几种单分散硫族化物纳米晶与异质结构的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胶体纳米晶,也被称为“人工原子”,其制备技术在过去的几十年中取得飞速的进步。这些纳米颗粒可以运用不同物质相互反应廉价且大量的合成,所得到的纳米颗粒的尺寸和形貌都非常均一规整。作为新颖的纳米结构之一,纳米异质结构是由两种或两种以上的物质组成的,其可以是半导体-半导体接触生长,也可以是半导体·金属相接触生长。这种异质结构因其具有多种组分,而各个组分具有不同的功能,因此具有多重功能,并且因异质界面的存在,这种结构有可能会产生一些新的性质。因其拥有这种独特的纳米结构特征,异质结纳米晶将会在不同领域获得重要的应用,如太阳能电池,高效催化剂,生物与医学探测器,以及新一代的光电转化装置等。因此,我们通过液相法合成了几种硫族化合物纳米异质结构。取得的研究结果如下:
     1.发展了六方柱状硫化铜-硫化锌纳米异质结及复杂异质结构的可控合成方法。运用高温油相的方法,以CuI和[Zn(S2CNEt2)2]作为反应物分子前驱体,在油胺溶液中合成了六方柱状的Cu1.94S-ZnS(螺丝状)、Cu1.94S-ZnS-Cu1.94(哑铃状)、Cu1.94S-ZnS-Cu1.94S-ZnS-Cu1.94S(三明治状)纳米异质结构。研究了[Zn(S2CNEt2)2]用量、反应物浓度、反应时间对产物的影响。通过上述研究,我们提出了相关的反应机理。并且我们对于不同组分的以直接的光吸收性质进行了研究。由于ZnS与Cu1.94S的同时存在,该结构在紫外和近红外都有宽的吸收。这一研究结果为今后提供了一种合成类似硫族纳米异质结的新方法,为光电子器件(例如太阳能电池、光电传感器等)的发展提供了一种新颖的材料。运用类似的合成方法,在锰离子的协助下,我们还成功合成了哑铃状的Cu2S-CuS纳米异质结构。经研究发现,在锰离子的影响下,单斜相的Cu2S纳米晶体最终会转化为CuS纳米六方片结构。
     2.首次于温和条件下合成了单分散三元化合物AgFeS2纳米晶及二聚体Ag2S-Fe7S8异质纳米结构。运用高温油相合成的方法,于150摄氏度在油胺体系中第一次合成了单分散的三元化合物AgFeS2纳米晶体,并且该纳米晶可在进一步加热条件下通过内在热转换反应形成二聚体Ag2S-Fe7S8异质结构纳米晶,这种方法可被推广用于制备其它类似结构的半导体纳米异质结。该三元化合物AgFeS2的带隙能为1.21eV,而且转化为异质结后会呈现出更加独特的磁学和光学性质,可以作为一种很好的吸光材料使得其在光电器件等领域具有潜在的应用价值。
     3.一步法合成了具有不同晶相的Cu2S1-xSex固溶体纳米晶,并运用离子交换法成功将其转化为CdSxSe1-x和ZnSxSe1-x纳米六方片。运用高温油相的方法,以单质S和Se02作为反应物的硫源和硒源,用氯化亚铜作为铜源,在油胺和十八烯溶液中合成了不同晶相的Cu2S1-xSex纳米晶体。研究发现,当Cu2S1-xSex纳米晶体中x≠1时,形成的是六方晶相Cu2S2-xSex纳米六方片晶体;当x=1时,形成的是立方晶相的Cu2Se纳米三角形晶体。通过阳离子交换反应,可以分别制备纤锌矿CdSxSe1-x和ZnSxSe1-x纳米六方片和闪锌矿的CdSe和ZnSe纳米三角形结构。这一研究结果为以后制备类似的半导体纳米晶提供了一种新的合成思路。
     4.发明了以多元硫族化合物纳米晶为前驱物制备金属纳米晶及金属硫化物纳米异质结构的新途径。首次发现了银离子和铋离子可从它们的硫族化合物纳米晶中被还原出来的现象;运用高温油相的方法,在三苯基膦的作用下,将银离子和铋离子从它们的硫族化合物中还原出来,形成单质银和铋的纳米晶体;利用这一反应原理,我们成功制备了Ag、Bi、Ag-NiS、Ag-ZnS、Ag-InS、Ag-FeS、Ag-Bi和Bi-Cu2S等多种纳米晶体和纳米异质结构。
Colloidal nanocrystals referred to as'artificial atoms'have been intensively developed during the past decades for being grown from many different materials and cheaply produced in fairly large amounts with uniform size and shape. As one particular interesting emerging class of colloidal nanostructures, heterostructured nanocrystals containing two or more chemically distinct components, i.e., semiconductor-semiconductor or semiconductor-metal, in one single nanostructure with multifunctional or new properties induced by the heterointerfaces will undoubtedly lead to revolutionary new applications of nanomaterials in various fields, such as photovoltaic devices, high-performance catalysis, biological and biomedical sensing, and a new generation of optoelectronic devices. Herein, we report solution-process for controlled synthesis of several chalcogenide nanomaterials and heterostructures. The detail can be summarized as follows:
