置研究[J].给水排水,2009,35(5):202-205.
    [56]张土乔,黄亚东,吴小刚.供水管网水质监测点选址风险研究[J].自然灾害学报,2006,15(1):149-154.
    [57]张土乔,黄亚东,吴小刚.供水管网水质监测点优化选址研究[J].浙江大学学报(工学版).2007,41(1):1-5.
    [58]黄亚东,张土乔,王直民等.部分覆盖下供水管网水质监测点优化选址方法[J].浙江大学学报(工学版),2008,42(1):8-12.
    [59]陶涛,吕存阵,信昆仑等.基于突发污染事件的管网水质监测点优化布置[J].同济大学学报(自然科学版),2010,38(11):1621-1625.
    [60]张怀宇,赵洪宾,吴文燕,等.市政给水管网水质监测点的优化选址[J].给水排水,1996,22(10):5-8.
    [61]刘书明,刘文君,陈晋端.给水管网水质监测点优化选址研究进展[J].中国给水排水,2009,25(22):20-24.
    [62]Rossman LA. Epanet 2 users manual[M]. United States Environmental Protection Agency,2000-
    [63]Clark R M. Chlorine demand and TTHM formation kinetics:A second-order model[J]. Journal of Environmental Engineering,1998,124 (1):16-24.
    [64]Clark R M, Sivaganesan M. Predicting chlorine residuals in drinking water:second order model[J]. Journal of Water Resources Planning and Management,2002,128(2):152-161.
    [65]Haas C N, Karra S B. Kinetics of wastewater chlorine demand exertion[J]. Journal of Water Pollution Control Federal,1984,56(2):170-173.
    [66]Powell J C, West J R, Hallam N B. Performance of various kinetics models for chlorine decay[J]. Journal of Water Resources Planning and Management,2000,126(1):13-20.
    [67]Clark R M, Sivaganesan M. predicting chlorine residuals and formation of TTHMs in drinking water[J]. Journal of Environmental Engineering-ASCE,1998,124(12):1203-1210.
    [68]李欣,张继良,王郁萍等.配水管网水质变化的研究(Ⅲ)—三卤甲烷的研究[J].哈尔滨建筑大 学学报,2000,33(2):58-61.
    [69]Boccelli D L, Tryby M E, Uber J G, et al. A reactive species model for chlorine decay and THM formation under rechlorination condition[J]. Water Research,2003,37(11):2654-2666.
    [70]Huang J J, McBean E A. Using Bayesian statistics to estimate the coefficients of a two component second-order chlorine bulk decay model for a water distribution system[J]. Water Research,2007,41 (2):287-294.
    [71]Ramos H M, Loureiro D, Lopes A, et al. Evaluation of chlorine decay in drinking water systems for different flow conditions:from theory to practice[J]. Water Resources Management,2010,24 (4): 815-834.
    [72]Jonkergouw P M R, Khu S T, Savic D A, et al. A variable rate coefficient chlorine decay model[J]. Environmental Science and Technology,2009,43 (2):408-414.
    [73]Brown D, Bridgeman J, West J R. Predicting chlorine decay and THM formantion in water supply systems[J]. Reviews in Environmental Science and Bio-technology,2011,10(1):79-99.
    [74]Vieira P, Coelho S T, Loureiro D. Accounting for the influence of initial chlorine concentration, TOC, iron and temperature when modeling chlorine decay in water supply[J]. Journal of Water Supply Research and Technology-AQUA,2004,53 (7):453-467.
    [75]Kohpaei A J, Sathasivan A. Chlorine decay prediction in bulk water using the parallel second order model:an analytical solution[J]. Chemical Engineering Journal,2011,171 (1):232-241.
    [76]Kohpaei A J, Sathasivan A, Aboutalebi H. Effectiveness of parallel second model over second and first order models[C]//3rd International Conference on the Challenges in Environmental Science and Engineering (CESE). Cairns, Australia:Desalination and Water Treatment,2011,107-114.
    [77]周建华,赵洪宾,薛罡.配水管网中与有机物反应的余氯衰减动力学模型[J].环境科学,2003,24(3):45-49.
    [78]邵艳秋,左春生,李聪,李继光.基于影响因素分析的供水管网主体水余氯衰减模型[J].环境科学与技术,2012,35(1):50-54.
