持久性有机污染物及病原菌的无线传感分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要针对目前严峻的环境污染问题,基于无线磁弹性传感器的质量响应原理并结合纳米技术,探索病原菌和持久性有机污染物的无线传感分析检测方法。无线磁弹性传感技术是基于磁致伸缩原理设计的,传感器由非晶态磁性材料和激励/检测线圈组成,在外加交变磁场中,磁性膜片受磁场激发产生磁矩,将磁能转换为机械能,并产生沿长度方向的伸缩振动,即磁致伸缩。当交变磁场的频率与磁性膜片机械振动频率相等时,膜片会产生共振,具有最大振幅,此时的振动频率即为磁性膜片共振频率。当磁性膜片传感器所浸入的检测溶液性质(黏度、密度等)或传感器表面负载质量发生变化时,其共振频率也会随之改变。磁传感器随其表面负载质量变化而变化的特性即为磁传感器的质量响应原理。由于磁性膜片本身是磁性的,其伸缩振动产生的磁通可通过检测线圈检测出。磁弹性传感器中信号的激发与传送通过磁场进行,传感器与检测仪器之间没有任何物理连接,属于无线无源传感器。磁弹性传感器这一特征使其在活体、在体分析、密闭容器中的无菌、无损检测等领域具有广泛的应用前景。随着纳米技术的发展,纳米材料因具有尺寸小、比表面积大等特性已开始渗入环境领域检测分析当中。.结合纳米粒子的特性和磁传感器无线无源的特点,开展环境中污染物的检测研究将是一件重大而有意义的工作。基于这个创新,本文主要做了以下三方面的应用研究工作:
     1)病原菌——大肠杆菌无线传感分析:以大肠杆菌为例,制备了磁弹性病原菌无线传感器;基于壳聚糖包裹的Fe3O4纳米粒子(CMNPs)与大肠杆菌的等电点不同,在一定的pH条件下,两者因带异种电荷而互相吸引,形成带磁性的病原体,再借助外加磁场的作用吸附到聚氨酯保护涂层的磁传感器表面,导致磁传感器负载质量增加,引起传感器共振频率减小;考察了不同CMNPs浓度对传感器响应的贡献,证实了交联剂戊二醛的引入能提高检测细菌的灵敏度;利用扫描电镜和透射电镜观察了细菌-CMNPs复合物在磁传感器表面的吸附情况,并获得了传感器对大肠杆菌的检测线性范围(10-3.7×108 cells mL-1),检测下限能达到10cells mL-1;基于CMNPs对大肠杆菌的静电吸附原理,考察了带电大分子(蛋白质)和较小分子(氨基酸及环境有机污染物)对传感器的干扰情况。结果表明,该方法对病原菌的检测有一定的选择性,在食品领域中检测病原菌具有广泛的应用前景。
     2)多环芳烃(PAHs)无线传感分析:采用腐植酸/壳聚糖复合物作为敏感层,以腐植酸(humic acid,HA)包裹的Fe304纳米粒子(HMNPs)作为信号放大工具,利用HA的疏水空腔对脂溶性PAHs的特异吸附性及包合性,在传感器表面形成HA/PAH/HMNPs的三明治结构,从而增加磁传感器的负载质量,导致其共振频率的下降;考察了磁传感器表面不同涂层,不同浓度的HMNPs以及体系pH对传感器响应信号的影响,获得了该传感器对六种美国优先监控的PAHs的检测线性范围和检测下限;由于PAHs结构上的差异,该方法对PAHs中的苯并芘和蒽的检测表现出一定的选择性,结果表明,苯并芘和蒽的检测下限分别可以达到3 nm和5 nm,表现出较高的灵敏度;同时考察了传感器对水环境中具有代表性的金属离子和有机污染物的响应情况,以此研究该传感器对PAHs的检测特异性。该传感器可用于水体中PAHs的分析研究,并具有富集PAHs的应用前景。
     3)苯并[a]芘(benzo[a]pyrene, BaP)无线传感分析:在PAHs无线传感器研究的基础上,改用氨基修饰的杯[4]芳烃作为敏感膜以提高其对特定PAHs的选择性。采用杯[4]芳烃修饰的金纳米颗粒作为信号放大工具,利用杯[4]芳烃的疏水空穴对BaP的特异包合作用,在磁传感器表面形成杯[4]芳烃/BaP/杯[4]芳烃-金纳米粒子的三重包合配合物,增加磁传感器的负载质量,获得对传感器响应信号的放大,检测下限达1.O×10-11M;考察了传感器对其他PAHs及水体中其他污染物的响应情况。中性有机物与杯[4]芳烃形成稳定性包合配合物取决于客体有机物分子结构与主体杯[4]芳烃疏水空穴的匹配情况,分析主体-客体分子结构可知,本实验选用的氨基修饰的杯[4]芳烃能与BaP形成稳定的2:1的包合配合物,因而对其表现出很好的选择性。所构筑的传感器能进行水样中BaP的检测。
This dissertation is focused on the theoretics and the applications of the wireless magnetoelastic sensors. Environmental pollution is seriously global problems, especially caused by the pathogens and persistent organic pollutants (POPs). The wireless magnetoelastic technique is based on magnetoelastic principle, the sensor platforms consist of a magnetoelastic sensor and an exciting/a receiving coil. In response to a time varying magnetic field, the magnetoelastic sensor efficiently couples and translates magnetic energy to mechanical energy. The elastic energy mechanically deforms the sensor, causing it mechanically vibrate along its length. When the frequency of the ac field is equal to the mechanical resonance frequency of the sensor, the vibration amplitude is maximum, and the sensor vibrates at its characteristic resonance frequency that shifts in response to change of liquid properties (such as viscosity or density) or mass loading. Since the sensor material is also magnetostrictive, the mechanical oscillation in turn generates magnetic flux that can be remotely detected using a pick-up coil. The sensor is totally passive. No physical connections between the sensor and the detection system are required for signal telemetry, nor does the sensor require any internal power sources. The wireless nature of the magnetoelastic sensor makes it a powerful candidate for in situ and in vivo analysis. With the development of nano-technology, nano-materials due to its small size and large specific surface area and other features have begun to penetrate the field of environment among the detection and analysis. Combination of nano-particle properties and magnetic sensor wireless passive features, it will be a significant and meaningful work to research the detection methods of environmental contaminants. Based on this innovation, in this dissertation, three kinds of magnetoelastic biosensors were developed:
     (1) The development of wireless magnetoelastic pathogens sensor:Fabricate the wireless magnetoelastic pathogen sensor with Escherichia coli O157:H7 (E. coli) as a target using chitosan-modified magnetic Fe3O4 nanoparticles (CMNPs) as signal-amplifying tags; At suitable pH the CMNPs bind to negatively charged E. coli through electrostatic attraction. The E. coli attached CMNPs are magnetically bound to the surface of the magnetoelastic sensor, resulting in enhanced mass loading on the sensor surface that in turn decreases its resonance frequency allowing quantification of E. coli concentrations; investigate the sensor in response to the change of CMNPs and the effect of glutaraldehyde introduction; The sensor shows a linear response to the logarithmic concentration of E. coli in the range of 10 cells mL-1 to 3.7×108 cells mL-1, with a detection limit (LOD) of 10 cells mL-1; The sensor shows good selectively to bacterial detedction, as small molecules such as albumin bovine and ovalbumin show no interference on the detection.
     (2) The development of wireless magnetoelastic polycyclic aromatic hydrocarbons (PAHs) sensor:Fabricate the wireless magnetoelastic PAHs sensor with anthracene as the model target using humic acid-modified magnetic Fe3O4 nanoparticles (HMNPs) as signal-amplifying tags; A sandwich-type detection strategy involves the humic acid (HA)/chitosan composite self-assembled on the polyurethane-protected sensor surface and HMNPs, both of which flank the anthracene target in sequence. As the HMNPs-combined anthracene absorbs to the sensor surface, there is an increase in the mass load on the sensor, and consequently a decrease in resonance frequency; investigate the sensor in response to different coatings on the surface of magnetic sensors, different concentrations of HMNPs and pH; obtained the detection linear range and detection limit of six of the US Environmental Protection Agency (EPA) priority monitor PAHs; and investigate the sensor selectivity to PAHs by determining the sensor responses to some representative environmental pollutants; The highest sensitivity was observed in the response to benzo[a]pyrene and anthracene with LODs of 3 nM and 5 nM, respectively; the sensor can be used for detection of PAHs in water, and has the application prospect in enriching PAHs.
     (3) The development of wireless magnetoelastic benzo[a]pyrene (BaP) sensor: Based on (2), fabricate the wireless magnetoelastic BaP sensor using aminocalix[4]arene-modified gold nanoparticles (aminocalix[4]arene-Au NPs) as signal-amplifying tags; A sandwich-type detection strategy involves the aminocalix[4]arene self-assembled on the Au-protected sensor surface and aminocalix[4]arene-Au NPs, both of which flank the BaP target in sequence. As the aminocalix[4]arene-Au NPs-combined BaP absorbs to the sensor surface, there is an increase in the mass load on the sensor, and consequently a decrease in resonance frequency; investigate the sensor in response to different concentration aminocalix[4]arene-Au NPs, other PAHs and other pollution in water; as aminocalix[4]arene with BaP to form a stable 2:1 inclusion complexes, the sensor shows good selectivity to BaP detection and shows a detection limit of 1×10-11 M. The sensor can be used for detection of BaP in water.