     1. We present a new colloidal route for the synthesis of hexagonal prism Cui94S-ZnS, Cu1.94S-ZnS-Cu1.94S and Cu1.94S-ZnS-Cu1.94S-ZnS-Cu1.94S heteronanostructures with screw-, dumbbell-, and sandwich-like shapes by using CuI and Zn(S2CNEt2)2as precursors in oleylamine. This colloid method may provide a new way for controlled growth of a family of metal chalcogenide heteronanostructures with interesting optical property or multifunctionalities for applications in optoelectronic devices, such as solar cells, and optical sensing. Using the similar method, we synthesized dumbbell like Cu2S-CuS heteronanostructures with Mn2+assistant. Under the influence of Mn2+, we find that the Cu2S nanocrystals can completely transform into CuS nanoplates finally.
     2. Unique colloidal AgFeS2ternary nanocrystals can be synthesized at150℃for the first time in oleylamine solution. Interestingly, such ternary AgFeS2nanocrystals can further transform to Ag2S-Fe7Sg heterodimers by internal thermal reaction, which can be extended to synthesize other family of semiconductor heteronanostructures. These ternary AgFeS2nanocrystals with a band gap of1.21eV and their transformed Ag2S-Fe7S8heterodimers with different magnetic and optical property, which may have potential applications in photovoltaic devices as a promising light-absorbing material.
     3. We report a facile bottom-up approach to prepare Cu2S1-xSex hexagonal nanoplates by a colloidal solution reaction in1-octadecene using CuCl, S and SeO2as precursors. Because of the high chemical stability of SeO2and its facile dissolution in1-octadecene at low temperature, this new synthetic approach does not require the use of a glove box. Furthermore, Cu2S1-xSex nanoplates can be sequentially converted to CdS1-xSex, and ZnS1-xSex nanocrystals by use of exchange reactions. It has been found that Cu2S1-xSex (x≠1) nanocrystals favor to form hexagonal structure, while Cu2Se nanocrystals favor to form cubic structure under the same experiment conditions. This approach provides a new route to access a family of other alloyed semiconducting nanocrystals.
     4. We develop a new route for the synthesis of metals and metal-sulfides heterostructures with multiple sulfides as the precursors. Using the solution process, we find that triphenylphosphine can extract the Ag+and Bi3+from the nanostructural chalcogenides and reduce them to the zero-valent state for the first time. Using this reaction principle, we successively synthesized Ag, Bi, Ag-NiS, Ag-ZnS, Ag-InS, Ag-FeS, Ag-Bi, Bi-Cu2S nanostrucyures.
引文
[1]Burda, G.; Chen, X. B.; Narayanan, R.; El-Sayed, M. A.:Chemistry and properties of nanocrystals of different shapes. Chem Rev 2005,105,1025-1102.
