生物/有机分子辅助液相合成纳米材料及其性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料研究是目前材料科学研究的一个热点,其相应发展起来的纳米技术被公认为是21世纪最具有前途的科研领域。目前合成纳米材料的方法虽然很多,但是获得尺寸可控、颗粒均匀的纳米材料仍然存在一定的困难。探索发展纳米材料设计与合成的新途径、新方法,实现对纳米材料的尺寸大小、粒径分布以及形貌和表面修饰的可控合成及其物理化学性质研究仍然是纳米材料研究领域的一个重要课题。本论文采用不同合成方法成功合成了几种具有可控形貌的纳米结构材料。通过调节反应物的浓度、反应时间、反应温度以及反应物比例等实验参数,获得了氧化物(SnO_2)、两种碳酸盐(BaCO_3、SrCO_3)和铁酸镍石墨烯复合物等纳米材料,并分别研究了他们的相关性质。利用X射线衍射(XRD)、红外光谱(FT-IR)、拉曼光谱(Raman)、扫描电镜(SEM)、透射电镜(TEM)/高分辨透射显微镜(HRTEM)、X射线光电子能谱(XPS)以及紫外-可见吸收光谱(UV-Vis)等多种分析测试手段对合成材料的形貌、结构、组份和性质进行了表征分析,主要研究内容和创新性成果包括以下几个部分:
     1、以生物分子L-赖氨酸作为碱源和螯合剂,通过水热合成方法制备了系列二氧化锡(SnO_2)纳米晶,以罗丹明B紫外光降解反应作为模型反应考察了SnO_2的光催化性能。研究结果表明,采用这种方法所得到的SnO_2纳米晶的平均粒径低于10 nm,而且制得了迄今为止晶粒最小且小于激子波尔半径(2.7 nm)的SnO_2纳米晶(2 nm);生物分子的浓度、SnCl4/L-赖氨酸的摩尔比、水热反应温度和反应时间对SnO_2纳米晶的形状和颗粒大小影响不大。讨论了SnO_2纳米晶的水热合成温度和罗丹明B水溶液的pH值对紫外光催化降解罗丹明B反应活性的影响。研究结果表明180℃水热合成的纳米晶SnO_2,在碱性条件下的(pH=8)光催化性能最好,在150 min内光催化罗丹明B降解率接近100%。
     2、采用生物分子葡聚糖作为结构引导剂,通过模拟生物矿化的合成方法,在水溶液中实现了高度有序的BaCO_3的可控晶化和自组装。通过调节实验参数(例如葡聚糖浓度、Ba2+浓度以及反应时间)得到了由棒状微晶组成的树突状、哑铃状、球状等形貌的碳酸钡复杂纳米结构。所得产物的物相、形貌和微结构分别通过XRD、SEM、TEM、HRTEM和FT-IR进行分析表征。研究结果表明,树突状、哑铃状、球状复杂纳米结构的形成可能遵循棒-哑铃-球(R-D-S)的自组装生长机理。也探讨了碳酸钡复杂纳米结构改性后的超疏水性质。利用氟硅烷对碳酸钡复杂纳米结构表面处理,表面处理后的水接触角(CA)从亲水的52.9o变为疏水的156.3o。这表明物理结构和化学修饰可改变亲水性的表面为超疏水的表面。
     3、在N, N-二甲基甲酰胺(DMF)-水混合溶剂体系中,使用葡聚糖分子作为晶体修饰剂,矿化合成了具有不同形貌的碳酸锶纳米复杂结构,包括棒状、树突状、哑铃状以及球状分级复杂结构。探讨了一系列实验条件(如DMF与水的体积比、葡聚糖浓度、锶离子浓度以及反应时间)对碳酸锶纳米复杂结构形貌的影响。碳酸锶纳米复杂结构的生长可能遵循棒-哑铃-球(R-D-S)的自组装生长机理。体系中形成的氢键是该自组装生长方式的驱动力,对形貌有重要的影响。增大DMF与水的体积比或葡聚糖浓度可能会使体系氢键增多,从而有利于碳酸锶复杂纳米结构的形成。所合成的碳酸锶复杂纳米结构表面经氟硅烷处理后呈现超疏水性,另外该复杂纳米结构材料对染料分子也有较好的吸附性能。
     4、通过改进的Hummer法合成氧化石墨,对氧化石墨进行超声剥离,得到氧化石墨烯片层结构。铁离子和镍离子通过静电作用吸附在氧化石墨烯表面,滴加氨水沉淀,水热处理,最后经硼氢化钠还原制备了NiFe_2O_4@graphene复合纳米材料。通过XRD、FT-IR、Raman、TEM、HRTEM和XPS等分析测试手段对所合成NiFe_2O_4@graphene复合纳米材料进行系统的分析表征。结果表明,所合成的复合材料包含铁酸镍纳米颗粒和石墨烯,10-15nm左右的铁酸镍纳米颗粒结晶完整,几乎单分散锚固在石墨烯片上。磁性研究表明NiFe_2O_4@graphene复合纳米材料饱和磁强度(Ms)可达46.2 emu·g~(-1),矫顽力(Hc)为11.2 Oe,几乎没有剩磁效应(Mr= 0.583 emu g-1)属超顺磁性纳米材料。
The synthesis and design of nanometerials is the most promising research area for nanoscience, and it is also the base of the application and future development of nanotechnology. Due to the unique properties, small size effect, surface effect and quantum size effect, etc, which are different from their bulk substances, nanomaterials have great potential applications in the fields such as catalysis, environmental protection, bio-medicine, etc. The size and shape of the inorganic micro-nanomaterials have great influence on their physical and chemical properties. Thus, the synthesis and properties characterization of inorganic nanomaterials with controllable size, distribution, morphologies and structures are very important for the basical and applied research of new nanomaterials. In this dissertation, several different synthesis methods have successfully developed for synthesizing nano-structured materials with controlled morphology. By adjusting the reactant concentration, reaction time, reaction temperature and reactant ratio, we synthesize oxide (SnO_2), two carbonate (BaCO_3, SrCO_3) and NiFe_2O_4 nanocrystals@graphene composite with controllable morphology and size. The morphology, structure and components of the obtained products are characterized and analyzed by X-ray diffraction (XRD), infrared spectroscopy (FT-IR), Raman spectroscopy (Raman), scanning electron microscopy (SEM), transmission electron microscopy (TEM) /high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), UV-visible absorption spectroscopy (UV-Vis), etc. The formation mechanisms of the as-synthesized nanostructures are discussed and their properties are also investigated. The main results and innovative achievements are summarized as follows:
     1. SnO_2 nanocrystals were prepared by using a biomolecule (L-lysine)-assisted hydrothermal method. The as-synthesized products were characterized by XRD, Raman, FT-IR and TEM/HRTEM. The reaction parameters, including the concentrations of biomolecule or the ratio of the SnCl4/L-lysine, reaction temperature and time, had little effect on the size and shape of the as-synthesized SnO_2 nanocrystals. This synthesis route led to almost monodisperse products with particle sizes below 10 nm. The L-lysine functioned as both a source of alkali and a chelating agent. The as-synthesized nanocrystalline SnO_2 had excellent phtotcatalytic degradation of RhB under UV irradiation which was attributed to the more oxygen vacancies on the surface of the nanocrytalline SnO_2. The photocatalytic activity of the SnO_2 nanocrystalline was optimized. Under the basic condition(pH=8), SnO_2 nanocrystals synthesized at 180℃held the best catalytic property activit with the degradation of RhB, close to 100% within 150 min.