引文
[1]王会宗.磁性材料及其应用.北京:国防工业出版社,1989,7
    [2]戴道生,钱昆明,钟文定等.铁磁学.北京:科学出版社,1992,121
    [3]龙毅,张正义,李守卫.新型功能磁性材料及其应用.北京:机械工业出版社,1997,4
    [4]田民伯.磁性材料.北京:清华大学出版社,2001,4
    [5]王博文.超磁致伸缩材料制备与器件设计.北京:冶金工业出版社,2003,1-32
    [6]Li Q, Zhang Y L, Yuan R Z, et al. Growth of Tbo.27Dyo.73Fe2 magnetostrictive single crystals. Journal of Crystal Growth,1993,128(1-4):1092-1094
    [7]Uchida H H, Wada M, Matsumura Y, et al. Preparation of films of (Tb, Dy) Fe2 giantmagnetostrictive alloy by ion beam sputtering process and their characterization. Thin Solid Films,1996,281-282(1-2):503-506
    [8]Oster J, Wiehl L, Adrian H, et al. Magnetic and magnetoelastic properties of epitaxial (211)-oriented RFe2 (R=Dy, Tb) thin films. Journal of Magnetism and Magnetic Materials,2005,292(1-2):164-177
    [9]Carabias I, Martinez A, Garcia M A, et al. Magnetostrictive thin films prepared by RF sputtering. Journal of Magnetism and Magnetic Materials,2005, 290-291(2):823-825
    [10]Lim S H, Choi Y S, Han S H, et al. Magnetostriction of Sm-Fe and Sm-Fe-B thin films fabricated by RF magnetron sputtering. Journal of Magnetism and Magnetic Materials,1998,189(1):1-7
    [11]Miyazaki T, Saito T, Fujino Y. Magnetostrictive properties of sputtered binary Tb-Fe and pseudo-binary (Tb-Dy)-Fe alloy films. Journal of Magnetism and Magnetic Materials,1997,171(3):320-328
    [12]Choi Y S, Lee S R, Han S H, et al. The magnetic properties of Tb-Fe-(B) thin films fabricated by rf magnetron sputtering. Journal of Alloys and Compounds, 1997,258(1-2):155-162
    [13]陈艾.敏感材料与传感器.北京:化学工业出版社,2004,279-339
    [14]宛德福,马兴隆.磁性物理学.成都:电子科技大学出版社,1994,377-378
    [15]钟文定.铁磁学.北京:科学出版社,2000,360-361
    [16]Grimes C A, Ong K G, Loiselle K, et al. Magnetoelastic sensors for remote query environmental monitoring. Smart Materials and Structures,1999,8(5): 639-646
    [17]黄思静.磁弹性微生物无线生物传感器研究:[湖南大学硕士学位论文].长沙:湖南大学,2008,1-12
    [18]戈树田.磁弹性无线微生物传感器研究:[湖南大学硕士学位论文].长沙:湖南大学,2009,1-13
    [19]Puckett L G. An integrated approach to the development of sensing systems for clinical and pharmaceutical applications:[dissertation]. Kentucky:University of Kentucky,2003,1-8
    [20]Doherty S A. Swellable polymer substrates for use in magnetochemical and optical chemical sensing:[dissertation]. New Hampshire:University of New Hampshire,2000,1-6
    [21]姚守拙.化学与生物传感器.北京:化学工业出版社,2006,79-124
    [22]Cai Q Y, Jain M K, Grimes C A. A wireless, remote query ammonia sensor. Sensors and Actuators B,2001,77(3):614-619
    [23]马立,朱江.磁致伸缩耐振绝对位移检测器.中国仪器仪表,1995,(6):22-23
    [24]Mwafy A M, Elnashai A S. Static pushover versus dynamic collapse analysis of buildings. Engineering Structures,2001,23(5):407-424
    [25]孙东,周兆英,战红,等.超声手术仪及应用.研究中国医学器械杂志,1994,18(4):187-191
    [26]Cai Q Y, Cammers-Goodwin A, Grimes C A. A wireless, remote query magnetoelastic CO2 sensor. Journal of Evironmental Mnitoring,2000,2(5): 556-560
    [27]Ruan C M, Zeng K F, Varghese O, et al. A staphylococcal enterotoxin B magnetoelastic immunosensor. Biosensors and Bioelectronics,2004,20(3): 585-591
    [28]Cai Q Y, Zeng K F, Ruan C M, et al. A wireless, remote query glucose biosensor based on a pH-sensitive polymer. Analytical Chemistry,2004,76(14): 4038-4043
    [29]Gao X J, Yang W Y, Pang P F, et al. A wireless magnetoelastic biosensor for rapid detection of glucose concentrations in urine samples. Sensors and Actuators B,2007,128(1):161-167
    [30]Grimes C A, Mungle C S, Zeng K F, et al. Wireless magnetoelastic resonance sensors:a critical review. Sensors,2002, (2):294-313
    [31]杨柳燕,肖琳.环境微生物技术.北京:科学出版社,2003,91-92
    [32]张甲耀,宋碧玉,郑连爽,等.环境微生物学(下册).北京:科学出版社,2004,595-646
    [33]秦旭军.病原生物与免疫学基础.江西:江西科学技术出版社,2008,13-42
    [34]遇晓杰,薛成玉,吕琦,等.食品中5种致病菌多重PCR快速检测技术的建立与应用.中国食品卫生杂志,2009,21(5):398-402
    [35]Lazcka O, Campo F J D, Munoz F X. Pathogen detection:A perspective of traditional methods and biosensors. Biosensors and Bioelectronics,2007,22(7): 1205-1217