    [79]吴晨光,孙雨石,赵洪宾等.环状管网模拟余氯衰减模型[J].中国给水排水,2006,22(1):9-12.
    [80]赵志领,赵洪宾,何文杰等.天津市供水管网余氯衰减模型研究[J].给水排水,2006,32(5):36-39.
    [81]康华,伍悦滨,蒋白懿.低速条件下给水管线中余氯衰减模拟研究[J].沈阳建筑大学学报(自然科学版),2006,22(3):470-473.
    [82]刁翔,李奇,魏贺.基于支持向量回归的水体余氯衰减规律研究[J].给水排水,2007,33(2):320-322.
    [83]钟丹.供水管网余氯衰减规律及影响因素研究[D].哈尔滨:哈尔滨工业大学,2010.
    [84]曾正仁.供水管网余氯衰减规律实验研究[D].长沙:湖南大学,2008.
    [85]郭诗文.管网中基于余氯衰减的三卤甲烷动力学模型研究[D].杭州:浙江大学,2011.
    [86]Chowdhury S, Champagne P, McLellan P J. Models for predicting disinfection byproduct formation in drinking waters:A chronological review[J]. Science of the Total Environment,2009,407 (14): 4189-4206.
    [87]Singer PC, Chang S D. Correlations between trihalomethanes and total organic halides formed during water treatment[J]. Journal of America Water Works Association,1989,81 (8):61-65.
    [88]White D M, Garland D S, Narr J, et al. Natural organic matter and DBP formation potential in Alaskan water supplies[J]. Water Research,2003,37 (6):939-947.
    [89]Minear R A, Morrow C M. Raw water bromide in finished drinking water, research report 9[D]. Water Resources Research Center, University of Tennessee,1983.
    [90]Urano K, Wada H, Takemassa T. Empirical rate equation for trihalomethane formation with chlorination of humic substances in water[J]. Water Research,1983,17(12):1797-1802.
    [91]Engerholm B A, Amy G L. A predictive model for chloroform formation from humic acid[J]. Journal of America Water Works Association,1983,75 (8):418-423.
    [92]Morrow C M, Minear R A. Use of regression models to link raw water characteristics to trihalomethane concentrations in drinking water[J]. Water Research,1987,21 (1):41-48-
    [93]Harrington G W, Chowdhurry Z K, Owen D M. Developing a computer model to simulate DBP formation duringwater treatment[J]. Journal of America Water Works Association,1992,84(11): 78-87.
    [94]Malcolm Pirnie Inc. Bay-Delta water quality modeling report No.15-041[D]. Los Angeles:Metropolitan Water District of Southern California,1993.
    [95]Ozekin K. Modeling bromate formation during zonation and assessing its control[D]. USA:University of Colorado,1994.
    .[96] Siddiqui M, Amy G, Ozekin K, et al. Empirically and theoretically based models for predicting brominated ozonized by-products[J]. Ozone-Science and Engineering,1994,16(2):157-178-
    [97]Rathbun R E. Speciation of trihalomethane mixtures for the Mississippi, Missouri and Ohio rivers[J]. Science of the Total Environment,1996,180(2):125-135.
    [98]Rathbun R E. Regression equations for disinfection by-products for the Mississippi, Ohio and Missouri Rivers[J]. Science of the Total Environment,1996,191 (3):235-244.
    [99]Golfinopoulos S K, Arhonditsis G B. Multiple regression models:a methodology for evaluating trihalomethane concentrations in drinking water from raw water characteristics[J]. Chemosphere, 2002a,47 (9):1007-1018.
    [100]Golfinopoulos S K, Arhonditsis G B. Quantitative assessment of trihalomethane formation using simulations of reaction kinetics[J]. Water Research,2002b,36(11):2856-68.
    [101]Sohn J, Amy G, Cho J, et al. Disinfectant decay and disinfection by-products formation model development:chlorination and ozonation by-products[J]. Water Research,2004,38 (10):2461-2478.
    [102]林细萍,卢益新,张德明等.THMFP及HAAFP的测定方法[J].中国给水排水,2003,19(10):98-100.
    [103]赵志领,赵洪宾,高金良等.供水管网中三卤甲烷数学模型研究[J].哈尔滨商业大学学报,2008,24(6):741-744.