     2. Shape-controlled crystallization and self-assembly of high-ordered BaCO_3 architectures were synthesized by using dextran as the structure directing agents in aqueous solution. The phases, morphologies and structures of the products were characterized by XRD, SEM, TEM, HRTEM and FT-IR spectrophotometer. Dendrite-like, dumbbell-like, and spherical BaCO_3 complex nanostructures were obtained by tuning the experimental parameters such as the concentration of dextran, the concentration of Ba2+ cations and reaction time. The formation of dendrite-like, dumbbell-like, and spherical complex nanostructures could be explained by a rod-dumbbell-sphere (RDS) self-assembly growth mechanism. The surface properties of BaCO_3 crystals were successfully modified to be superhydrophobic using fluorosilane as modifier. The superhydrophobicity of BaCO_3 complex nanostructures was attributed to the combination of chemical composition and the textured topography. The superhydrophobic properties of as-resulted products may have potential applications as filler in composite materials.
     3. We reported the biomineralization in vitro of SrCO_3 complex nanostructures obtained by using glucosan as the modifier in the dimethyl formamide (DMF)-deionized water (DIW) mixed solvents. Rod-, dendrite-, dumbbell-, and sphere-like SrCO_3 nanostructures were achieved by tuning the volume ratio of DMF/DIW, reaction time, and concentrations. The phase, structure, and morphology of the as-obtained products were characterized by XRD, SEM, TEM, HRTEM, FT-IR spectroscopy, and Bunauer-Emmett-Teller (BET) analysis. The possible formation mechanism of SrCO_3 complex nanostructures follows the rod-dumbbell-sphere growth process. Both higher DMF/DIW ratios (i.e., more DMF molecules) and larger glucosan concentrations in the mineralization process were in favor of the self-assembly process, due to more hydrogen bonds may formed in the system,which led to the formation of dumbbells and spheres. The as-synthesized SrCO_3 complex nanostructures had excellent adsorption properties and superhydrophobicity, which may open up a wide range of potential applications in environmental protection.
     4. NiFe_2O_4 nanocrystals@graphene composite (NFGC) was synthesized via a simple chemical deposition method by using graphene oxide as a precursor. The as-synthesized product was systematically characterized by XRD, FT-IR, Raman,TEM, HRTEM, XPS, respectively. The magnetic property of the NiFe_2O_4 nanocrystals@graphene composite was also investigated. The results shown that the NiFe_2O_4 nanocrystals homogeneously anchored to the graphene sheets were well-crystallized particles, with an average size of 10-15 nm. Magnetic measurement reveals the NiFe_2O_4 nanocrystals@graphene composite was superparamagnetic with a saturation magnetization of 46.2 emu·g~(-1), a coercivity of 11.2 Oe and remanence effect of 0.583 emu·g~(-1).
引文
[1] Jain K K. Nanodiagnostics: application of nanotechnology in molecular diagnostics [J]. Expert Review of Molecular Diagnostics, 2003, 3(2): 153-161
    [2] Javey A., Kim H, Brink M, Wang Q, Ural A, Guo J, McIntyre P, McEuen P, Lundstrom M, Dai H J. High-kappa dielectrics for advanced carbon-nanotube transistors and logic gates [J]. Nature Materials, 2002, 1(4): 241-246
    [3] Seeman N C. DNA engineering and its application to nanotechnology [J]. Trends in Biotechnology, 1999, 17(11): 437-443
    [4] Birringer R, Gleiter H, Klein H P. Marquardt P. Nanocrystalline materials an approach to a novel solid structure with gas-like disorder [J]. Physics Letters A, 1984, 102(8): 365-369
    [5]王世敏,许祖勋,傅晶.纳米材料制备技术[M].北京:化学工业出版社,2001,64-80
    [6]巩雄,张桂兰,汤国庆.纳米晶体材料研究进展[J].化学进展, 1997, 9(4): 349-360
    [7]李嘉,尹衍升,张金升等.纳米材料的分类及基本结构效应[J].现代陶瓷技术, 2003, 24(2): 26-30
    [8] Yin L W, BandoY, LI M S, et al. Unique single-crystalline beta carbon nitride nanorods [J]. Advanced Materials, 2003, 15(21): 1840-1844
    [9] Mccormick P G, Tsuzuki T, Robinson J S, et al. Nanopowders synthesized by mechano chemical proeessing [J]. Advanced Materials, 2001, 13(12-13): 1008-1010
    [10] Nakagawa Y, Grigoriu C, Masugata et al. Synthesis of TiO2 and TiN nanosize powders by intense light ion-beam evaporation [J]. Journal of Materials Science, 1998, 33(2): 529-532
    [11] Choi S J, Woo D H, Myung N, et al. Eletrochemical preparation of cadmium selenide nano partieles by the use of molecular templates [J]. Journal of Eleetrochemical Society, 2001, 148(9): C569-C573
    [12] Kamalakar M V, Rayehaudhuri A K. A novel method of synthesis of dense array of aligned single crystalline copper nanotubes using eleetrodeposition in the presence of a rotating electric field [J]. Advanced Materials, 2008, 20(1): 149-154
    [13]闰景辉,宋丽红,李中田等.微乳液法制YF3:Er纳米材料[J].无机化学学报,2007, 23(8): 1432-1434
    [14]马天,杨金龙,张立明等.微乳液法制备球形氧化锆粉体及其分散特性的研究[J].无机化学学报, 2004, 20( 2): 121-127
    [15] Yu W Y, Tu W X, Liu H F. Synthesis of nanoscale platinum colloids by microwave dielectric heating [J]. Langmuir, 1999, 15(11): 6-9
    [16] Briuker C J, Scherer G W. Sol-Gel science the physics and chemistry of S-G processing [M]. New York: Academic press Inc, 1990: 74-81
    [17]吴会军,刘笑笑,朱冬生等.水热反应法制备纳米粉体的研究进展[J].现代化工, 2003, 23(suppl): 37- 40
    [18]周菊红,王涛,陈友存等.水热法合成一维纳米材料的研究进展[J].化学通报, 2008, (7): 510-517
    [19] Huang X K, LüD P, Yue H J, et al. Controllable synthesis ofα- andβ-MnO2: cationic effect on hydrothermal crystallization [J]. Nanotechnology, 2008, 19(22): 1-7
    [20]陈庆春,刘晓东,邓慧宇.花形纳米氧化锌粉的水热制备[J].粉末冶金工业, 2006, 16(2): 23- 26
    [21] Wang J M, Gao L. Hydrothermal synthesis and photoluminescence properties of ZnO nanowires [J]. Solid State Communications, 2004, 132 (3-4): 269-271
    [22] Gao S, Zhang J, Zhu Y F, et al. A conv enient solvothermal route to ruthenium nanoparticles [J]. New Journal of Chemistry, 2000, 24: 739-740
    [23] Zhang W X, Qian Y T. Low temperature synthesis of Nanocrystalline Mn3O4 by a Solvothermal method [J]. Solid State Ionics, 1999, 117(3-4): 331-335
    [24]陈代荣,孙思修.溶剂热合成无水NaBiO3多晶粉末[J].无机化学学报, 1997, 13(1): 109-117
    [25]刘志宏,张淑英,刘智勇等.化学气相沉积制备粉体材料的原理及研究进展[J].粉末冶金材料科学与工程, 2009, 14(6): 359-364
    [26] He F Q, Zhao Y P. Growth of ZnO nanotetrapods with hexagonal crown [J]. Applied Physics Letter s, 2006, 88(19): 193113- 193115
    [27]侯军伟,宋波,张志华等。化学气相沉积法合成高结晶度的三元系Cd1-xZnxS [J].物理化学学报, 2009, 25(4): 724-728
    [28]曾春来,唐东升,刘星辉等。化学气相沉积法中SnO2一维纳米结构的控制生长[J].物理化学学报, 2007, 56(11): 6531-6536
    [29]吴燕妮,廖世军.以切短多壁碳纳米管为载体制备高活性Pt/SCNT及PtRu/SCNT燃料电池催化剂[J].物理化学学报, 2010, 26(3): 669-674
    [30]李明轩,柳利,蔡朝霞.新型纳米复合杂多酸催化剂H3PW12O40/SiO2催化合成双酚A的研究[J].湖北大学学报(自然科学版), 2002, 24(1): 69-71
    [31]张密林,王君,梅长松.磁性纳米固体超强酸的合成、表征及性能研究[J].高等学校化学学报, 2002, 23(7): 1347-1351.