    [36]Ko S, Grant S A. Development of a novel FRET method for detection of Listeria or Salmonella. Sensors and Actuators B,2003,96(1-2) 372-378
    [37]Slavik R, Homola J, Brynda E. A miniature fiber optic surface plasmon resonance sensor for fast detection of staphylococcal enterotoxin B. Biosensors and Bioelectronics,2002,17(6-7):591-595
    [38]Rijal K, Leung A, Shankar P M, et al. Detection of pathogen Escherichia coli O157:H7 AT 70 cells/mL using antibody-immobilized biconical tapered fiber sensors. Biosensors and Bioelectronics,2005,21(6):871-880
    [39]He F J, Zhang X Q, Zhou J D, et al. A new MSPQC system for rapid detection of pathogens in clinical samples. Journal of Microbiological Methods,2006, 66(1):56-62
    [40]Gau J, Lan E H, Dunn B, et al. A MEMS based amperometric detector for E. coli bacteria using self-assembled monolayers. Biosensors and Bioelectronics, 2001,16(9-12):745-755
    [41]Ercole C, Gallo M D, Mosiello L, et al. Escherichia coli detection in vegetable food by a potentiometric biosensor. Sensors and Actuators B,2003,91(1-3): 163-168
    [42]Choi A, Park J S, Jung H. Solid-medium-integrated impedimetric biosensor for real-time monitoring of microorganisms. Sensors and Actuators B,2009,137(1): 357-362
    [43]Uttenthaler E, Schraml M, Mandel J, et al. Ultrasensitive quartz crystal microbalance sensors for detection of M13-Phages in liquids. Biosensors and Bioelectronics,2001,16(9-12):.735-743
    [44]Berkenpas E, Millard P, Pereiraa da Cunha M. Detection of Escherichia coli O157:H7 with langasite pure shear horizontal surface acoustic wave sensors. Biosensors and Bioelectronics,2006, 21(12):2255-2262
    [45]Pang P F, Cai Q Y, Yao S Z, et al. The detection of Mycobacterium Tuberculosis in sputum sample based on a wireless magnetoelastic sensing device. Talanta, 2008,76(2):360-364
    [46]Huang S J, Pang P F, Xiao X L, et al. A wireless, remote-query sensor for real-time detection of Escherichia coli O157:H7 concentrations. Sensors and Actuators B:CHemical,2008,131(2):489-495
    [47]Pang P F,Huang S J, Cai Q Y, et al. Detection of Pseudomonas aeruginosa using a wireless magnetoelastic sensing device. Biosensors and Bioelectronics, 2007,23(2):295-299
    [48]Ge S T, Huang S J, Zhang F Y, et al. Detection of Micrococcus Luteus using a wireless magnetoelastic sensing device. Sensor Letters,2009,7(1):79-83
    [49]Pang P F,Xiao X L,Cai Q Y, et al. A wireless magnetoelastic sensing device for in situ evaluation of P.aeruginosa biofilm formatiom. Sensors and Actuators B, 2008,133(2):473-477
    [50]Huanga S, Yang H, Lakshmanan R S, et al. Sequential detection of Salmonella typhimurium and Bacillus anthracis spores using magnetoelastic biosensors. Biosensors and Bioelectronics, 2009,24(6):1730-1736
    [51]Xie F, Yang. H, Li S Q, et al. Amorphous magnetoelastic sensors for the detection of biological agents. Intermetallics,2009,17(4):270-273
    [52]Oh B K, Kim Y K, Park K W, et al. Surface plasmon resonance immunosensor for the detection of Salmonella typhimurium. Biosensors and Bioelectronics, 2004,19(11):1497-1504
    [53]Lin Y H, Chen S H, Chuang Y C, et al. Disposable amperometric immunosensing strips fabricated by Au nanoparticles-modified screen-printed carbon electrodes for the detection of foodborne pathogen Escherichia coli O157:H7. Biosensors and Bioelectronics,2008,23(12):1832-1837
    [54]Vaughan R D, OSullivan C K, Guilbault G G. Development of a quartz crystal microbalance (QCM) immunosensor for the detection of Listeria monocytogenes. Enzyme and Microbial Technology,2001,29(10):635-638
    [55]Ruan C M, Zeng K F, Varghese O K, et al. Magnetoelastic immunosensors: amplified mass immunosorbent assay for detection of Escherichia coli O157:H7. Analytical Chemistry,2003,75(23):6494-6498
    [56]余刚,牛军峰,黄俊等.持久性有机污染物——新的全球性环境问题.北京:科学出版社,2005,1-55
