有机/无机纳米导电复合材料的制备、表征和应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机/无机纳米复合材料已经引起了学术和技术方面的广泛关注和研究,其中聚合物和无机纳米粒子复合材料是当前十分活跃的研究领域,已经涉及到化学、物理学、生物学及材料学等领域。聚合物和无机纳米粒子复合材料因具有良好的光化学性质、导电性、电催化性和生物相容性等优点而得到广泛的应用。化学修饰电极是当前电化学和电分析化学十分活跃的研究领域,聚合物和无机纳米粒子复合材料作为电极材料已经广泛地用于制作生物传感器、电致变色器件等,它在生物电分析、生物传感器研制等方面有重要的理论研究意义和广阔的应用前景。
     本文围绕聚合物和无机纳米粒子复合材料的制备、表征、性质、及其在光催化、电催化和传感器领域的应用进行了一些研究工作。
     一、核壳结构聚多巴胺/银纳米导电复合材料的制备、性质和应用以多巴胺为还原剂,硝酸银为氧化剂,利用氧化还原反应,生成银纳米粒子,同时多巴胺发生聚合反应,在银纳米粒子上原位形成一层聚多巴胺膜,最终形成了核壳结构的聚多巴胺/银纳米复合材料。该材料具有好的生物相容性,分散性,导电性和催化性,对中性红氧化有很好的光催化和电催化能力。
     利用扫描电子显微镜,透射电子显微镜考察了纳米复合材料的形貌,从电镜图上可以观察到纳米复合物粒子的粒径大小以及材料的核壳结构,聚多巴胺膜包裹在银纳米粒子的表面,形成聚多巴胺/银纳米复合材料。此外,利用紫外可见光谱考察该材料,在425 nm处出现了银的特征吸收峰,表明了银纳米粒子的产生。形成的聚多巴胺膜对银纳米粒子有保护作用,可以防止银纳米粒子氧化失去活性。
     另外,研究了该材料对中性红的光催化氧化及其修饰电极对中性红的电催化氧化。结果表明复合材料显著地加大和加快了中性红的降解,同时,该材料修饰电极对中性红有较灵敏的电化学响应,在优化的实验条件下,用差分脉冲伏安法测定其还原峰电流与中性红的浓度在1.0×10~(-6)~1.1×10~(-5) mol/L的范围内呈良好的线性关系,检测限为2.1×10~(-7) mol/L。
     二、核壳结构聚苯胺纳米导电复合材料的制备、表征、应用
     以碳酸钙为核,利用静电相互作用,采用层层组装的方法将壳聚糖,聚苯乙烯磺酸钠依次包裹在碳酸钙核上。包裹的聚电解质对碳酸钙核具有保护作用,它防止了核的形貌发生变化而失去作用。苯胺单体以碳酸钙/聚电解质微球为核,在K2S2O8的氧化作用下发生聚合,形成具有核壳结构的碳酸钙/聚电解质/聚苯胺微球。
     1.利用扫描电子显微镜考察了材料的形貌,可以看到聚电解质对碳酸钙核具有保护作用,并且可以观察到聚苯胺在核上发生了聚合。从该材料的紫外可见光谱、红外光谱
     和循环伏安图上也可以观察到聚苯胺的峰,表明了聚苯胺层的形成。2.将该材料滴涂在玻碳电极上制备出的修饰电极,对多巴胺有较好的电化学响应。测定同浓度的多巴胺,复合材料修饰电极的峰电流约是单纯碳酸钙修饰电极的2倍,表明了该电极材料有较好的电催化能力。
     三、聚苯胺膜/金纳米导电复合材料制备及其对多巴胺的电催化先通过原位电聚合苯胺单体在玻碳电极上修饰一层聚苯胺膜,再直接电还原吸附在聚苯胺膜上的氯金酸根离子(AuCl4-),制备了聚苯胺/金纳米粒子复合物。利用聚苯胺/金纳米粒子复合物制备的传感器对多巴胺的氧化显示出了很好的催化能力,催化电流和多巴胺溶液在3.0×10~(-6) mol/L~1.15×10~(-4) mol/L浓度范围内呈线性关系,检测限是8.0×10~(-7) mol/L (S/N = 3)
Organic/inorganic nanocomposites have induced extensive attention and research in the fields of science and nanotechnology. The study of polymer and inorganic nanoparticles composite materials is an active field,involves chemistry, physics, biology, material science and so on. Polymer and inorganic nanoparticles composite materials are widely utilized duing to its good optical property, conductivity, electrocatalysis and biocompatible. The research of chemically modified electrode is an active field of electrochemistry and electroanalytical chemistry presently. Polymer and inorganic nanoparticles composite materials act as electrode materials have been applied to prepare biosensors, electrochromic device and so on, nanocomposite materials modified electrode has an important theorial significance and extensive application prospect in biological electroanalysis and preparation of biosensor.
     In this thesis, we developed our work focusing on preparation, characterization, properties of polymer and inorganic nanoparticles composite materials and its application in photocatalysis, electrocatalysis and sensor field。
     1. Polydopamine/Silver Conducting Nanoparticle Composite with Core-Shell Structure: Fabrication, Characterization and Application in Electrocatalysis, Photocatalysis toward Neutral Red
     Dopamine hydrochloride (DA) (dissolved in 1.0×10-2 mol/L carbonate/bicarbonate buffer with pH 8.5) as a reductant and the source of polymer, silver nitrate ( AgNO3 ) as an oxidant and the source of silver nanoparticles (AgNPs), are mixed to yield polydopamine/silver nanoparticle composite (PDA/AgNPs) with core-shell structure. Composite material has good biocompatibility, highly uniform dispersion of the nanoparticles with a narrow size distribution, conductivity and high good catalysis and optics. It has formidable electro catalysis and photochemical catalysis to oxidize neutral red (NR).