    [32] Fuishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238(5358): 37-38
    [33] Gad-Allah T A, Kato S, Satokawa S, et al. Treatment of synthetic dyes wastewater utilizing a magnetically separable photocatalyst (TiO2/SiO2/Fe3O4): parametric and kinetic studies [J]. Desalination, 2009, 244(1/2 /3): 1-11
    [34]申玉芳,龙飞,邹正光.半导体光催化技术研究进展[J].材料导报, 2006, 20(6): 28-31
    [35] You Z X, Inazu K, Aika K, et al. Electronic and structural promotion of barium hexaaluminate as a ruthenium catalyst support for ammonia synthesis [J]. Journal of Catalysis, 2007, 251(2): 321-331
    [36] Chen M S, Kumar D, Yi C, et al. The promotional effect of gold in catalysis by palladium gold [J]. Science, 2005, 310 (5746): 291-293
    [37] Yeung C M Y, Yu K M K, Fu Q J, et al. Engineering Pt in ceria for a maximum metal support interaction in catalysis [J]. Journal of American Chemical Society, 2005, 127(51): 18010-18011
    [38] Koo K Y, Roh H S, Seo Y T, et al. A highly effective and stable nano sized Ni /MgO-Al2O3 catalyst for gas to liquids (GTL) process [J]. International Journal of Hydrogen Energy, 2008, 33(8): 2036-2043
    [39]徐瑞芬,许秀艳,付国柱等.纳米TiO2在涂料中的抗菌性能研究[J].北京化工大学学报, 2002, 29(5):45-48
    [40]邱星林,徐安武.纳米级TiO2光催化净化大气环保涂料的研制[J].中国涂料, 2000(4): 30-32
    [41]杨阳,涂学炎.紫外光催化降解空气中甲醛的纳米二氧化钛复合涂料的研究[J].涂料工业, 2001, 33(8): 6-9
    [42]刘娅莉,徐龙贵,周滨.无机纳米粒子在涂料中的应用及其进展[J].现代涂料与涂装, 2002, 16(3) :35-37
    [43]郭刚,曹建军,段小平等.金红石型纳米二氧化钛改性聚酯/异氰脲酸三缩水甘油酯粉末涂料研究[J].现代化工,2004 ,24(5) :38-40
    [44]易家康.纳米医学正在改变诊断和治疗方法[J].世界科学, 2006, (1): 20-21
    [45]段箐华,王柯敏,谭蔚泓等.新型有机荧光染料嵌合的核壳荧光纳米材料的研制[J].高等学校化学学报, 2003, 24(2): 255-259
    [46] Alexiou C, Amold W, Klein J K, et al. Loco regional cancer treatment with magnetic drug targeting [J]. Cancer Res, 2001, 60(23): 6641-6648
    [47]杨凯,温玉明.颈淋巴结靶向抗癌纳米微粒的研制及其对口腔癌颈淋巴结转移灶靶向治疗的研究[J].现代口腔医学杂志, 2006, 20(4): 337-340
    [48]成进学,成钢,李云.负离子远红外纳米银、锌、硒元素中药外治烧烫伤药剂的应用研究进展[J].广东微量元素科学, 2010, 17(6): 12-16
    [49]马碧涛,吴敏.纳米中药的制备方法研究进展[J].上海中医药杂志, 2009, 43(12): 77-80
    [50] Favier F,Walter E C,Zach M P,et al. Hydrogen sensors and switches from electrodeposited palladium nanowires [J]. Science,2001,293(5538): 2227-2231
    [51] Shchukin V A,Grundmann M,Kirstaedter N,et al. Direct formation vertically coupled quantum dots in Stranski-Krastanow growth [J]. Physical Review B: Condensed Matter, 1996, 54(12): 8743-8750
    [52]张金中,王中林,刘俊等.自组装纳米结构[M].北京:化学工业出版社, 2004,197-198
    [53] Carter S A,Scott J C,Brock P J. Enhanced luminance in polymer composite light emitting deviees [J]. Applied Physics Letters, 1991, 71(9): 1145-1147
    [54] O’Regan B,Cratzel M B. A low-cost,high-efficiency solar cell based on dye- sensitized colloidal TiO2 films [J]. Nature, 1991,353(24): 737-740
    [55] Keis K,Vayssieres L,Lindquist S E,et al. Nanostructured ZnO electrodes for photovoltaic applications [J]. Nanostructured Materials. 1999, 12(l04): 487-490
    [56]都有为.纳米磁性材料及其应用[J].材料导报, 2001, 15(7): 6-8
    [57]余丹梅,周上祺,陈昌国等.纳米氢氧化镍的研究进展[J].电池, 2003, 33(2): 114-115
    [58]彭成红,刘澧浦,李祖.纳米氢氧化镍材料的研制[J].电池, 2001, 31(4): 175-177
    [59]李稳,姜长印,万春荣.纳米氢氧化镍的研究进展[J].电池, 2004, 34(16): 440-441
    [60]尤金垮,杨勇,舒东.锂离子电池纳米电极材料研究[J].电化学, 1998, 4(1): 94-100
    [61]黄坤,刘煦.纳米级电池活性材料的研究进展[J].电池工业, 2001, 6(3): 133-136
    [62] Yoo E,Kim J,Hosono E. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries [J]. Nano Letters, 2008, 8(8): 2277-2282
    [63] Paek S M, Yoo E J, Hononma I, et al. Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure [J]. Nano Letters, 2009, 9(1): 72-75
    [64] Ma R Z, Wei B Q, Xu C L, et al. The development of carbon nanotubes/RuO2·xH2O electrodes for electrochemical capacitors [J]. Bulletin of the Chemical Society of Japan, 2000, 73(8): 1813-1816
    [65] Liu B , Xie J , Lee J Y, et al. Optimization of high-yield biological synthesis of single-crystalline gold nanoplates [J]. Journal of Physical Chemistry B, 2005, 109(32): 15256-15263
    [66] Song Y J, Yang Y, Medforth C J, et al. Controlled Synthesis of 2-D and 3-D dendritic platinum nanostructures [J]. Journal of the American Ceramic Society, 2004, 126(2): 635-645
    [67] Raveendran P, Fu J, Wallen S L. A simple and ''green'' method for the synthesis of Au, Ag and Au-Ag alloy nanoparticles [J]. Greem Chemistry, 2006, 8(1): 34-38
    [68] Shchipunov Y A,Karpenko T K. Hybrid polysaccharide-silica nanocomposites prepared by the sol-gel technique [J]. Langmuir, 2004, 20(10): 3882-3886.