    [2]Zhuang, Z. B.; Peng, Q.; Li, Y. D.:Controlled synthesis of semiconductor nanostructures in the liquid phase. Chem Soc Rev 2011,40,5492-5513.
    [3]Nirmal, M.; Brus, L.:Luminescence photophysics in semiconductor nanocrystals. Accounts Chem Res 1999,32,407-414.
    [4]Alivisatos, A. P.:Semiconductor clusters, nanocrystals, and quantum dots. Science 1996,271, 933-937.
    [5]Talapin, D. V.; Lee, J. S.; Kovalenko, M. V.; Shevchenko, E. V.:Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications. Chem Rev 2010,110,389-458.
    [6]Yin, Y.; Alivisatos, A. P.:Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 2005,437,664-670.
    [7]Cortie, M. B.; McDonagh, A. M.:Synthesis and Optical Properties of Hybrid and Alloy Plasmonic Nanoparticles. Chem Rev 2011,111,3713-3735.
    [8]Daniel, M. C.; Astruc, D.:Gold nanoparticles:Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 2004,104,293-346.
    [9]Ferrando, R.; Jellinek, J.; Johnston, R. L.:Nanoalloys:From theory to applications of alloy clusters and nanoparticles. Chem Rev 2008,108,845-910.
    [10]Perez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzan, L. M.; Mulvaney, P.:Gold nanorods: Synthesis, characterization and applications. Coordin Chem Rev 2005,249,1870-1901.
    [11]Kim, M.; Lee, Y. W.; Kim, D.; Lee, S.; Ryoo, S. R.; Min, D. H.; Lee, S. B.; Han, S. W.: Reshaping nanocrystals for tunable plasmonic substrates. ACS Appl Mater Interfaces 2012,4, 5038-5043.
    [12]Hou, W.; Cronin, S. B.:A Review of Surface Plasmon Resonance-Enhanced Photocatalysis. Adv Funct Mater 2012, n/a-n/a.
    [13]Liu, X.; Wang, X.; Zhou, B.; Law, W.-C.; Cartwright, A. N.; Swihart, M. T.:Size-Controlled Synthesis of Cu2-xE (E=S, Se) Nanocrystals with Strong Tunable Near-Infrared Localized Surface Plasmon Resonance and High Conductivity in Thin Films. Adv Funct Mater 2013,23, 1256-1264.
    [14]Qin, L. X.; Jing, C.; Li, Y.; Li, D. W.; Long, Y. T.:Real-time monitoring of the aging of single plasmonic copper nanoparticles. Chem Commun 2012,48,1511-1513.
    [15]Huang, Q.; Hu, S.; Zhuang, J.; Wang, X.:MoO3-x-based hybrids with tunable localized surface plasmon resonances:chemical oxidation driving transformation from ultrathin nanosheets to nanotubes. Chemistry 2012,18,15283-15287.
    [16]Niezgoda, J. S.; Harrison, M. A.; McBride, J. R.; Rosenthal, S. J.;Novel Synthesis of Chalcopyrite CuxInyS2Quantum Dots with Tunable Localized Surface Plasmon Resonances. Chem Mater 2012,24,3294-3298.
    [17]Dorfs, D.; Hartling, T.; Miszta, K.; Bigall, N. C.; Kim, M. R.; Genovese, A.; Falqui, A.; Povia, M.; Manna, L.:Reversible tunability of the near-infrared valence band plasmon resonance in Cu2-xSe nanocrystals. JAm Chem Soc 2011,133,11175-11180.
    [18]Hsu, S. W.; On, K.; Tao, A. R.:Localized surface plasmon resonances of anisotropic semiconductor nanocrystals. JAm Chem Soc 2011,133,19072-19075.
    [19]Kriegel, I.; Jiang, C.; Rodriguez-Fernandez, J.; Schaller, R. D.; Talapin, D. V.; da Como, E.; Feldmann, J.:Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals. JAm Chem Soc 2012,134,1583-1590.