     The morphology of the resulting products were characterized by scanning electron microscopy (SEM)and transmission electron microscope(TEM), we can see the particle size and core-shell construction of the PDA/AgNPs composites, the PDA film wrap the Ag nanopaticles. Moreover, optical properties were characterized using UV-Vis spectra, the characteristic peak of AgNPs was observed at 425 nm on the spectra, indicated that AgNPs was produceed. PDA film can protect AgNPs, avoiding of oxidation.
     photocatalysis and electrocatalysis of composite material to oxidize NR are investigated in this thesis. The resuilt demonstrated that the PDA/AgNPs expedited the degradation of NR, and the PDA/AgNPs possessed the cataytic ability to degrade the NR. Minewhile, PDA/AgNPs modified electrodes possess sensitive response to neutral red, under optimum conditions and using differential pulse mode, the reduction peak current was linearly related to the concentration of NR over the range of 1.0×10~(-6)~1.1×10~(-5) mol/L with a correlation coefficient of 0.998, the detection limit was 2.1×10~(-7) mol/L (S/N=3). 2. Polyaniline Conducting Composite Material with Core-Shell Structure: Fabrication, Characterization and Application
     calcium carbonate (CaCO3) microparticles act as template, adopt the technique of layer-by-layer assembly utilizing electrostatic interaction to orderly coating polyelectrolyte chitosan and sodium poly(styrene sulfonate). polyelectrolyte layers (PEs) can stabilize CaCO3 microparticles. Using CaCO3 microparticles stabilized with PEs as parent core, polyaniline (PAN) was in-situ formed around the microparticles, and formed PAN/(PEs)6/CaCO3 microparticles with core-shell structure.
     The morphology of the resulting products were characterized by scanning electron microscopy ( SEM ), result indicated PEs can stabilize CaCO3 microparticles, and PAN was in-situ formed around microparticles. UV-Vis spectroscopy displayed characteristic peak of PAN, demonstrated PAN layer formed.
     PAN/(PEs)6/CaCO3 microparticles modified electrodes possess sensitive response to DA, peak current of modified electrodes to oxidize DA is about two times than pure CaCO3 microparticles modified electrodes, demonstrated composite materials possess good conductivity.
     3. Polyaniline/Au Conducting Nanocomposite:Fabrication and Electrocatalysis to Dopamine
     polyaniline/Au nanoparticles nanocomposite (PANI/AuNPs) was prepared via direct electroreduction of AuCl4- ions adsorbed onto glassy carbon electrode (GCE), which was previously coated with PANI via in-situ electropolymerization. The PANI/AuNPs based biosensor displayed good catalysis ability for the oxidation of dopamine (DA), and the calatytic current exhibited linear response to DA in the range of 3.0×10~(-6) mol/L~1.1×10~(-4) mol/L, with a low detection limit of 8.0×10~(-7) mol/L (S/N = 3).
引文
[1]刘红君,楼均辉,尤美琴.有机无机复合膜在电致发光器件中的应用[J].现代显示,2008, 94: 27-29.
    [2]万超瑛,张隐西,张勇.刚性无机粒子增韧聚氯乙烯/有机蒙脱土复合材料的结构与性能研究[J].加工与应用, 2006, 7: 20-24.
    [3]黄小梅,邓祥.基于氧化锌-壳聚糖-纳米金复合杂化膜修饰的过氧化氢生物传感器的研究[J].重庆文理学院学报,2009, 28(5):35-37.
    [4]赵彦春,兰黄鲜,田建袅等.多孔聚乙酰苯胺纳米纤维载铂催化剂对甲醇的电催化氧化[J].物理化学学报,2009, 25(10): 2050-2054.
    [5]王春艳,于红,李尚宇等.稀土乙酸8-羟基喹啉三元配合物/羟基磷灰石的纳米有机/无机主客体组装复合抗菌生物材料[J].复合材料学报,2008, 25(6): 107-110.
    [6] M. M. Ayad. In-situ polypyrrole film formation using ferric nitrate as oxidizing agent[J]. J. Mater. Sci. Lett., 2003, 22(22): 1577-1579.
    [7] B. Sari, M. Talu, F. Yildirim. Electrochemical Polymerization of Aniline at Low Supporting-Electrolyte Concentrations and Characterization of Obtained Films[J]. Russian Journal of Electrochemistry, 2002, 38(7): 707-713 .
    [8] L. Zhang, J. Y. Lian. The electrochemical polymerization of o-phenylenediamine on L-tyrosine functionalized glassy carbon electrode and its application[J]. J. Solid State Electrochem., 2008, 12: 757–763.
    [9] S. Ko?ina, S. Balúch, J. Annus, etc.. Study on the electrical conductivity and morphology of porous polypyrrole layers prepared electrochemically in the presence of pyridinium chlorochromate[J]. J. Mater. Sci., 1994, 29(13): 3403-3407.
    [10] J. X. Zhang, G. Q. Shi, C. Liu. Electrochemical fabrication of polythiophene film coated metallic nanowire arrays[J]. J. Mater. Sci., 2003, 38(11): 2423-2427.
    [11] K. Tanaka, K.Yoshizawa. Plasma Polymerization of Thiophene an 3-methylthiophene[J]. Synth. Met., 1990, 38: 107-106.
    [12] I.Murase, T. Ohnishi. Highly Conducting Poly(p-phenylenevinylene)[J]. Po1ym.Commun., 1984, 25: 327.
    [13] J. H. Edwards, W. J. Feast. A New Synthesis of Poly(acetylene)[J]. Polymer., 1980, 21: 198.
    [14] D. R. Gagnon, J. D. Capistnan, Conductivity Anisotropy in Oriented Poly(p-phenylenevinylene)[J]. Polym. Bu11., 1984, 12: 93.