    [69] Mcmillan R A, Howard J, Zaluzec N J, et al. A self-assembling protein template for constrained synthesis and patterning of nanoparticle arrays [J]. Journal of the American Ceramic Society, 2005, 127(9): 2800-2801
    [70] Bigham S R, Coffer J L. The influence of adenine content on the properties of Q-CdS clusters stabilized by polynucleotides [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 95(2-3), 211-219
    [71] Liang H J, Angelini T E, Braun P V, et al. Roles of anionic and cationic template components in biomineralization of CdS nanorods using self-assembled DNA-membrane complexes [J]. Journal of the American Ceramic Society, 2004, 126(43): 14157-14165
    [72] Hinds S, Taft B J, Levina L, et al. Nucleotide-directed growth of semiconductor nanocrystals [J]. Journal of the American Ceramic Society, 2006, 128(1): 64-65
    [73] Kuang D B, Xu A W, Fang Y P, et al. Surfactant-assisted growth of novel PbS dendritic nanostructures via facile hydrothermal process [J]. Advanced Materials, 2003, 15(20), 1747-1750
    [74] Lu Q Y, Gao F, Komarneni S. Multi-level assemblies of lead sulphide nanorods [J]. Nanotechnology, 2006, 17(10): 2574-2580
    [75]钟家松,向卫东,刘丽君,等[J].生物分子辅助溶剂热合成硫化锑纳米棒[J].高等学校化学学报, 2010,31(7): 1303-1308
    [76]马琳,李辉,常焜等.水热合成纳米片状SnS2及其电化学贮放锂性能[J].浙江大学学报(工学版). 2011, 45(2): 354-363
    [77] Wu Q Z, Cao H Q, Zhang S C, et al. Generation and optical properties of monodisperse Wurtzite-type ZnS microsphere [J]. Inorganic Chemistry, 2006, 45(18), 7316-7322
    [78] Wu Q Z, Cao H Q, Luan Q Y, et al. Biomolecule-assisted synthesis of water-soluble silver nanoparticles and their biomedical applications [J]. Inorganic Chemistry, 2008, 47(13): 5882-5888
    [79] Cao H Q, Wang G Z, Warner J H, ea al. Amino-acid-assisted synthesis and size-dependent magnetic behaviors of hematite nanocube [J]. Applied Physics Letters, 2008, 92(1): 13110-13113
    [80] Xiang J H, Cao H Q, Wu Q Z, et al. L-cysteine-assisted synthesis and optical properties of Ag2S nanospheres [J]. Journal of Physical Chemistry C, 2008, 112(10): 3580-3584
    [81] Mann, S. Biomineralization: Principles and concepts in bioinorganic materials chemistry [M]. Oxford University Press, 2001, 6-8
    [82]欧阳建明.生物矿化的基质调控及其仿生应用[M].北京:化学工业出版社, 2006, 5-7
    [83] Tong H, Ma W T, Wang L L. Control over the crystal phase, shape, size and aggregation of calcium carbonate via a L-aspartic acid inducing process [J]. Biomaterials, 2004, 25(17): 3923-3929
    [84] Levi Y, Falini G, Addadi L. Structure of the nacreous organic matrix of a bivalve mollusk shell examined in the hydrated state using Cryo-TEM [J]. Journal of Structural Biology, 2001, 135(1): 8-17
    [85] Thompson J B, Paloczi G T, Kindt J H. Direct observation of the transition from calcite to aragonite growth as induced by abalone shell proteins [J]. Biophysical Journal, 2000, 79(6): 3307-3312
    [86] Sedlak M, Antonietti M, C?lfen H. Synthesis of a new class of double-hydrophilic block copolymers with calcium binding capacity as builders and for biomimetic structure control of minerals [J]. Macromolecular Chemistry and Physics, 1998, 199(2): 247-254
    [87] Hosoda N, Kato T. Thin-film formation of calcium carbonate crystals: Effects of functional groups of matrix polymers [J]. Chemistry of Materials, 2001, 13(2): 688-693
    [88]王静梅,姚松年.胆固醇/卵磷脂/壳聚糖体系中碳酸钙模拟生物矿化的研究[J].无机化学学报, 2001, 17(2): 202-208
    [89] Yang L, Zhang X Y, Liao Z J, et al. Interfacial molecular recognition between polysaccharides and calcium carbonate during crystallization [J]. Journal of Inorganic Biochemistry, 2003, 97(4): 377-383
    [90] Suito K,Kawai N,Masuda Y. High pressure synthesis of orthorhombic SnO2 [J]. Materials Research Bulletin, 1975, 10(7): 677-680
    [91]刘应开,二氧化锡和四氧化三钻纳米棒的制备、表征及光学性质研究[D].南京大学博士学位论文, 2002: 9
    [92] Cao H, Qiu X, Liang Y, et al. Sol-gel template synthesis and photoluminescence of n- & p-type semiconductor oxidenanowires [J]. ChemPhysChem, 2006, 7(2): 497-501
    [93] Kuang Q, Lao C, Wang Z L, et al. High-sensitivity humidity sensor based on a single SnO2 nanowire [J]. Journal of the American Chemical Society, 2007, 129(19): 6070-6071
    [94] Schüth F, Marlow F. Colloidal crystals find new order [J]. Nature, 2007, 449(7156): 550-551
    [95] Eijt S W H, Veen A V, Schut H, et al. Study of colloidal quantum-dot surfaces using an innovative thin-film positron 2D-ACAR method [J]. Nature Materials. 2006, 5(1): 23-26
    [96] Kuang Q, Lao C, Wang Z L, et al. High-sensitivity humidity sensor based on a single SnO2 nanowire [J]. Journal of the American Chemical Society, 2007, 129(19): 6070-6071
    [97] Leite E R, Weber I T, Longo E, et al. A new method to control particle size and particle sizedistribution of SnO2 nanoparticles for gas sensor applications [J]. Advanced Materials, 2000, 12(12): 965-968
    [98] Moreno M, Varela A, Otero-Diaz L C. Cation nonstoichiometry in tin-monoxide-phase Sn1-δO with tweed microstructure [J]. Physical Review B: Condensed Matter, 1997, 56(9): 5186-5192
    [99] Park M S, Wang G X, Kang Y M, et al. Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries [J]. Angewandte Chemie International Edition, 2007, 46(5): 750-753
    [100] Lin Y, Dong J, Liu M. Well Aligned Nano-“Box Beams”of SnO2 [J]. Advanced Materials, 2004, 16(4): 353-356
    [101] Zhang D F, Sun L D, Yin J L, et al. Low-temperature fabrication of highly crystalline SnO2 nanorods [J]. Advanced Materials, 2003, 15(12): 1022-1025
    [102] Juttukonda V, Paddock R L, Raymond J E, et al. Facile synthesis of tin oxide nanoparticles stabilized by dendritic polymers [J]. Journal of the American Chemical Society, 2006, 128(2): 420-421