    [57]van Leeuwen S P J, de Boer J. Advances in the gas chromatographic determination of persistent organic pollutants in the aquatic environment. Journal of Chromatography A,2008,1186(1-2):161-182
    [58]Ratola N, Santos L, Herbert P, et al. Uncertainty associated to the analysis of organochlorine pesticides in water by solid-phase microextraction/gas chromatography-electron capture detection-Evaluation using two different approaches. Analytica Chimica Acta,2006,573-574:202-208
    [59]Lacortea S, Quintana J, Taulera R, et al. Ultra-trace determination of Persistent Organic Pollutants in Arctic ice using stir bar sorptive extraction and gas chromatography coupled to mass spectrometry. Journal of Chromatography A, 2009,1216(49):8581-8589
    [60]Zhou Q X, Pang L, Xiao J P. Trace determination of dichlorodiphenyl-trichloroethane and its main metabolites in environmental water samples with dispersive liquid-liquid microextraction in combination with high performance liquid chromatography and ultraviolet detector. Journal of Chromatography A, 2009,1216(39):6680-6684
    [61]Wang W D, Huang Y M, Shu W Q, et al. Multiwalled carbon nanotubes as adsorbents of solid-phase extraction for determination of polycyclic aromatic hydrocarbons in environmental waters coupled with high-performance liquid chromatography. Journal of Chromatography A,2007,1173(1-2) 27-36
    [62]Cammann K, Kleibohmer W. Supercritical fluid chromatography of polychlorinated biphenyls on packed columns. Journal of Chromatography A, 1990,522:267-275
    [63]Valero-Navarro A, Fernandez-Sanchez J F, Medina-Castillo A L, et al. A rapid, sensitive screening test for polycyclic aromatic hydrocarbons applied to antarctic water. Chemosphere,2007,67(5):903-910
    [64]Fahnrich K A, Pravda M, Guilbault G G. Disposable amperometric immunosensor for the detection of polycyclic aromatic hydrocarbons (PAHs) using screen-printed electrodes. Biosensors and Bioelectronics,2003,18(1): 73-82
    [65]Mauriz E, Calle A, Manclus J J, et al. Optical immunosensor for fast and sensitive detection of DDT and related compounds in river water samples. Biosensors and Bioelectronics,2007,22(7):1410-1418
    [66]Pribyl J, Hepel M, Skladal P. Piezoelectric immunosensors for polychlorinated biphenyls operating in aqueous and organic phases. Sensors and Actuators B, 2006,113(2):900-910
    [67]Barzen C, Brecht A, Gauglitz G. Optical multiple-analyte immunosensor for water pollution control. Biosensors and Bioelectronics,2002,17(4):289-295
    [68]Brummel. K E, Wright J, Eldefrawi M E. Fiber optic biosensor for cyclodiene insecticides. Journal of Agricultural and Food Chemistry,1997,45(8): 3292-3298
    [69]Stanley S, Percival C J, Auer M, et al. Detection of polycyclic aromatic hydrocarbons using quartz crystal microbalances. Analytical Chemistry,2003, 75(7):1573-1577
    [70]Crespilho F N, Zucolotto V, Siqueira J R, et al. Immobilization of humic acid in nanostructured layer-by-layer films for sensing applications. Environmental Science and Technology,2005,39(14):5385-5389
    [71]Qu F G, Li H B. Selective molecular recognition of polycyclic aromatic hydrocarbons using CdTe quantum dots with cyclodextrin as supramolecular nano-sensitizers in water. Sensors and Actuators B,2009,135(2):499-505
    [72]Han C P, Zeng L L, Li H B, et al. Colorimetric detection of pollutant aromatic amines isomers with p-sulfonatocalix[6]arene-modified gold nanoparticles. Sensors and Actuators B,2009,137(2):704-709
    [73]Wu P G, Xu Z H. Silanation of nanostructured mesoporous magnetic particles for heavy metal recovery. Industrial and Engineering Chemistry Research,2005, 44(4):816-824
    [74]Liu J L, Zhao Z S, Jiang G B. Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environmental Science and Technology,2008,42(18):6949-6954
    [75]Cheng Y X, Liu Y J, Huang J J, et al. Combining biofunctional magnetic nanoparticles and ATP bioluminescence for rapid detection of Escherichia coli. Talanta,2009,77(4):1332-1336.