    [16]曹丰,李东旭,管自生.导电高分子聚苯胺研究进展[J].材料导报,2007, 21(8): 48-45.
    [17]陈勇,朱琼,万国江等.导电聚苯胺高分子复合材料的研究进展[J].弹性体,2006, 16(5): 68-74.
    [18]傅和青,张心亚,黄洪等.乳液聚合法制备聚苯胺及其导电性能[J].化工学报,2005, 56(9): 1790-1793.
    [19]张柏宇,高治,苏小明.聚苯胺的掺杂及其导电性能研究[J].石化技术与应用,2005, 23(1): 11-14.
    [20]任斌,余成.导电聚苯胺的合成及其性能研究[J].光谱实验室,2005, 22(1): 148-151.
    [21]钟新仙,王芳平,李庆余等.不同氧化剂制备的聚苯胺电化学性能研究[J].电源技术,2009, 9: 781-783.
    [22] L. M. Gan, C. H. Chew, Hardy S. O. Chan, et al. Preparation of Polyaniline particles in an inverse microemulsion[J]. Polymer Bulletin, 1993, 31(3): 347-350.
    [23] Bianfang Shi, Jiawen Ren, Anmiao Wang, et al. Synthesis and characterization of wormhole-like mesostructured polyaniline[J]. J. Mater. Sci., 2009, 44(24): 6498-6504.
    [24] M. Okubo, S. Fujii, H. Minami. Production of electrically conductive, core/shell polystyrene/polyaniline composite particles by chemical oxidative seeded dispersion polymerization[J]. Colloid Polym. Sci. 2001, 279(2): 139-145.
    [25] Tuspon Thanpitcha, Anuvat Sirivat, Alexander M. Jamieson, et al. Polyaniline nanoparticles with controlled sizes using a cross-linked carboxymethyl chitin template[J]. J. Nanopart Res. 2009, 11(5): 1167-1177.
    [26] L. Ma, K. L. huang, C. Chen, et al. Effect of magnetic field on property and structure of polyaniline doped with multiple sulfonic acids[J]. Journal of Central South University of Technology, 2008, 15(4): 479-483.
    [27]王宏智,李香,胡伟明等.电化学合成聚苯胺的研究概况[J].电镀与精饰,2009, 31(7): 12-15.
    [28] Ling-Bin Kong, Jing Zhang, Jing-Jing. An MWNTs/PANI composite materials prepared by in-situ chemical oxidative polymerization for supercapacitor electrode[J]. J. Mater. Sci. 2008, 43(10): 3664-3669.
    [29] Somik Banerjee, Smritimala Sarmah, Ashok Kumar. Photoluminescence studies in HCl-doped polyaniline nanofibers[J]. J. Opt, 2009, 38 (2) : 124–130.
    [30] Z. Zhou, D. L. He. X. L. Li, et al. Preparation and properties of polyaniline codoped with ionic liquid and dodecyl benzene sulfonic acid or hydrochloric acid[J]. Polymer Science Series B, 2008, 50(7-8): 209-214.
    [31] DIAZAF, LOGAAJA. Electroactive polyaniline film [J]. Electroanal. Chem., 1980, 111( 1): 111.
    [32] B. Feng, Y. Z. Su, S. J. Hua, et al. Electropolymerization of polyaniline/montmorillonite nanocomposite[J]. J. Mater. Sci. Lett., 2001, 20(4): 293-294.
    [33] Madhulika Sharma, Diksha Kaushik, Ragini Raj Singh, et al. Study of electropolymerised polyaniline films using cyclicvoltammetry, atomic force microscopy and optical spectroscopy[J]. J. Mater. Sci: Mate.r Electron. 2006, 17(7): 537-541.
    [34] Jun Yano, Takeaki Kohno, Akira Kitani. Electrochemical preparation of polyaniline microspheres incorporated with DNA[J]. J. Appl. Electrochem. 2009, 39(5): 747-750.
    [35] Carla Dalmolin, Sonia R. Biaggio, Romeu C. et al. Deposition of polyaniline on RVC electrodes: effect of substrate thickness[J]. J. Solid State Electrochem. 2007, 11(5): 609-618.
    [36] A. V. Streltsow, G. P. Shumakovich, O. V. Morozova, et al. Micellar laccase-catalyzed synthesis of electroconductive polyaniline[J]. Applied Biochemistry and Microbiology, 2008, 44(3): 264-270.
    [37]王路.电磁屏蔽导电复合材料[J].材料开发与应用,2009, 24(3): 72-76.
    [38]何志刚.导电聚苯胺薄膜的电磁学性能及其屏蔽特性[J].湖州师范学院学报,2009, 31(1): 50-52.
    [39]徐建华,杨亚杰,蒋亚东.导电聚合物有序超薄膜的合成及其作为有机电致发光器件空穴注入层[J].物理化学学报,2009, 25(1): 19-24.
    [40]吴宗汉,朱方铭,罗曼.聚苯胺防腐涂料的制备与应用[J].现代涂料与涂装,2008, 11(12): 34-37.
    [41] P. Calvert. Rough guide to nanoworld[J]. Nature, 1996, 383(26): 300-301.
    [42] S. Iijima. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(7): 56-58.
    [43] Y. Xia, P. Yang, Y. Sun, et al. One-dimensional nanostruc-tures:synthesis, characterization, and applications[J]. Adv. Mater., 2003, 15(15): 353-389.
    [44]钱伯章.纳米技术在涂料腐蚀抑制剂中将起重要作用[J].石油化工腐蚀与防护,2009, 26(4): 42.
    [45] Gérard Tourillon, Laurent Dreesen, Cédric Volcke, et al. Close-packed array of gold nanoparticles and sum frequency generation spectroscopy in total internal reflection: a platform for studying biomolecules and biosensors[J]. J. Mater. Sci., 2009, 44(24): 6805-6810.