    [103] Yang R, Wang Z L. Springs, rings, and spirals of rutile-structured tin oxide nanobelts [J]. Journal of the American Chemical Society, 2006, 128(1): 1466-1467
    [104] Duan J, Yang S, Liu H, et al. Single crystal SnO2 zigzag nanobelts [J]. Journal ofthe American Chemical Society, 2005, 127(17): 6180-6181
    [105] Chen B, Russell J M, Shi W, et al. Large-scale, solution-phase growth of single-crystalline SnO2 nanorods [J]. Journal of the American Chemical Society, 2004, 126(19): 5972-5973
    [106] Vayssieres L, Graetzel M. Highly ordered SnO2 nanorod arrays from controlled aqueous growth [J]. Angewandte Chemie International Edition, 2004, 43(28): 3666-3670
    [107] Yang H G, Zeng H C. Self-construction of hollow SnO2 octahedra based on two dimensional aggregation of nanocrystallites [J]. Angewandte Chemie International Edition, 2004, 43(44): 5930-5933
    [108] Tang K, Zhang J, Yan W, et al. One-step controllable synthesis for high-quality ultrafine metal oxide semiconductor nanocrystals via a separated two-phase hydrolysis reaction [J]. Journal of the American Chemical Society, 2008, 130(8): 2676-2680
    [109] Cao H Q, Zhang L, Liu X W, et al. Catalytic chemiluminescence properties of boehmite "nanococoons" [J]. Applied Physics Letters, 2007, 90(19): 19310-19314
    [110] Koo H J, Kim Y J, Lee Y H, et al. Nano-embossed hollow spherical TiO2 as bifunctional material for high- efficiency dye-sensitized solar cells [J]. Advanced Materials, 2008, 20(1): 195-199
    [111] Porto S P S, Fleury P A, Damen T C. Raman spectra of TiO2, MgF2, ZnF2, FeF2 and MnF2 [J]. Physical Review B: Condensed Matter, 1967, 154(2): 522-526
    [112] Zhou J X, Zhang M S, Hong J M, Yin Z. Raman spectroscopic and photoluminescence study of single-crystalline SnO2 nanowires [J]. Solid State Communications, 2006, 138(5): 242-246
    [113] Emirogla S, Barsan N, Weimar U, Hoffmann V. In situ diffuse reflectance infrared spectroscopy study of CO adsorption on SnO2 [J]. Thin Solid Films 2001, 391(2): 176-185
    [114] Li Z, Shen W, Zhang X, et al. Controllable growth of SnO2 nanoparticles by citric acid assisted hydrothermal process [J]. Colloids and Surfaces A: Physiochemical and Engineering Aspects, 2008, 327(1-3): 17-20
    [115] Owens F J, Poole Jr C P. The Physics and Chemistry of Nanosolids [M]. New Jersey: John Wiley & Sons, Inc. 2008, 105-108
    [116] Ravich Y I, Efimova B A, Tamarchenko V I. Scattering of current carriers and transport phenomena in lead chalcogenides [J]. Physica Status Solidi A: Applied Research, 1977, 43: 11-12
    [117] Xu X, Zhuang J, Wang X. SnO2 quantum dots and quantum wires: controllablesynthesis, self-assembled 2D architectures, and gas-sensing properties [J]. Journal of the American Chemical Society, 2008, 130(37): 12527-12535
    [118] West A R. Basic Solid State Chemistry [M]. West Sussex: John Wiley & Sons. Ltd (2nd), 1999, 305-307
    [119] Cao G Z. Nanostructures & Nanomaterials: Synthesis, Properties & Applications [J]. London: Imperial College Press, 2004, 456-458
    [120] Zhu H, Yang D, Yu G, Zhang H, Yao K. A simple hydrothermal route for synthesizing SnO2 quantum dots [J]. Nanotechnology, 2006, 17(9): 2386-2389
    [121] Tao X, Su J, Chen J F. Photooxidative degradation of dye pollutants accumulated in self-assembled natural polyelectrolyte microshells under visible radiation [J]. Chemistry-A European Journal, 2006, 12(15): 4164-4169
    [122] Sun X, Lin J. Synergetic effects of thermal and photo-catalysis in purification of dye water over SrTi1-xMnxO3 Solid Solutions [J]. Journal of Physical Chemistry C, 2009, 113(12): 4970-4975
    [123] Wen Z, Wang G, Lu W, et al. Enhanced photocatalytic properties of mesoporous SnO2 induced by low concentration ZnO doping [J]. Crystal Growth and Design, 2007, 7(9): 1722-1725
    [124] Ashkarran A A, Iraji zad A, Ahadian M M, et al. Synthesis and photocatalytic activity of WO3 nanoparticles prepared by the arc discharge method in deionized water [J]. Nanotechnology, 2008, 19(19): 195709-195716
    [125] Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis [J]. Chemical Reviews. 1995, 95(1): 69-96
    [126] Hidaka H, Zhao J, Pelizzetti E, et al. Photodegradation of surfactants. 8. comparison of photocatalytic processes between anionic sodium dodecylbenzenesulfonate and cationic benzyldodecyldlmethylammonlum chloride on the TiO2 surface [J]. Journal of Physical Chemistry.1992, 96(5): 2226-2230
    [127] Li J, Ma W, Chen C, et al. Photodegradation of dye pollutants on one-dimensional TiO2 nanoparticles under UV and visible irradiation [J]. Journal of Molecular Catalysis A: Chemical, 2007, 261(1): 131-138
    [128] Weiner S, Addadi L. Strategies in mineralized biological materials [J]. Journal of Materials Chemistry, 1997, 7: 689-702
    [129] Mann S. The composition of the mineralized cuticle in marine and terrestrial isopods: A comparative study [J]. Journal of the Chemical Society, Dalton Transactions, 1997: 3953~3961
    [130] Aizenberg J, Tkachenko A, Weiner S, et al. Calcitic microlenses as part of the photoreceptor system in brittlestars [J]. Nature, 2001, 412: 819-822
    [131] Ouyang J M. The matrix modulation of biomineralization and their biomimetic applications [M]. Beijing: Chemical Industry Press, 2006, 15
    [132] Qi L M, Li J, Ma M J. Biomimetic morphogenesis of calcium carbonate in mixed solutions of surfactants and double-hydrophilic block copolymers [J]. Advanced Materials, 2002, 14(4): 300-303
    [133] Nan Z D, Shi Z Y, Yan B Q, et al. A novel morpHology of aragonite and an abnormal polymorpH transformation from calcite to aragonite with PAM and CTAB as additives [J]. J. Colloid Interf. Sci., 2008, 317(1): 77-82