    [20]Manthiram, K.; Alivisatos, A. P.:Tunable localized surface plasmon resonances in tungsten oxide nanocrystals. JAm Chem Soc 2012,134,3995-3998.
    [21]Qu, Y.; Cheng, R.; Su, Q.; Duan, X.;Plasmonic enhancements of photocatalytic activity of Pt/n-Si/Ag photodiodes using Au/Ag core/shell nanorods. J Am Chem Soc 2011,133, 16730-16733.
    [22]Albaladejo, S.; Saenz, J. J.; Marques, M. I.:Plasmonic nanoparticle chain in a light field:a resonant optical sail. Nano Lett 2011,11,4597-4600.
    [23]Buonsanti, R.; Llordes, A.; Aloni, S.; Helms, B. A.; Milliron, D. J.;Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals. Nano Lett 2011,11,4706-4710.
    [24]Garcia, G.; Buonsanti, R.; Runnerstrom, E. L.; Mendelsberg, R. J.; Llordes, A.; Anders, A.; Richardson, T. J.; Milliron, D. J.:Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals. Nano Lett 2011,11,4415-4420.
    [25]Mubeen, S.; Hernandez-Sosa, G.; Moses, D.; Lee, J.; Moskovits, M.:Plasmonic photosensitization of a wide band gap semiconductor:converting plasmons to charge carriers. Nano Lett 2011,11,5548-5552.
    [26]Scotognella, F.; Della Valle, G.; Srimath Kandada, A. R.; Dorfs, D.; Zavelani-Rossi, M.; Conforti, M.; Miszta, K.; Comin, A.; Korobchevskaya, K.; Lanzani, G.; Manna, L.; Tassone, F.:Plasmon dynamics in colloidal Cu2-xSe nanocrystals. Nano Lett 2011,11,4711-4717.
    [27]Ahn, S. H.; Kim, D. S.; Seo, D.; Choi, W.; Yi, G. R.; Song, H.; Park, Q. H.; Kim, Z. H.: Localized plasmon resonances of bimetallic AgAuAg nanorods. Phys Chem Chem Phys 2013, 15,4190-4194.
    [28]McMahon, J. M.; Schatz, G C.; Gray, S. K.:Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi. Phys Chem Chem Phys 2013.
    [29]Van Tendeloo, G.; Bals, S.; Van Aert, S.; Verbeeck, J.; Van Dyck, D.:Advanced Electron Microscopy for Advanced Materials. Adv Mater 2012,24,5655-5675.
    [30]Chen, X. B.; Li, C.; Gratzel, M.; Kostecki, R.; Mao, S. S.:Nanomaterials for renewable energy production and storage. Chem Soc Rev 2012,41,7909-7937.
    [31]Guo, S. J.; Wang, E. K.:Noble metal nanomaterials:Controllable synthesis and application in fuel cells and analytical sensors. Nano Today 2011,6,240-264.
    [32]Rogach, A. L.:Fluorescence energy transfer in hybrid structures of semiconductor nanocrystals. Nano Today 2011,6,355-365.
    [33]An, K.; Hyeon, T.:Synthesis and biomedical applications of hollow nanostructures. Nano Today 2009,4,359-373.
    [34]Freeman, R.; Willner, I.:Optical molecular sensing with semiconductor quantum dots (QDs). Chem Soc Rev 2012,41,4067-4085.
    [35]Parolo, C.; Merkoci, A.:Paper-based nanobiosensors for diagnostics. Chem Soc Rev 2013,42, 450-457.
    [36]Zhang, H.; Jin, M. S.; Xia, Y. N.:Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd. Chem Soc Rev 2012,41, 8035-8049.
    [37]Habas, S. E.; Platt, H. A. S.; van Hest, M. F. A. M.; Ginley, D. S.:Low-Cost Inorganic Solar Cells:From Ink To Printed Device. Chem Rev 2010,110,6571-6594.
    [38]Saha, K.; Agasti, S. S.; Kim, C.; Li, X. N.; Rotello, V. M.:Gold Nanoparticles in Chemical and Biological Sensing. Chem Rev 2012,112,2739-2779.