    [46] H. Yang, H. P. Li, X. P. Jiang. Detection of foodborne pathogens using bioconjugated nanomaterials[J]. Microfluid Nanofluid, 2008, 5(5): 571-583.
    [47] Ilaria Palchetti, Marco Mascini. Electroanalytical biosensors and their potential for food pathogen and toxin detection[J]. Anal. Bioanal. Chem., 2008, 391(2): 455-471
    [48] S. N. Shtykov, T. Yu. Rusanova. Nanomaterials and nanotechnologies in chemical and biochemical sensors: Capabilities and applications[J]. Russ. J. Gen. Chem., 2008, 78(12): 2521-2531.
    [49]柳琴.纳米TiO2材料在废水处理中的应用及前景[J].现代经济信息,2009, 17: 289-291.
    [50]梁慧刚,黄健,刘清.纳米技术在食品中的应用及安全性问题[J].新材料产业,2009, 8: 50-53.
    [51]金华芳,袁琳,邱乐等.纳米材料在医学领域的应用及安全性研究进展[J].生物骨科材料与临床研究,2009, 6(5): 33-35.
    [52]高树梅,王晓栋,秦良等.改进液相还原法制备纳米零价铁颗粒[J].南京大学学报,2007, 43(4): 358-364.
    [53]罗杨合,蒋治良,刘凤志.铂纳米微粒的微波高压液相合成及光谱特性研究[J].贵金属,2003, 24(2): 19-23.
    [54] Dan Donescu, Sever Serban, Cristian Petcu, et al. Polymer–silica hybrids obtained by microemulsion Polymerization[J]. Colloid Polym. Sci., 2007, 285(13): 1455-1462.
    [55] Erjun Tang, Shaoying Dong. Preparation of styrene polymer/ZnO nanocomposite latex via miniemulsion polymerization and its antibacterial property[J]. Colloid Polym. Sci., 2009, 287(9): 1025-1032.
    [56] S. M. Zhu, D. Zhang, J. J. Gu. Biotemplate fabrication of SnO2 nanotubular materials by a sonochemical method for gas sensors[J]. J. Nanopart. Res., 2009.
    [57] L. X. Jiang, Z. L. Gui, One-step synthesis of oriented polyaniline nanorods through electrochemical deposition[J]. Polymer Bulletin, 2006, 56(6): 529-537.
    [58] Adolphe Foyet, Anton Hauser, Wieland Sch?fer. Double template electrochemical deposition and characterization of NiCo and NiCu alloys nanoparticles and nanofilms[J]. J. Solid State Electrochem., 2008, 12(1): 47-55.
    [59]韩勇.纳米金属膜的量子尺寸效应[J].现代物理知识,2009, 21(4): 3-6.
    [60]王兵,夏连胜,张篁等.金刚石薄膜的强流脉冲发射特性[J].西南科技大学学报,2009, 24(3): 5-10.
    [61]张志强,马琦,张宝柱等.有机-无机杂化材料的制备技术和应用前景[J].应用化学,2009, 34(7): 389-393.
    [62] H. K. Schmidt, E. Geiter, M. Mennig, et al. The Sol-Gel Process for Nano-Technologies: New Nanocomposites with Interesting Optical and Mechanical Properties[J]. Journal of Sol-Gel Science and Technology, 1998, 13(1-3): 397-404.
    [63] A. D. Pomogailo. Polymer Sol-Gel Synthesis of Hybrid Nanocomposites[J]. Colloid Journal, 2005, 67(6): 658-677.
    [64] Vinod Kakde, Vijay Mannari. Advanced chrome-free organic-inorganic hybrid pretreatments for aerospace aluminum alloy 2024-T3-application of novel bis-ureasil sol-gel precursors[J]. J. Coat. Technol. Res., 2009, 6(2): 201-211.
    [65] Y. D. Shen, Y. N. Zhao, X. R. Li. Polyacrylate/silica hybrids prepared by emulsifier-free emulsion polymerization and the sol-gel process[J], Polym. Bull., 2009, 63(5): 687-698.
    [66] L. J. Dong, C. X. Xiong, J. Chen, et al. Dielectric behavior of BaTiO3/PVDF nanocomposites In-situ synthesized by the sol-gel method[J], Journal of Wuhan University of Technology-Materials Science Edition, 2004, 19(1): 9-11.
    [67] J. Y. Yu, L. Q. Wei, X. K. Cao. Preparation and properties of phenolic resin/montmorillonite intercalation nanocomposites[J]. Journal of Wuhan University of Technology--Materials Science Edition, 2003, 18(4): 64-67.
    [68] T. M. Wang, W. M. Liu, J. Tian. Preparation and characterization of gold/poly(vinyl alcohol)/MoS2 intercalation nanocomposite[J]. Journal of Materials Science: Materials in Electronics 2004, 15(7): 435-438.
    [69] J. J. Ma, X. B. Zhang, C. Yan, et al. Synthesis and characterization of a polyaniline/HTiNbO5 lamellar hybrid nanocomposite[J]. J. Mater. Sci. 2008, 43(16): 5534-5539.
    [70] L. Chen, C. F. Wang, Q. Li, et al. Preparation of poly (methyl methacrylate)/nanometer calcium carbonate composite by in-situ emulsion polymerization[J]. Journal of Zhejiang University-Science A, 2004, 5(6): 709-713.
    [71] X. M. Feng, C. J. Mao, G. Yang, et al. Polyaniline/Au Composite Hollow Spheres: Synthesis,Characterization, and Application to the Detection of Dopamine[J]. Langmur, 2006, 22, 4384-4389.
    [72] Ali Reza Mahdavian, Yaghoub Sarrafi, Mehdi Shabankareh. Nanocomposite particles with core–shell morphologyIII: preparation and characterization of nano Al2O3-poly(styrene-methyl methacrylate) particles via miniemulsion polymerization[J]. Polym. Bull. ,2009, 63(3): 329-340.