    [104]王杨.供水管网中消毒副产物卤乙酸的研究[D].天津:天津大学,2007.
    [105]宁冉,袁一星,邓涛.供水管网中三卤甲烷变化研究[J].净水技术,2006,25(4):5-7.
    [106]翟学东,刘娟昉,诸晓平.海水入侵对澳门供水中三卤甲烷形成的影响[J].哈尔滨商业大学学报(自然科学版),2006,22(1):24-27.
    [107]田一梅,刘慧娜,王杨.配水管网中三氯甲烷的预测研究[J].供水技术,2007,1(1):35-38.
    [108]赵志领,赵洪宾,何文杰等.天津市供水管网动态水质模拟系统[J].给水排水,2008,34(12):108-111.
    [109]李君文,于祚斌,高明等.饮用水中三卤甲烷预测模型研究[J].环境与健康杂志,1996,13(6):251-253.
    [110]郑晓波.饮用水卤代消毒副产物生成动力学及控制技术研究[D].太原:太原理工大学,2007.
    [111]陈萍萍,张建英,金坚袁.饮用水中卤乙酸和三卤甲烷的形成及影响因素研究[J].环境化学,2005,24(4):434-437.
    [H2]Hua F. THM formation in water treatment works[D]. Birmingham, University of Birmingham,2000.
    [113]Carrico B, Singer C. Impact of booster chlorination on chlorine decay and THM production:simulated analysis[J]. ASCE Journal of Environmental Engineering,2009,135(10):928-935.
    [114]Courtis B J, West J R, Bridgeman J. Chlorine demand-based prediction modeling of THM formation in water distribution networks[J]. Urban Water Journal,2009,6(6):407-415.
    [115]Korn C, Andrews R C, Escobar M D. Development of chlorine di-oxide related by-product models for drinking water treatment[J]. Water Research,2002,36(1):330-342.
    [116]SungW, Matthews B R, O'Day K, et al. Modeling DBP formation[J]. Journal of America Water Works Association,2000,92(5):53-63.
    [117]Gallard H, Von-Gunten U. Chlorination of natural organic matter:kinetics of chlorination and of THM formation[J]. Water Research,2002,36 (1):65-74.
    [118]Gang D D, Segar Jr R L, Clevenger T E, et al. Using chlorine demand to predict THM and HAA9 formation[J]. Journal of America Water Works Association,2002,94(10):76-86.
    [119]Gang D, Clevenger T E, Banerji S K. Relationship of chlorine decay and THMs formation to NOM size[J]. Journal of Hazardous Materials,2003,96(1):1-12.
    [120]Serodes J B, Rodriguez M J, Li H, et al. Occurrence of THMs and HA As in experimental chlorinated waters of the Quebec City area (Canada) [J]. Chemosphere,2003,51 (4):253-263.
    [121]"Nikolaou A D, Lekkas T D, Golfinopoulos S K. Kinetics of the formation and decomposition of chlorination by-products in surface waters[J]. Chemical Engineering Journal,2004,100:139-148.
    [122]Al-Jasser A O. Chlorine decay in drinking water transmission and distribution systems:pipe service age effects[J]. Water Research,2007,41 (2):387-396.
    [123]Al-Omari A, Fayyad M, Qader A A. Modeling trihalomethane formation for iabal Amman water supply in Jordan[J]. Environmental Modeling and Assessment,2004,9(4):245-252.
    [124]Lekkas T D, Nikolaou A D. Development of predictive models for the formation of trihalomethanes and haloacetic acids during chlorination of bromide ion rich water[J]. Water Quality Research Journal of Canada,2004,39(2):149-159.
    [125]Uyak V, Toroz I. Seasonal variations of trihalomethanes (THMs) in water distribution networks of Istanbul City [J]. Desalination,2005,176(1-3):127-141.
    [126]Uyak V, Toroz I. Investigation of bromide ion effects on disinfection by-products formation and speciation in an Istanbul water supply[J]. Journal of Hazardous Material,2007,149(2):445-451.
    [127]Uyak V, Toroz I, Meric S. Monitoring and modeling of trihalomethanes (THMs) for a water treatment plant in Istanbul [J]. Desalination,2005,176(1-3):91-101.