    [76]Ballesteros-Gomez A, Rubio S. Hemimicelles of alkyl carboxylates chemisorbed onto magnetic nanoparticles:Study and application to the extraction of carcinogenic polycyclic aromatic hydrocarbons in environmental water samples. Analytical Chemistry,2009,81(21):9012-9020
    [77]Lin Y Y, Liu G D, Wai C M, et al. Magnetic beads-based bioelectrochemical immunoassay of polycyclic aromatic hydrocarbons. Electrochemistry Communications,2007,9(7):1547-1552
    [78]Lisa M, Chouhan R S, Vinayaka A C, et al. Gold nanoparticles based dipstick immunoassay for the rapid detection of dichlorodiphenyltrichloroethane:An organochlorine pesticide. Biosensors and Bioelectronics,2009,25(1):224-227
    [79]Kobayashi K, Kitagawa S, Ohtani H. Development of capillary column packed with thiol-modified gold-coated polystyrene particles and its selectivity for aromatic compounds. Journal of Chromatography A,2006,1110(1-2):95-101
    [80]Villani F, Russo F, Blaiotta G, et al. Presence and characterisation of verotoxin producing E. coli in fresh Italian pork sausages, and preparation and use of an antibioticresistant strain for challenge studies. Meat Science,2005,70(1): 181-188
    [81]Strachan N J C, Doyle M P, Kasuga F, et al. Dose response modelling of Escherichia coli 0157 incorporating data from foodborne and environmental outbreaks. International Journal of Food Microbiology,2005,103(1):35-47
    [82]Waswa J, Irudayaraj J, DebRoy C. Direct detection of E. coli O157:H7 in selected food systems by a surface plasmon resonance biosensor. LWT-Food Science Technology,2007,40(2):187-192
    [83]Martins S A M, Prazeres D M F, Fonseca L P, et al. Chemiluminescent bead-based hybridization assay for the detection of genomic DNA from E. coli in purified plasmid samples. Analytical Biochemistry Chemistry,2008,391(6): 2179-2187
    [84]Baeumner A J, Cohen R N, Miksic V, et al. RNA biosensor for the rapid detection of viable Escherichia coli in drinking water. Biosensors and Bioelectronics,2003,18(4):405-413
    [85]Berkenpas E, Millard P, Pereira da Cunha M. Detection of Escherichia coli O157:H7 with langasite pure shear horizontal surface acoustic wave sensors. Biosensors and Bioelectronics,2006,21(12):2255-2262
    [86]Sandhy S, Chen W, Mulchandani A. Molecular beacons:A real-time polymerase chain reaction assay for detecting Escherichia coli from fresh produce and water. Analytica Chimica Acta,2008,614(2):208-212
    [87]Betscheider D, Jose J. Nile blue A for staining Escherichia coli in flow cytometer experiments. Analytical Biochemistry,2009,384(1):194-196
    [88]Mujika M, Arana S, Castano E, et al. Magnetoresistive immunosensor for the detection of Escherichia coli O157:H7 including a microfluidic network. Biosensors and Bioelectronics,2009,24(5):1253-1258
    [89]Arcidiacono S, Pivarnik P, Mello C M, et al. Cy5 labeled antimicrobial peptides for enhanced detection of Escherichia coli O157:H7. Biosensors and Bioelectronics,2008,23(11):1721-1727
    [90]Su X L, Li Y B. A self-assembled monolayer-based piezoelectric immunosensor for rapid detection of Escherichia coli O157:H7. Biosensors and Bioelectronics, 2004,19(6):563-574
    [91]Kaushik A, Solanki P R, Ansari A A, et al. Chitosan-iron oxide nanobiocomposite based immunosensor for ochratoxin-A. Electrochemistry communications,2008,10(9):1364-1368
    [92]Wang S F, Tan Y M, Zhao D M, et al. Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-chitosan nanocomposite. Biosensors and Bioelectronics, 2008,23(12):1781-1787
    [93]Sogias I A, Williams A C, Khutoryanskiy V V. Why is chitosan mucoadhesive. Biomacromolecules,2008,9(7):1837-1842
    [94]Kaushik A, Khan R, Solanki P R, et al. Iron oxide nanoparticles-chitosan composite based glucose biosensor. Biosensors and Bioelectronics,2008,24(4): 676-683
    [95]Li G Y, Jiang Y R, Huang K L, et al. Kinetics of adsorption of Saccharomyces cerevisiae mandelated dehydrogenase on magnetic Fe3O4-chitosan nanoparticles. Colloids and Surfaces A,2008,320(1-3):11-18.