    [73] J. He, X. Duan, D.G. EVANS. In Situ Formation of a Novel Nanocomposite Structure Based on MCM-41 and Polyethylene[J]. Journal of Porous Materials, 2002, 9(1): 49-56.
    [74]陈利,瞿美臻,王贵欣.溶液共混法制备碳纳米管/双酚A型聚碳酸酯复合物的研究[J].功能材料,2005, 1: 139-141.
    [75]柯昌美,汤宁,胡永等.原位生成CaCO3/聚丙烯酸酯纳米复合材料及其结构与性能的表征[J].武汉科技大学学报,2009, 32(1): 64-67.
    [76]王智宇,林旭添,陈海锋等.原位生成法制备纳TiO2改性聚丙烯酸酯涂料[J].涂料工业,2006, 36(8): 28-31.
    [77]陶菡,杨柳,高晓华等.多孔电聚合膜和纳米金修饰电极阳极溶出伏安法测定痕量铜[J].云南化工,2009, 36(4): 41-44.
    [78] V. V. Abalyaeva, N. N. Vershinin, Yu. M. Shul’ga, et al. The composites of polyaniline with multiwall carbon nanotubes: Preparation, electrochemical properties, and conductivity[J]. Russian Journal of Electrochemistry, 2009, 45(11): 1266-1275.
    [79] S. N. Eliseeva, V. V. Malev, V. V. Kondrat, et al. Electrochemical properties of composite films based on poly-3,4-ethylenedioxythiophene with inclusions of metallic palladium[J]. Russian Journal of Electrochemistry, 2009, 45(9): 1045-1051.
    [80] Z. P. Qu, S. T. Zhou, W. C. Wu, et al. CO adsorption and correlation between CO surface coverage and activity/selectivity of preferential CO oxidation over supported Ag catalyst: an in situ FTIR study[J]. Catalysis Letters, 2005, 101(1-2): 21-26.
    [81] Q. Wang, Z. Y. Jiang, Y. B. Wang, et al. Photocatalytic properties of porous C-doped TiO2 and Ag/C-doped TiO2 nanomaterials by eggshell membrane templating[J]. J. Nanopart Res., 2009, 11(2): 375-384.
    [82] J. H. Li, S. F. Kang, L. X. Fu, et al. Selective catalytic reduction of NO x from exhaust of lean-burn engine over Ag-Al2O3/cordierite catalyst[J]. Frontiers of Environmental Science and Engineering in China, 2007, 1(2): 143-146.
    [83] N. Satyanarayana, A. Karthikeyan, M. Venkateswarlu, et al. A.c. conductivity studies on the silver molybdo-arsenate glassy system [J]. Journal of Materials Science, 1996, 31(20): 5471-5477.
    [84] A. Murugadoss, Manoranjan Kar, Renu Pasricha, et al. Silver Fused Conducting Fiber Formation of Au–Ag Core-Shell Nanoparticles Mediated by Ascorbic Acid[J]. Plasmonics, 2009, 4(2): 161-170.
    [85] Athiyanathil Sujith, Tamitake Itoh, Hiroko Abe, et al. Imaging the cell wall of living single yeast cells using surface-enhanced Raman spectroscopy[J]. Anal. Bioanal. Chem., 2009, 394 (7):1803-1809.
    [86] B. N. Khlebtsov, V. A. Khanadeev, N. G. Khlebtsov. Attenuation, scattering, and depolarization of light by gold nanorods with silver shells[J]. Optics and Spectroscopy, 2010, 108(1): 59-69.
    [87] C. Greulich, S. Kittler, M. Epple, et al. Studies on the biocompatibility and the interaction of silver nanoparticles with human mesenchymal stem cells (hMSCs)[J]. Langenbecks Arch Surg, 2009, 394(3): 495-502.
    [88] Maria C. Cortizo, Monica Fernandez L.de Mele, Ana M. Cortizo. Metallic dental material biocompatibility in osteoblastlike cells Conetation with metal ion release[J]. Biological Trace Element Research, 2004, 100(2): 151-168.
    [89] Bogus?awa Leska, Rados?aw Pankiewicz, B?azej Gierczyk, et al. Structure and electrochemical reactivity of new sulphur–silicon podands adsorbed on silver or gold surfaces[J]. J. Mater. Sci., 2008, 43(10): 3459-3465.
    [90] Jiu-Ju Feng, Ulrich Gernert, Murat Sezer, et al. Novel Au?Ag Hybrid Device for Electrochemical SE(R)R Spectroscopy in a Wide Potential and Spectral Range[J]. Nano Lett., 2009, 9 (1): 298-303.
    [91] X. G. Hou, X. L. Wu, A. D. Liu, Studies on photocatalytic activity of Ag/TiO2 films[J]. Frontiers of Chemistry in China, 2006, 1(4): 402-407.
    [92] MüNEVVER S?KMEN, DAVID W. ALLEN, FATIH AKKAS, et al. Photo-Degradation of Some Dyes using Ag-Loaded Titaniumdioxide[J]. Water, Air, & Soil Pollution, 2001, 132(1-2): 153-163.
    [93] Q. Wang, Z. Y. Jiang, Y. B. Wang, et al. Photocatalytic properties of porous C-doped TiO2 and Ag/C-doped TiO2 nanomaterials by eggshell membrane templating[J]. J. Nanopart Res., 2009, 11(2): 375-384.
    [94] F. Peng, H. C. Zhu, H. J. Wang, et al. Preparation of Ag-sensitized ZnO and its photocatalytic performance under simulated solar light[J]. Korean J. Chem. Eng., 2007, 24(6): 1022-1026.