    [134] Yu J G, Zhao X F, Cheng B, et al. Controlled synthesis of calcium carbonate in a mixed aqueous solution of PSMA and CTAB [J]. Journal of Solid State Chemistry, 2005, 178(3): 861-867
    [135] Yu S H, C?lfen H, Tauer K. Antonietti M. Tectonic arrangement of BaCO3 nanocrystals into helices induced by a racemic block [J]. Nature Materials. 2005, 5(1): 51-55
    [136] Qi L M, C?lfen H, Antonietti M. Control of barite morphology by double-hydrophilic block copolymers [J]. Chemistry of Materials, 2000, 12(8), 2392-2403
    [137] Yu S H, C?lfen H, Antonietti M. Control of the morphogenesis of barium chromate by using double-hydrophilic block copolymers (DHBC) as crystal growth modifiers [J]. Chemistry-A European Journal, 2002, 8(13): 2937-2935
    [138] Orme C A, Noy A, Wierzbicki A, et al. Formation of chiral morphologies through selective binding of amino acids to calcite surface steps [J]. Nature, 2001, 411(6839): 775-779
    [139] Tlatlik H, Simon P, Kawska A, et al. Biomimetic fluorapatite-gelatine nanocomposites: pre-structuring of gelatine matrices by ion impregnation and its effect on form development [J]. Angewandte Chemie International Edition, 2006, 45(12): 1905-1910
    [140] Butler M F, Glaser N, Weaver A C, et al. Calcium carbonate crystallization in the presence of biopolymers [J]. Crystal Growth and Design, 2006, 6(3): 781-794
    [141] Yang L, Zhang X Y, Liao Z J, et al. Interfacial molecular recognition between polysaccharides and calcium carbonate during crystallization [J]. Journal of Inorganic Biochemistry, 2003, 97(4): 377-383
    [142]张嫦,周小菊.针状碳酸钡的合成工艺研究[J].矿冶工程, 2004, 24 (1): 70-71.
    [143] Yu S H, C?lfen H, Xu A W, et al. Complex spherical BaCO3 superstructures self-assembled by a facile mineralization process under control of simple [J].Crystal Growth and Design, 2004, 4(1): 33-37
    [144]刘树信,霍冀川,杨定明等.均相沉淀法制备不同晶形碳酸钡的研究[J].无机盐工业, 2005, 37(4): 15-17
    [145]刘树信,霍冀川,杨定明等.不同晶形超细碳酸钡粒子的制备研究[J].人工晶体学报, 2005, 34(3): 531-535
    [146] Chen P C, Cheng G Y, Kou M H, et al. Nucleation and morphology of barium carbonate crystals in a semi-batch crystallizer [J]. Journal of Crystal Growth, 2001, 236(4): 458-472
    [147]任引哲,孙素芳,王玉湘.纤维状碳酸钡晶体的合成[J].合成化学, 2006, 14 (2): 157-159
    [148] Kitano Y, Park K, Hood D W. Pure aragonite synthesis [J]. Journal of Geophysical Research, 1962, 67(12): 4873-4788
    [149] Guo X H, Yu S H. Controlled mineralization of barium carbonate mesocrystals in a mixed solvent and at the air/solution interface using a double hydrophilic block copolymer as a crystal modifier [J]. Crystal Growth and Design, 2007, 7(2): 354-359
    [150]江雷,冯琳.仿生智能纳米界面材料[M].北京:化学工业出版社, 2007, 45
    [151] Feng L, Li S H, Li Y S, et al. Super-hydrophobic surfaces: from natural to artificial [J]. Advanced Materials, 2002, 14(24): 1857-1860
    [152] Zhai L, Cebeci F C, Cohen R E, et al. Stable superhydrophobic coatings from polyelectrolyte multilayers. Nano Letters, 2004, 4(7): 1349-1353
    [153] Mccarthy T J, Oner D. Ultrahydrophobic surfaces: effects of topography length scales on wettability [J]. Langmuir 2000, 16(20): 7777-7782
    [154] Tadanaga T, Morinaga J, Matsuda A, et al. Superhydrophobic-superhydrophilic micropatterning on flowerlike alumina coating film by the sol-gel method [J]. Chemistry of Materials, 2000, 12(3): 590-592
    [155] Lau K K S, Bico J, Teo K B K, et al. Superhydrophobic carbon nanotube forests [J]. Nano Letters, 2003, 3(12): 1701-1705
    [156] Zhao N, Shi F, Wang Z Q, Zhang, X. Combining layer-by-layer assembly with electrodeposition of silver aggregares for fabricating superhydrophobic surfaces [J]. Langmuir, 2005, 21(10): 4713-4716
    [157] Addadi L, Moradian J, Shay E, et al. A chemical model for the cooperation of sulfates and carboxylates in calcite crystal nucleation: Relevance to biomineralization [J]. Proceedings of the National Academy of Sciences, 1987, 84(9): 2732-2736
    [158] Yu S H, C?lfen H, Antonietti M. Polymer-controlled morphosynthesis and mineralization of metal carbonate superstructures [J]. Journal of Physical Chemistry B, 2003, 107(38): 7396-7405
    [159] Kniep R, Busch S. Biomimetic growth and self-assembly of fluorapatite aggregates by diffusion into denatured collagen matrices [J]. Angewandte Chemie International Edition, 1996, 35(22): 2624-2626
    [160] Busch S, Dolhaine H, Duchesne A, et al. Biomimetic morphogenesis of fluorapatite-gelatin composites: fractal growth, the question of intrinsic electric fields, core/shell assemblies, hollow spHeres and reorganization of denatured dollagen [J]. European Journal of Inorganic Chemistry, 1999, 10, 1643-1653
    [161] Mann S. Molecular tectonics in biomineralization and biomimetic materials chemistry [J]. Nature 1993, 365(7): 499-505
    [162] Chen L, Shen Y, Xie A, et al. Nanosized barium carbonate particles stabilized by cetyltrimethylammonium bromide at the water/hexamethylene interface [J]. Crystal Research and Technology. 2007, 42(9): 886-889
    [163] Lv S, Sheng J, Zhang S, Sun W. Effects of reaction time and citric acid contents on the morpHologies of BaCO3 via PVP-assisted method [J]. Materials Research Bulletin, 2008, 43(5): 1099-1101
    [164] Clayden J, Greeves N, Warren S, Wothers P. Organic Chemistry [M], Oxford: Oxford University Press, 2001, 69
    [165] Zhao Z, Zhou X, Zhang W, Zhao W. Instrumental Analysis [M]. Beijing: Higher Education Press, 1991, 87-88
    [166] Lee Y S. Self-assembly and nanotechnology: a force balance approach [M]. Hoboken: John Wiley & Sons, Ltd., 2008, 42-44