    [128]Tyrovola, Diamadopoulos. Bromate formation during zonation of groundwater in coastal areas in Greece[J]. Desalination,2005,176(3):201-209.
    [129]Reckow D A, Singer P C.The removal of organic halide precursors by preozonation and alum coagulation[J]. Journal American Water Works Association,1984,76(4):151-157.
    [130]Reiff F M. Balancing the chemical and microbial risks in the disinfection of drinking water supplies in developing countries.. Assessing and managing health risks from drinking water contamination: approaches and applications[M]. IAHS,1995.
    [131]Richardson S D. New disinfection by-product issues:emerging DBPs and alternative routes of exposure[J]. Global Nest Journal,2005,7(1):43-60.
    [132]Richardson S D, Simmons J E, Rice G. Disinfection byproducts:the next generation[J]. Environmental Science and Technology,2002,36(9):198-205.
    [133]Richardson S D, Thruston Jr A D, Krasner S W, et al. Integrated disinfection by-products mixtures research:comprehensive characterization of water concentrates prepared from chlorinated and ozonated/postchlorinated drinking water[J]. Journal of Toxicology and Environmental Health-Part A-Current Issues,2008,71 (17):1165-1186.
    [134]Rodrigues M S M, Silva J C G, Antunes M C G. Factorial analysis of the trihalomethane formation in water disinfection using chlorine[J]. Analytica Chimica Acta,2007,595(2):266-274.
    [135]Rodriguez M J, Serodes J B. Spatial and temporal evolution of trihalomethanes in three water distribution systems[J]. Water Research,2001,35(6):1572-1586.
    [136]Rodriguez M J, Serodes J, MorinM. Estimation of water utility compliance with trihalomethane regulations using modeling approach[J]. Journal of Water Services Research and Technology-AQUA, 2000,49 (2):57-73.
    [137]Rook J J. Formation of haloforms during chlorination of natural waters[J]. Water Treat Exam,1974, 23 (8):234-243.
    [138]Lyn T L, Taylor J S. Modeling compliance of chlorine residual and disinfection by-products. In: Proceedings,1993 Water Quality Tecnology Conference. Miami, FL:AWWA,1993,513-524.
    [139]LiCong, Y. Jeffrey Yang, Yu Jieze, et al. Second-order chlorine decay and trihalomethanes formation in a pilot-scale water distribution systems. Water Environment Research,2012,84 (8):656-661.
    [140]Tamminen S, Ramos H, Covas D. Water supply system performance for different pipe materials part I: water quality analysis[J]. Water Resources management,2008,22(5):1579-1607.
    [141]Rossman L A. EPANET_MSX users manual[M]. United States Environmental Protection Agency, 2002.
    [142]King W D, Marrett L D. Case-control study of bladder cancer and chlorination by-products in treated water (Ontario, Canada) [J]. Cancer Causes and Control,1996,7(9):596-604.
    [143]Subramaniam P, Try M E, J G Uber. Set covering models for location booster chlorination stations in water distribution systems [J]. Water Resources,2000
    [144]李莉.基于水质安全的城市输配水系统二次加氯优化与分析[D].浙江大学,硕士论文,2008.
    [145]Chowdhury S, Champagne P, Husain T. Fuzzy approach for selection of drinking water disinfectants [J]. Journal of Water Supply:Research and Technology (Aqua),2007,56(2),75-93.
    [146]马力辉,刘遂庆,信昆仑.城市供水管网二次加氯研究进展[J].环境污染与防治,2006,693-697.
    [147]Srinivas N, Deb K. Multi-objective function optimization using nondominated sorting genetic algorithms[J]. Evolutionary Computation,1995,2(3):221-248.
    [148]Deb K, Agrawal R M, Pratap A, et al. A fast elitist nondominated sorting genetic algorithm for multi-objective optimization:NSGA-II[C]. Proceeding of the Paralled Problem Solving from Nature Conference,2000:849-858.
    [149]Do M T, Birkett N J, Johnson K C, et al. Chlorination disinfection by-products and pancreatic cancer risk[J]. Environmental Health Perspectives,2005,113 (4):418-424.
    [150]刘润生.纳米零价铁对臭氧氧化副产物澳酸盐的去除研究[D].杭州:浙江大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700