    [95] Madhavi V. Fuke, Anu Vijayan, Prajakta Kanitkar, et al. Ag-polyaniline nanocomposite cladded planar optical waveguide based humidity sensor[J]. J. Mater Sci: Mater Electron., 2009, 20(8): 695-703.
    [96] Dalibor Hodko, Maria Gamboa-Aldeco, Oliver J. Murphy. Photopolymerized silver-containing conducting polymer films. Part II. Physico-chemical characterization and mechanism of photopolymerization process[J]. Journal of Solid State Electrochemistry, 2009, 13(7): 1077-1089.
    [97] Syuji Fujii, Atsushi Aichi, Kensuke Akamatsu, et al. One-step synthesis of polypyrrole-coated silver nanocomposite particles and their application as a coloured particulate emulsifier[J]. J. Mater. Chem., 2007, 17: 3777-3779.
    [98] Z. Zhou, D. L. He , Y. N. Guo, et al. Fabrication of polyaniline–silver nanocomposites by chronopotentiometry in different ionic liquid microemulsion systems[J]. Thin Solid Films, 2009, 517(24): 6767-6771.
    [99] E. E. Sam, N. Verbeke. Free radical scavenging properties of apomorphine enantiomers and dopamine: Possible implication in their mechanism of action in parkinsonism[J]. Journal of Neural Transmission: Parkinson's Disease and Dementia Section, 1995, 10(2-3): 115-127.
    [100] Todd A. Morris, Alexander W. Peterson, Michael J. Tarlov. Selective Binding of RNase B Glycoforms by Polydopamine-Immobilized Concanavalin A[J]. Anal. Chem. 2009, 81(13): 5413-5420.
    [101] X. B. Yin, D. Y. Liu. Polydopamine-based permanent coating capillary electrochromatography for auxin determination[J]. Journal of Chromatography A, 2008, 1212 (1-2): 130-136.
    [102] K. Liu, W. Z. Wei, J. X. Zeng, et al. Application of a novel electrosynthesized polydopamine-imprinted film to the capacitive sensing of nicotine[J]. Anal. Bioanal. Chem., 2006, 385(4): 724-729.
    [103] Y. C. Fu, P. H. Li, Q. J. Xie, et al. One-Pot Preparation of Polymer-Enzyme-Metallic Nanoparticle Composite Films for High-Performance Biosensing of Glucose and Galactose[J]. Adv. Funct. Mater., 2009, 19(1): 1-8.
    [104] Bo Yu, Dao Ai Wang, Qian Ye, et al. Robust polydopamine nano/microcapsules and their loading and release behaviorw[J]. Chem. Commun., 2009, 44: 6789-6791.
    [105] Ronan Baron, Maya Zayats, Itamar Willner. Dopamine-, L-DOPA-, Adrenaline-, and Noradrenaline-Induced Growth of Au Nanoparticles: Assays for the Detection of Neurotransmitters and of Tyrosinase Activity[J]. Anal. Chem., 2005, 77(6), 1566-1571.
    [106]尹玉玲,肖羽堂,朱莹佳.电Fenton法处理难降解废水的研究进展[J].水处理技术,2009, 35(3): 5-10.
    [107]董文艺,杜红.过氧化氢氧化法的原理及对有机物的去除[J].中国农村水利水电,2004, 2: 47-48.
    [108] Y. Xian, H. Wang, Y. Zhou, et al. Preparation of L-Cys-Au colloid self-assembled nanoarray electrode based on the microporous aluminium anodic oxide film and its application to the measurement of dopamine[J]. Electrochem. Commun., 2004, 6(12): 1270-1275.
    [109] D. P. Tang, R. Yuan, Y. Q. Chai, et al. Study on electrochemical behavior of a diphtheria immunosensor based on silica/silver/gold nanoparticles and polyvinyl butyral as matrices[J]. Electrochem Commun., 2005, 7(2): 177-182.
    [110] R. J. Pei, Z. L. Cheng, E. K. Wang, et al. Amplification of antigen-antibody interactions based on biotin labeled protein-streptavidin network complex using impedance spectroscopy[J]. Biosens. Bioelectron., 2001, 16(6): 355-361.
    [111] X. Q. Zhang, Q. Guo, D. X. Cui. Recent Advances in Nanotechnology Applied to Biosensors[J]. Sensors, 2009, 9(2) : 1033-1053.
    [112] Z. Wang, J. Ruan, D. X. Cui. Advances and Prospect of Nanotechnology in Stem Cells[J]. Nanoscale Res. Lett., 2009, 4 (7): 593-605.
    [113] D. X. Cui. Advances and prospects on biomolecules functionalized carbon nanotubes[J]. J. Nanosci. Nanotechnol., 2007, 7(4-5): 1298-1314.
    [114] B. Adhikari, S. Majumdar. Polymers in sensor applications [J]. Prog. Polym. Sci., 2004, 29(7) : 699-766.
    [115] A. Dawn, A. K. Nandi. Formation of silver nanoparticles in deoxyribonucleic acid-poly(o-methoxyaniline) hybrid: A novel nano-biocomposite[J]. J. Phys. Chem., 2006, 110(37) : 18291-18298.
    [116] E. Granot, E. Katz, B. Basnar, et al. Enhanced Bioelectrocatalysis Using Single-Walled Carbon Nanotubes (SWCNTs)/Polyaniline Hybrid Systems in Thin-Film and Microrod Structures Associated with Electrodes[J]. Chem. Mater., 2005, 17: 4600-4609.
    [117] N. K. Guimard, N. Gomez, C. E. Schmidt. Conducting polymers in biomedical engineering[J]. Prog. Polym. Sci., 2007, 32(8-9) : 876-921.
    [118] A. A. Argun, P. -H. Aubert, B. C. Thompson, et al. Multicolored Electrochromism in Polymers:Structures and Devices[J]. Chem. Mater. 2004, 16: 4401-4412.