    [167] Pelesko J A. Self-assembly: the science of things that put themselves together [M]. Suite: Chapman & Hall/CRC, 2007, 300
    [168] Kelsall R, Hamley I, Geoghegan M. Nanoscale Science and Technology [M]. West Sussex: John Wiley & Sons Ltd., 2005, 76-78
    [169] Hornyak G L, Dutta J, Tibbals H F, Rao A. K. Introduction to Nanoscience [M]. Boca Raton: CRC Press, 2008, 103-104
    [170] Jones R. Can nanotechnology ever prove that it is green [J]? Nature Nanotechnology, 2007, 2(2): 71-72
    [171]柯清平,李广录,郝天歌等.超疏水模型及其机理[J].化学进展, 2010, 22(2/3): 284-290
    [172] Cassie A B D, Baxter S. Wettability of porous surfaces [J]. Transactions of theFaraday Society, 1944, 40: 546-551
    [173]江雷.从自然到仿生的超疏水纳米界面材料.化工进展[J], 2003, 22(12): 1258-1264
    [174] Cao H, Zheng H, Liu K, Warner J H. Bioinspired pony-lkeβ-Ni(OH)2 nnostructures with ehanced electrochemical ativity and sperhydrophobicity [J]. ChemPhysChem, 2010, 11(2): 489-494
    [175] Wei H, Wang Z, Zhang J, et al. Time-dependent, protein-directed growth of gold nanoparticles within a single crystal of lysozyme [J]. Nature Nanotechnology., 2011, 6(2): 93-96
    [176] C?lfen H. Biomineralization: A crystal-clear view [J]. Nature Materials, 2010, 9(12): 960-961
    [177] Reith F, Rogers S L, McPHail D C, Webb D. The genome of black cottonwood, populus trichocarpa [J]. Science, 2006, 313 (5793): 1596-1604
    [178] Naik R R, Stringer S J, Agarwal G, et al. Biomimetic synthesis and patterning of silver nanoparticles [J]. Nature Materials, 002, 1(3): 169-172
    [179] Faatz M, Gr?hn F, Wegner G. Amorphous calcium carbonate: Synthesis and potential intermediate in biomineralization [J]. Advanced Materials, 2004, 16(12): 996-1000
    [180] Gebauer D, Gunawidjaja P N, Ko J Y P, et al. Proto-calcite and proto-vaterite in amorpHous calcium carbonates [J]. Angewandte Chemie International Edition, 2010, 49(47): 8889-8891
    [181] Gebauer D, V?lkel A, C?lfen H. Stable prenucleation calcium carbonate clusters [J]. Science, 2008, 322(5909): 1819-1822
    [182] Ni S, Yang X, Li T. Hydrothermal synthesis and photoluminescence properties of SrCO3 [J]. Materials Letters, 2011, 65(4): 766-768
    [183] Li Z X, Sun A H, Xu G J, et al. Dielectric and piezoelectric properties of K0.47Na0.47Li0.06NbO3 doped with BaCO3 and SrCO3 [J]. Journal of Alloys and Compounds, 2009, 486(1-2): 532-535
    [184] Zhou W, Shao Z, Ran R, et al. LSCF nano-powder from cellulose-glycine-nitrate process and its application in intermediate-temperature solid oxide fuel cells [J]. Journal of the American Ceramic Society, 2008, 91(4): 1155-1162
    [185] Yu J G, Guo H,Cheng B. Shape evolution of SrCO3: particles in presence of poly-(styrene-alt-maleieacid) [J]. Journal of Solid State Chemistry, 2006, 179(3): 800-803
    [186] Guo X H, Yu S H, Cai G B. Crystallization in a mixture of solvents by using acrystal modifier: morphology control in the synthesis of highly monodisperse CaCO3 microspheres [J]. Angewandte Chemie International Edition, 2006, 45(24): 3977-3981
    [187] Mcmullan G, Meehan C, Conneely A, et al. Microbial decolourisation and degradation of textile dyes [J]. Applied microbiology and biotechnology, 2001, 56(1-2): 81-87
    [188] Xu L, Shen J, Lu C, Chen Y, Hou W. Self-assembled three-dimensional architectures of Y2(WO4)3:Eu: controlled synthesis, growth mechanism, and shape-dependent luminescence properties [J]. Crystal Growth and Design 2009, 9(7): 3129-3136
    [189] Silva M A do R, Silva D C, Machado V G,et al. Preferential solvation of a hydropHobic probe in binary mixtures comprised of a nonprotic and a hydroxylic solvent: A view of solute-solvent and solvent-solvent interactions [J]. Journal of Physical Chemistry A, 2002, 106(37): 8820-8826
    [190] Li S Q, Yu J M, Lin R S. Apparent molar volumes of sodium methylbenzoates in N,N-dimethyl formamide-water mixtures at 298.15 K [J]. Journal of Solution Chemistry, 2003, 32(12): 1065-1074
    [191] Wang L, Li S, Zhai Q, et al. Thermodynamic study of RbCl or CsCl in the mixed solvent DMF+H2O by potentiometric measurements at 298.15 K [J]. Journal of Chemical and Engineering Data, 2010, 55(11): 4699-4703
    [192] Miller F A, Carlson G L, Bentley F F, Jones W H. Infared spectra of inorganic ions in the cesinm brimide region (700-300 cm-1) [J]. Spectrochimica Acta, 1960,16(1-2): 135-235
    [193] Chen L, Shen Y, Xie A,et al. Nanosized barium carbonate particles stabilized by cetyltrimethylammonium bromide at the water/hexamethylene interface [J]. Crystal Research and Technology, 2007, 42(9): 886-889
    [194] Vollath D. Nanomaterials: An introduction to synthesis, properties, and applications [M]. Weinheim: Wiley-VCH, 2008, 95
    [195] Murphy W L, Mooney D J. Bioinspired growth of crystalline carbonate apatite on biodegradable polymer substrata [J]. Journal of the American Chemical Society, 2002, 124(9): 1910-1947
    [196] Bhushan B, Jung Y C. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction [J]. Progress in Materials Science, 2011, 56(1): 1-108
    [197] Zhao W J, Wang L P , Xue Q J. Fabrication of low and high adhesion hydrophobic Au surfaces with micro/nano-biomimetic structures [J]. Journal of Physical Chemistry C, 2010, 114(26): 11509-11514
    [198] Yao X, Xu L A, Jiang L. Fabrication and characterization of superhydrophobic surfaces with dynamic stability [J]. Advanced Functional Materials, 2010, 20(19): 3343-3349
    [199] Burton Z, Bhushan B. Hydrophobicity, adhesion, and friction properties of nanopatterned polymers and scale dependence for micro- and nano- electromechanical systems. Nano Letters, 2005, 5(8): 1607-1613