    [96]Chang Y C, Chang S W, Chen D H. Magnetic chitosan nanoparticles:Studies on chitosan binding and adsorption of Co(Ⅱ) ions. Reactive and Functional Polymers,2006,66(3):335-341
    [97]Mao X L, Yang L J, Su X L, et al. A nanoparticle amplification based quartz crystal microbalance DNA sensor for detection of Escherichia coli O157:H7. Biosensors and Bioelectronics,2006,21(7):1178-1185
    [98]Natalia V B, Irina Y G, Dmitry A M, et al. New immunochemically-based field test for monitoring benzo[a]pyrene in aqueous samples. Analytical Science, 2008,24(12):1613-1617
    [99]Kou J H, Li Z S, Yu Y P, et al. Visible-light-induced photocatalytic oxidation of polycyclic aromatic hydrocarbons over tantalum oxynitride photocatalysts. Environmental Science and Technology,2009,43(8):2919-2924
    [100]Callahan M A, Slimak M W, Gabelc N W. Water-related environmental fate of 129 priority pollutants. US Environmental Protection Agency. Washington:DC, 1979,49-57
    [101]James P M, Jon B, Claudia F B. Using fluorescent aromatic compounds in bile from juvenile salmonids to predict exposure to polycyclic aromatic hydrocarbons. Environmental Toxicology and Chemistry,2008,27(4):845-853
    [102]Thomas S D, Li Q X. Immunoaffinity chromatography for analysis of polycyclic aromatic hydrocarbons in corals. Environmental Science and Technology,2000, 34(12):2649-2654
    [103]Dadoo R, Zare R N. Advances in capillary electrochromatography:rapid and high-efficiency separations of PAHs. Analytical Chemistry,1998,70(22): 4787-4792
    [104]Apicella B, Ciajolo A, Tregrossi A. Fluorescence spectroscopy of complex aromatic mixtures. Analytical.Chemistry,2004,76(7):2138-2143
    [105]Moore E J, Kreuzer M P, Pravda M, et al. Development of a rapid single-drop analysis biosensor for screening of phenanthrene in water samples. Electroanalysis,2004,16(20):1653
    [106]Li K, Chen R L, Zhao B T, et al. Monoclonal antibody-based ELISAs for part-per-billion determination of polycyclic aromatic hydrocarbons:effects of haptens and formats on sensitivity and specificity. Analytical Chemistry,1999, 71(2):302-309
    [107]Hua G X, Lyons B, Killham K, et al. Potential use of DNA adducts to detect mutagenic compounds in soil. Environmental Pollution,2009,157(3):916-921
    [108]鹿贞彬.腐植酸和多环芳烃相互作用研究初探:[厦门大学硕士学位论文].厦门:厦门大学,2005,1
    [109]Leyton P, Cordova I, Lizama-Vergara P A, et al. Humic acids as molecular assemblers in the surface-enhanced raman scattering detection of polycyclic aromatic hydrocarbons. Vibrational Spectroscopy,2008,46(2):77-81
    [110]Loar Y, Zolrov C H, Armon R. Immobilizing humic acid in a sol-gel matrix:a new tool to study humic-contaminants sorption interactions. Environmental Science and Technology,2002,36(5):1054-1060
    [111]Li N Q, Lee H K. Tandem-cartridge solid-phase extraction followed by GC/MS analysis for measuring partition coefficients of association of polycyclic aromatic hydrocarbons to humic acid. Analytical Chemistry,2000,72(21): 5272-5279.