    [39]Jones, M. R.; Osberg, K. D.; Macfarlane, R. J.; Langille, M. R.; Mirkin, C. A.:Templated Techniques for the Synthesis and Assembly of Plasmonic Nanostructures. Chem Rev 2011, 111,3736-3827.
    [40]Hochbaum, A. I.; Yang, P. D.:Semiconductor Nanowires for Energy Conversion. Chem Rev 2010,110,527-546.
    [41]Peng, X. G:Band Gap and Composition Engineering on a Nanocrystal (BCEN) in Solution. Accounts Chem Res 2010,43,1387-1395.
    [42]Peng, X. G:An Essay on Synthetic Chemistry of Colloidal Nanocrystals. Nano Research 2009,2,425-447.
    [43]Kambhampati, P.:Unraveling the the Structure and Dynamics of Excitons in Semiconductor Quantum Dots. Accounts Chem Res 2011,44,1-13.
    [44]Zhu, H.; Yang, Y.; Lian, T.:Multiexciton Annihilation and Dissociation in Quantum Confined Semiconductor Nanocrystals. Accounts Chem Res 2012.
    [45]Selinsky, R. S.; Ding, Q.; Faber, M. S.; Wright, J. C.; Jin, S.:Quantum dot nanoscale heterostructures for solar energy conversion. Chem Soc Rev 2013,42,2963-2985.
    [46]Chaudhuri, R. G.; Paria, S.:Core/Shell Nanoparticles:Classes, Properties, Synthesis Mechanisms, Characterization, and Applications. Chem Rev 2012,112,2373-2433.
    [47]Wang, G. F.; Peng, Q.; Li, Y. D.:Lanthanide-Doped Nanocrystals:Synthesis, Optical-Magnetic Properties, and Applications. Accounts Chem Res 2011,44,322-332.
    [48]Vaneski, A.; Susha, A. S.; Rodriguez-Fernandez, J.; Berr, M.; Jackel, F.; Feldmann, J.; Rogach, A. L.:Hybrid Colloidal Heterostructures of Anisotropic Semiconductor Nanocrystals Decorated with Noble Metals:Synthesis and Function. Adv Funct Mater 2011,21, 1547-1556.
    [49]Moutanabbir, O.; Gosele, U.:Heterogeneous Integration of Compound Semiconductors. Annual Review of Materials Research, Vol 40 2010,40,469-500.
    [50]Mahmoudi, M.; Azadmanesh, K.; Shokrgozar, M. A.; Journeay, W. S.; Laurent, S.:Effect of Nanoparticles on the Cell Life Cycle. Chem Rev 2011,111,3407-3432.
    [51]Aragay, G; Pino, F.; Merkoci, A.:Nanomaterials for Sensing and Destroying Pesticides. Chem Rev 2012,112,5317-5338.
    [52]Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S.:Semiconductor-based Photocatalytic Hydrogen Generation. Chem Rev 2010,110,6503-6570.
    [53]Agranovich, V. M.; Gartstein, Y. N.; Litinskaya, M.:Hybrid Resonant Organic Inorganic Nanostructures for Optoelectronic Applications. Chem Rev 2011,111,5179-5214.
    [54]Cho, S. H.; Sung, J.; Hwang, I.; Kim, R. H.; Choi, Y. S.; Jo, S. S.; Lee, T. W.; Park, C.:High Performance AC Electroluminescence from Colloidal Quantum Dot Hybrids. Adv Mater 2012,24,4540-4546.
    [55]Ho, D.; Sun, X. L.; Sun, S. H.:Monodisperse Magnetic Nanoparticles for Theranostic Applications. Accounts Chem Res 2011,44,875-882.
    [56]Jun, Y. W.; Choi, J. S.; Cheon, J.:Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew Chem Int Ed 2006,45, 3414-3439.