    [200] Okinen V, Sainiemi L, Franssila S. Complex droplets on chemically modified silicon nanograss [J]. Advanced Materials, 2008, 20(18): 3453-3456
    [201] Yazdanbakhsh M, Khosravi I, Goharshadi E K, Youssefi A. Fabrication of nanospinel ZnCr2O4 using sol-gel method and its application on removal of azo dye from aqueous solution [J]. Journal of Hazardous materials, 2010, 184(1-3): 684-689
    [202] Dekany I, Kruger-Grasser R, Weiss A. Selective liquid sorption properties of hydrophobized graphite oxide nanostructures [J]. Colloid and Polymer Science, 1998, 276(7): 570-576
    [203] Bourlinos A B, Gournis D, Petridis D, et al. Graphite oxide: Chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids [J]. Langmuir, 2003, 19(15): 6050-6055
    [204] Kovtyukhova N I, Ollivier P J, Martin B R, et al. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations [J]. Chemistry of Materials, 1999, 11(3): 771-778
    [205] He H, Klinowski J, Forster M, et al. A new structural model for graphite oxide [J]. Chemical Physics Letters, 1998, 287(1-2): 53-56
    [206] Jeong H K, Lee Y P, Lahaye R J W E. Evidence of graphitic AB stacking order of graphite oxides [J]. Journal of the American Chemical Society, 2008, 130(4): 1362-1366
    [207] Liu Z H, Wang Z M, Yang X J, et al. Intercalation of organic ammonium ions into layered graphite oxide [J]. Langmuir, 2002, 18(12): 4926-4932
    [208] Brodie B C. Surle poids atomique du graphite [J]. Annali di Chimica, 1860, 59: 466-472
    [209] Hummers W, Offeman R. Preparation of graphitic oxide [J]. Journal of the American Chemical Society, 1958, 80(6): 1339-1339
    [210] Rabin B, Liu P K Y, Wade W. Encapsulation of polyanilines into graphite oxide [J]. Langmuir, 2006, 22(4): 1729-1734
    [211] Chandra V, Park J, Chun Y, et al. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal [J]. ACS Nano, 20104 (7): 3979-3986
    [212]张琼,贺蕴秋,陈小刚等.氧化钛/氧化石墨烯复合结构及其光催化性能.科学通报, 2010, 55 (7 ): 620-628
    [213] Li B J, Cao H Q, Shao J, et al. Superparamagnetic Fe3O4 nanocrystals@graphene composites for energy storage devices [J]. Journal of Materials Chemistry, 2011, 21(13): 5069-5075
    [214] Li B J, Cao H Q, Shao J, et al. Co3O4@graphene composites as anode materials for high-performance lithium-ion batteries [J]. Inorganic Chemistry, 2011, 50(5): 1628-1632
    [215] Liu S, Liu X H, Li Z P, et al. Fabrication of free-standing graphene/polyaniline nanofibers composite paper via electrostatic adsorption for electrochemical supercapacitors [J]. New Journal of Chemistry, 2011, 35(2): 369-374
    [216] Li Z P, Wang J Q, Liu X H, et al. Electrostatic layer-by-layer self-assembly multilayer films based on graphene and manganese dioxide sheets as novel electrode materials for supercapacitors [J]. Journal of Materials Chemistry, 2011, 21(10): 3397-3403
    [217] Dikin D A, Stallkovieh S, Zimney E J, et al. Preparation and characterization of graphene oxide paper [J]. Nature, 2007, 448(7152): 457-460
    [218] Laurent S, Forge D, Port M, et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications [J]. Chemical Reviews, 2008, 108 (6) : 2064-2110
    [219] Li B J, Cao H Q. ZnO@graphene composite with enhanced performance for the removal of dye from water [J]. Journal of Materials Chemistry, 2011, 21(10): 3346-3349
    [220] Singh V K, Patra M K, Manoth M, et al. In situ synthesis of graphene oxide and its composites with iron oxide [J]. New Carbon Materials, 2009, 24(2) 147-152
    [221] Ajmal M, Rao R A K, Ahmad R, et al. Removal and recovery of heavy metals from electrop lating wastewater by using Kyanite as an adsorbent [J]. Journal of Hazardous materials, 2001, 87 (3): 127-137
    [222] Dresselhaus M S, Jorio A, Hofmann M, et al. Perspectives on carbon nanotubes and graphene raman spectroscopy [J]. Nano Letters., 2010, 10(3): 751-758
    [223] Tuinstra F, Koenig J L. Raman spectrum of graphite [J]. Journal of Chemical Physics, 1970, 53(3): 1126-1130
    [224] Chen S Q, Wang Y. Microwave-assisted synthesis of a Co3O4-graphene sheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries [J]. Journal of Materials Chemistry, 2010, 20(43): 9735-9739
    [225] Wang Z W, Lazor P, Saxena S K, Artioli G. High-pressure raman spectroscopic study of spinel (ZnCr2O4). Journal of Solid State Chemistry, 2002, 165(1): 165–170
    [226] Gasparov L V, Tanner D B, Romero D B, et al. Infrared and Raman studies of the verwey transition in magnetite [J]. Physical Review B: Condensed Matter, 2000, 69(12): 7939-7944
    [227] Ayyappan S, Philip J, Raj B. Effect of digestion time on size and magnetic properties of spinel CoFe2O4 nanoparticles [J]. Journal of Physical Chemistry C, 2009, 113(2):590-596
    [228] Chen X G, He Y Q, Zhang Q, et al. Structure and photocatalytic properties of ZnO/RGO composite [J]. Chinese Journal of Inorganic Chemistry, 2009, 25( 11): 1953-1959
    [229] Wu Z S, Ren W C, Wen L, et al. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance [J]. ACS Nano, 2010, 4(6): 3187-3194
    [230] Chen L Y, Dai H, Shen Y M, et al. Size-controlled synthesis and magnetic properties of NiFe2O4 hollow nanospheres via a gel-assistant hydrothermal route [J]. Journal of Alloys and Compounds, 2010, 491(1-2): L33-L38
    [231] Zaitsev V S, Filimonov D S, Presnyakov I A, et al. Physical and chemical properties of magnetite and magnetite-polymer nanoparticles and their colloidal dispersions [J]. Journal of Colloid and Interface Science, 1999, 212(1): 49-57
    [232] Kodama R H, Berkowitz A E. Surface spin disorder in NiFe2O4 nanoparticles [J]. Physical Review Letters, 1996, 77(2): 394-397

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700