    [119] D. V. Volodkin, N. I. Larionova, G. B. Sukhorukov. Biomacromolecules Protein encapsulation via porous CaCO3 microparticles templating[J]. Biomacromolecules, 2004, 5(5): 1962-1972.
    [120] D. V. Volodkin, A.I. Petrov, M. Prevot. Matrix polyelectrolyte microcapsules: new system for macromolecule encapsulation[J]. Langmuir, 2004, 20(8): 3398-3406.
    [121] A. A. Weiner, M.C. Moore, A. H. Walker, et al. Modulation of protein release from photocrosslinked networks by gelatin microparticles[J]. Int. J. Pharm., 2008, 360(1-2): 107-114.
    [122] A. E. Voinescu, D. Touraud, A. Lecker, et al. Mineralization of CaCO3 in the presence of egg white lysozyme[J]. Langmuir, 2007, 23(24): 12269-12274.
    [123] F. C. Meldrum. Calcium carbonate in biomineralization and biomimetic chemistry [J]. Int. Mater. Rev., 2003, 48 (3): 187-224.
    [124] W. Y. Cai, Q. Xu, X. N. Zhao, et al. Porous Gold-Nanoparticle-CaCO3 Hybrid Material: Preparation, Characterization, and Application for Horseradish Peroxidase Assembly and Direct Electrochemistry[J]. Chem. Mater., 2006, 18(2): 279-284.
    [125] C. Wang, C. He, Z. Tong, X. Liu, et al. Combination of adsorption by porous CaCO3 microparticles and encapsulation by polyelectrolyte multilayer films for sustained drug delivery[J]. Int. J. Pharm., 2006, 308(1-2): 160-167.
    [126] M. T. Zin, H. Ma, M. Sarikaya, et al. Assembly of Gold Nanoparticles Using Genetically Engineered Polypeptides[J]. Small, 2005, 1(7): 698-702.
    [127] W.Y. Cai, L. D. Feng, S. H. Liu, et al. Hemoglobin-CdTe-CaCO3@Polyelectrolytes 3D Architecture: Fabrication, Characterization, and Application in Biosensing[J]. Adv. Funct. Mater., 2008, 18: 3127-3136.
    [128] J. J. Feng, G. Zhao, J. J. Xu, et al. Direct electrochemistry and electrocatalysis of heme proteins immobilized on gold nanoparticles stabilized by chitosan[J]. Anal Biochem, 2005, 342(2): 280 -286.
    [129] T. N. Borodina, L. D. Rumsh, S. M. Kunizhev, et al. Polyelectrolyte microcapsules as systems for delivery of biologically active substances[J]. Biomed. Khim., 2007, 53(5) : 557-565.
    [130] D. Shan, M. Zhu, H. Xue, et al. Development of amperometric biosensor for glucose based on a novel attractive enzyme immobilization matrix: Calcium carbonate nanoparticles[J]. Biosens. Bioelectron., 2007, 22(8): 1612-1617.
    [131] A. I. Petrov, D. V. Volodkin, G. B. Sukhorukov. Protein-calcium carbonate coprecipitation: a tool for protein encapsulation[J]. Biotechnol. Prog., 2005, 21(3) : 918-925.
    [132] E. B. Bustos, M. G. Jiménez, B. R. Díaz-Sánchez, et al. Glassy carbon electrodes modified withcomposites of starburst-PAMAM dendrimers containing metal nanoparticles for amperometric detection of dopamine in urine[J]. Talanta, 2007, 72(4): 1586-1592.
    [133] X. M. Feng, H. P. Huang, Q. Q. Ye, et al. Ag/polypyrrole core-shell nanostructures: interface polymerization, characterization, and modification by gold nanoparticles[J]. J. Phys. Chem. C, 2007, 111: 8463-8468.
    [134] J. Li, X.Q. Lin. Electrodeposition of gold nanoclusters on overoxidized polypyrrole film modified glassy carbon electrode and its application for the simultaneous determination of epinephrine and uric acid under coexistence of ascorbic acid[J]. Anal. Chim. Acta, 2007, 596 (2): 222-230.
    [135] S. Palmero, A. Colina, E. Munoz, et al. Layer-by-layer electrosynthesis of Pt-Polyaniline nanocomposites for the catalytic oxidation of methanol[J]. Electrochem. Commun., 2009, 11(1): 122-125.
    [136] D.M. Dotzauer, J.H. Dai, L. Sun, et al. Catalytic Membranes Prepared Using Layer-by-Layer Adsorption of Polyelectrolytes and Metal Nanoparticles in Porous Supports[J]. Nano. Lett., 2006, 6(10): 2268-2272.
    [137] J. Matsui, K. Akamatsu, S. Nishiguchi, et al. Composite of Au nanoparticles and molecularly imprinted polymer as a sensing material[J]. Anal. Chem., 2004, 76: 1310-1315.
    [138] A.M. Yu, F. Meiser, T. Cassagneau, et al. Fabriction of Polymer-Nanoparticale Composite Inverse Opals by One-Step Electrochemical Co-deposition Process[J]. Nano. Lett., 2004, 4(1): 177-171.
    [139] L. J. Zhang, M.X. Zhang, Polyaniline/TiO2 composite nanotubes[J]. J. Phys. Chem. B, 2003, 107(28): 6748-6753.
    [140] L. Liang, J. Liu, C.F. Windisch, et al. Direct Assembly of Large Arrays of Oriented Conducting Polymer Nanowires[J]. 2002, 41(19): 3665-3668.
    [141] M. Gitanjali, G. Mausumi, S. Tridib Kumar, et al. Au Nanoparticles and Polyaniline Coated Resin Beads for Simultaneous Catalytic Oxidation of Glucose and Colorimetric Detection of the Product[J]. 2005, 21(5): 1663-1667.