    [57]Rogers, J. A.; Lagally, M. G.; Nuzzo, R. G:Synthesis, assembly and applications of semiconductor nanomembranes. Nature 2011,477,45-53.
    [58]Malik, M. A.; Afzaal, M.; O'Brien, P.:Precursor Chemistry for Main Group Elements in Semiconducting Materials. Chem Rev 2010,110,4417-4446.
    [59]Murray, C. B.; Kagan, C. R.; Bawendi, M. G.:Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci 2000,30,545-610.
    [60]Peng, X. G.; Wickham, J.; Alivisatos, A. P.:Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth:"Focusing" of size distributions. J Am Chem Soc 1998, 120,5343-5344.
    [61]Zhang, Q.; Liu, S. J.; Yu, S. H.:Recent advances in oriented attachment growth and synthesis of functional materials:concept, evidence, mechanism, and future. J Mater Chem 2009,19, 191-207.
    [62]LaMer, V. K.; Dinegar, R. H.:Theory, Production and Mechanism of Formation of Monodispersed Hydrosols. J Am Chem Soc 1950,72,4847-4854.
    [63]Donega, C. D.:Synthesis and properties of colloidal heteronanocrystals. Chem Soc Rev 2011, 40,1512-1546.
    [64]Figuerola, A.; van Huis, M.; Zanella, M.; Genovese, A.; Marras, S.; Falqui, A.; Zandbergen, H. W.; Cingolani, R.; Manna, L.:Epitaxial CdSe-Au Nanocrystal Heterostructures by Thermal Annealing. Nano Lett 2010,10,3028-3036.
    [65]O'Sullivan, C.; Gunning, R. D.; Barrett, C. A.; Singh, A.; Ryan, K. M.:Size controlled gold tip growth onto II-VI nanorods. J Mater Chem 2010,20,7875-7880.
    [66]Meyns, M.; Bastus, N. G.; Cai, Y. X.; Kornowski, A.; Juarez, B. H.; Weller, H.; Klinke, C.: Growth and reductive transformation of a gold shell around pyramidal cadmium selenide nanocrystals. J Mater Chem 2010,20,10602-10605.
    [67]Liang, S.; Liu, X. L.; Yang, Y. Z.; Wang, Y. L.; Wang, J. H.; Yang, Z. J.; Wang, L. B.; Jia, S. F.; Yu, X. F.; Zhou, L.; Wang, J. B.; Zeng, J.; Wang, Q. Q.; Zhang, Z. Y.:Symmetric and Asymmetric Au-AgCdSe Hybrid Nanorods. Nano Lett 2012,12,5281-5286.
    [68]Mokari, T.; Sztrum, C. G.; Salant, A.; Rabani, E.; Banin, U.:Formation of asymmetric one-sided metal-tipped semiconductor nanocrystal dots and rods. Nature Materials 2005,4, 855-863.
    [69]Jin, F.; Zhang, M. L.; Zheng, M. L.; Liu, Z. H.; Fan, Y. M.; Xu, K.; Zhao, Z. S.; Duan, X. M.: Hierarchical CdSe-gold hybrid nanocrystals:synthesis and optical properties. Phys Chem Chem Phys 2012,14,13180-13186.
    [70]Mokari, T.; Rothenberg, E.; Popov, I.; Costi, R.; Banin, U.:Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science 2004,304,1787-1790.
    [71]AbouZeid, K. M.; Mohamed, M. B.; El-Shall, M. S.:Hybrid Au-CdSe and Ag-CdSe Nanoflowers and Core-Shell Nanocrystals via One-Pot Heterogeneous Nucleation and Growth. Small 2011,7,3299-3307.
    [72]Yu, H.; Chen, M.; Rice, P. M.; Wang, S. X.; White, R. L.; Sun, S. H.:Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. Nano Lett 2005,5,379-382.
    [73]Wei, Y. H.; Klajn, R.; Pinchuk, A.O.; Grzybowski, B. A.:Synthesis, Shape Control, and Optical Properties of Hybrid Au/Fe3O4 "Nanoflowers". Small 2008,4,1635-1639.