    [112]Illes E, Tombacz E. The effect of humic acid adsorption on pH-dependent surface and aggregation of magnetite nanoparticles. Journal of Colloid and Interface Science,2006,295(1):115-123
    [113]Gu B H, Schmitt J, Chen Z H, et al. Adsorption and desorption of natural organic matter on iron oxide:mechanisms and models. Environmental Science and Technology,1994,28(1):38-48
    [114]Galeska I, Hickey T, Moussy F, et al. Characterization and biocompatibility studies of novel humic acids based films as membrane material for an implantable glucose sensor. Biomacromolecules,2001,2(4):1249-1255
    [115]USEPA. National recommended water quality criteria. Office of Science and Technology. Washington:USA,2009,1-8
    [116]Pottering H G, Maire B L. L348/84 directive 2008/105/EC of the european parliament and of the council of 16 december 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing council directives 82/176/EEC,83/513/EEC,84/156/EEC,84/491/EEC, 86/280/EEC and mending directive 2000/60/EC of the european parliament and of the council. Official Journal of the European Union,2008, (348):84-97
    [117]Purcaro G, Moret S, Conte L S. Rapid validated method for the analysis of benzo[a]pyrene in vegetable oils by using solid-phase microextraction-gas chromatography-mass spectrometry. Journal of Chromatography A,2007, 1176(1-2):231-235
    [118]何智慧,罗嘉,蒋腊梅,等.气相色谱-质谱法检测卷烟烟气中的苯并[a]芘.湖南文理学院学报(自然科学版),2007,19(2):46-48
    [119]王秀梅,张宁惠.液相色谱仪测定水中苯并[a]芘方法应用.陕西化工,1999,28(3):32-33
    [120]於立军,李耀群,眭蔚厦.多环芳烃的Shpol'skii低温荧光光谱分析.光谱学与光谱分析,2002,22(5):819-821
    [121]Spier C R, Bromage E S, Harris T M, et al. The development and evaluation of monoclonal antibodies for the detection of polycyclic aromatic hydrocarbons. Analytical Biochemistry,2009,387(2):287-293
    [122]Beloglazova N V, Goryacheva I Y, Mikhirev D A, et al. New immunochemically-based field test for monitoring benzo[a]pyrene in aqueous samples. Analytical sciences,2008,24(12):1613-1618
    [123]王雪莹,徐忠鹏,吕振,等.杯芳烃及其衍生物在生命科学中的研究进展.化学世界,2009,50(7):436-439
    [124]陈素萍.第三代主体超分子化合物——杯芳烃的研究.南通职业大学学报,2005,19(4):104-106
    [125]高博,冯亚青,周立山,等.杯芳烃包合作用的研究进展.有机化学,2004,24(7):713-721
    [126]刘贤贤,黄婉云.功能化杯芳烃的手性识别性能研究进展.桂林师范高等专科学校学报,2009,23(1):163-167
    [127]Li H B, Qu F G. Selective inclusion of polycyclic aromatic hydrocarbons (PAHs) on calixarene coated silica nanospheres englobed with CdTe nanocrystals. Journal of Materials Chemistry,2007,17(33),3536-3544
    [128]Guerrini L, Garcia-Ramos J, Domingo C, et al. Nanosensors based on viologen functionalized silver nanoparticles:Few molecules surface-enhanced raman spectroscopy detection of polycyclic aromatic hydrocarbons in interparticle hot spots. Analytical Chemistry,2009,81(4):1418-1425
    [129]Guerrini L, Garcia-Ramos J, Domingo C, et al. Sensing polycyclic aromatic hydrocarbons with dithiocarbamate-functionalized Ag nanoparticles by surface-enhanced raman scattering. Analytical Chemistry,2009,81(3):953-960
    [130]Ha J, Solovyov A, Katz A. Postsynthetic modification of gold nanoparticles with calix[4]arene enantiomers:origin of chiral surface plasmon resonance. Langmuir,2009,25(1):153-158
    [131]Ha J, Katz A, Drapailo A B, et al. Mercaptocalixarene-vapped gold nanoparticles via postsynthetic modification and direct synthesis:effect of calixarene cavity-metal interactions. Journal of Physical Chemistry C,2009, 113(4):1137-1142
    [132]Ha J, Solovyov A, Katz A. Synthesis and characterization of accessible metal surfaces in calixarene-bound gold nanoparticles. Langmuir,2009,25(18): 10548-10553
    [133]Wang X J, Brusseau M L. Cyclopentanol-enhanced solubilization of polycycIic aromatic hydrocathns by cyclodextrins. Environmental Science and Technology, 1995,29(9):2346-2351

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700