    [142]黄海平,张玉梅,孙旦子等.基于聚苯胺-纳米金修饰玻碳电极的研制及其对过氧化氢的催化研究[J].分析化学研究简报,2007, 35(11): 1639-1642.
    [143]彭芳芳,郭志睿,张宇等.聚苯胺/金复合纳米纤维在大脑神经递质多巴胺检测中的应用[J].东南大学学报,2008, 27(4): 250-255.
    [144] A. R. Hillman, M.A. Mohamoud. solvent and polymer dynamics in polyaniline conducting polymer films[J]. Electrochim. Acta. Ion., 2006, 51(27): 6018-6024.
    [145] A. Baba, R.C. Advincula, W. Knoll. In Situ Investigations on the Electrochemical Polymerization and Properties of PolyanilineThin Films by Surface Plasmon Optical Techniques[J]. J. Phys. Chem. B, 2002, 106(7): 1581-1587.
    [146] H. Xue, Z. Shen, C. Li, Biosens. Bioelectron. Improved selectivity and stability of glucose biosensor based on in situ electropolymerized polyaniline-polyacrylonitrile composite film[J]. Biosens. Bioelectron., 2005, 20(11): 2330-2334.
    [147] C.R.K. Rao, D.C. Trived. A novel one-pot synthesis of free standing Pd–PPy films: Observation of enhanced catalytic effect by Pd-Ppy layers[J]. Catal. Commun., 2006, 7(9): 662-668.
    [148] S. Patraand, N. Munichandraiah. Electrooxidation of Methanol on Pt-Modified Conductive Polymer PEDOT[J]. Langmuir, 2009, 25(3): 1732-1738.
    [149] G. Chen, Z. Wang, T. Yang, et al. Electrocatalytic hydrogenation of 4-chlorophenol on the glassy carbon electrode modified by composite polypyrrole/palladium film[J]. J. Phys. Chem. B, 2006, 110(10): 4863-4868.
    [150] K.-M. Mangold, F. Meik, K. Juttner. Polypyrrole/palladium composites for the electrocatalyzed Heck reaction[J]. Synth. Met., 2004, 144(3): 221-227.
    [151] T. Miyama, Y. Yonezawa. Aggregation of photolytic gold nanoparticles at the surface of chitosan films[J]. Langmuir, 2004, 20(14): 5918-5923.
    [152] Y. Zhou, H. Itoh, T. Uemura. Synthesis of Novel Stable Nanometer-Sized Metal (M = Pd, Au, Pt) Colloids Protected by a -Conjugated Polymer[J]. Langmuir, 2002, 18(1): 277-283.
    [153] L. Zhang, C.H. Zhang, J.Y. Lian. Electrochemical synthesis of polyaniline nano-networks on p-aminobenzene sulfonic acid functionalized glassy carbon electrode Its use for the simultaneous determination of ascorbic acid and uric acid[J]. Biosens. Bioelectron., 2008, 24(4): 690-695.
    [154] H.X. Chang, Y. Yuan, N.L. Shi, et al. Ultrasensitive electrochemical DNA biosensor based on conducting polyaniline nanotube array[J ]. Anal. Chem., 2007, 79 (13): 5111-5115.
    [155] M.-K. Park, K. Onishi, J. Locklin, et al. Self-Assembly and Characterization of Polyaniline and Sulfonated Polystyrene Multilayer-Coated Colloidal Particles and Hollow Shells[J]. Langmuir, 2003, 19(20): 8550-8554.
    [156] A. Baba, S.J. Tian, F.C. Stefani, et al. Electropolymerization and doping/dedoping properties of polyaniline thin films as studied by electrochemical-surface plasmon spectroscopy and by the quartz crystal microbalance[J]. J. Electroanal. Chem., 2004, 562(1): 95-103.
    [157] J. Y. Liu, S.J. Tian, W. Knoll. In neutral solution and their application for stable low-potential detection of reduced beta-nicotinamide adenine dinucleotide[J]. Langmuir, 2005, 21(12): 5596-5599.
    [158] A. F. Diaz, J.A. Logan. Electroactive polyaniline films[J]. J. Electroanal. Chem., 1980, 111(1): 111-114.
    [159] T. Ohsaka, Y. Ohnuki, N. Oyama, et al. IR Absorption Spectroscopic Identification of Electroactive and Electronactive Polyanline Films Prepared by the Electrochenical Polymerization of Aniline[J]. J. Electroanal. Chem., 1984, 161(2): 399-405.
    [160] S. Y. Cui, S.M. Park. Electrochemistry of conductive polymers XXIII: polyaniline growth studied by electrochemical quartz crystal microbalance measurements[J]. 1999, 105: 91-98.
    [161] S. Ashok Kumar, S.M. Chen. Electroanalysis of NADH Using Conducting and Redox Active Polymer/Carbon Nanotubes Modified Electrodes-A Review[J]. 2008, 8: 739-766.
    [162] N. F. Zakharchuk, B. Meyer, H. Hennig, et al. A comparative study of Prussian-Blue-modified graphite paste electrodes and solid graphite electrodes with mechanically immobilized Prussian Blue[J]. J. Electroanal. Chem., 1995, 398: 23-35.
    [163] L. Zhang. Covalent modification of glassy carbon electrode with cysteine for the determination of dopamine in the presence of ascorbic acid[J]. Microchim. Acta., 2008, 161: 191-200.
    [164] T.J. Yin, W.Z. Wei, J.X. Zeng. Selective detection of dopamine in the presence of ascorbic acid by use of glassy-carbon electrodes modified with both polyaniline film and multi-walled carbon nanotubes with incorporatedβ-cyclodextrin[J]. Anal. Bioanal. Chem., 2006, 386(7-8): 2087-2094.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700