    [74]Buck, M. R.; Bondi, J. F.; Schaak, R. E.:A total-synthesis framework for the construction of high-order colloidal hybrid nanoparticles. Nat Chem 2012,4,37-44.
    [75]Sun, X. L.; Guo, S. J.; Liu, Y.; Sun, S. H.:Dumbbell-like PtPd-Fe3O4 Nanoparticles for Enhanced Electrochemical Detection of H2O2. Nano Lett 2012,12,4859-4863.
    [76]Beveridge, J. S.; Buck, M. R.; Bondi, J. F.; Misra, R.; Schiffer, P.; Schaak, R. E.; Williams, M. E.:Purification and Magnetic Interrogation of Hybrid Au-Fe3O4 and FePt-Fe3O4 Nanoparticles. Angew Chem Int Ed 2011,50,9875-9879.
    [77]Sun, X. L.; Guo, S. J.; Chung, C. S.; Zhu, W. L.; Sun, S. H.:A Sensitive H2O2 Assay Based on Dumbbell-like PtPd-Fe3O4 Nanoparticles. Adv Mater 2013,25,132-136.
    [78]Steiner, D.; Dorfs, D.; Banin, U.; Della Sala, F.; Manna, L.; Millo, O.:Determination of band offsets in heterostructured colloidal nanorods using scanning tunneling spectroscopy. Nano Lett 2008,8,2954-2958.
    [79]Halpert, J. E.; Porter, V. J.; Zimmer, J. P.; Bawendi, M. G.:Synthesis of CdSe/CdTe nanobarbells. JAm Chem Soc 2006,128,12590-12591.
    [80]Han, W.; Yi, L. X.; Zhao, N.; Tang, A. W.; Gao, M. Y.; Tang, Z. Y.:Synthesis and shape-tailoring of copper sulfide/indium sulfide-based nanocrystals. J Am Chem Soc 2008, 130,13152-13161.
    [81]McDaniel, H.; Zuo, J. M.; Shim, M.:Anisotropic Strain-Induced Curvature in Type-Ⅱ CdSe/CdTe Nanorod Heterostructures. JAm Chem Soc 2010,132,3286-+.
    [82]Regulacio, M. D.; Ye, C.; Lim, S. H.; Bosman, M.; Polavarapu, L.; Koh, W. L.; Zhang, J.; Xu, Q. H.; Han, M. Y.:One-Pot Synthesis of Cu1.94-CdS and Cu1.94S-ZnxCd1-xS Nanodisk Heterostructures. JAm Chem Soc 2011,133,2052-2055.
    [83]Justo, Y.; Goris, B.; Kamal, J. S.; Geiregat, P.; Bals, S.; Hens, Z.:Multiple Dot-in-Rod PbS/CdS Heterostructures with High Photoluminescence Quantum Yield in the Near-Infrared. JAm Chem Soc 2012,134,5484-5487.
    [84]Borys, N. J.; Walter, M. J.; Huang, J.; Talapin, D. V.; Lupton, J. M.:The Role of Particle Morphology in Interfacial Energy Transfer in CdSe/CdS Heterostructure Nanocrystals. Science 2010,330,1371-1374.
    [85]McDaniel, H.; Zuo, J. M.; Shim, M.:Anisotropic Strain-Induced Curvature in Type-II CdSe/CdTe Nanorod Heterostructures. J Am Chem Soc 2010,132,3286-3288.
    [86]Cozzoli, P. D.; Pellegrino, T.; Manna, L.:Synthesis, properties and perspectives of hybrid nanocrystal structures. Chem Soc Rev 2006,35,1195-1208.
    [87]Costi, R.; Saunders, A. E.; Banin, U.:Colloidal Hybrid Nanostructures:A New Type of Functional Materials. Angew Chem Int Ed 2010,49,4878-4897.
    [88]Luther, J. M.; Law, M.; Beard, M. C.; Song, Q.; Reese, M. O.; Ellingson, R. J.; Nozik, A. J.: Schottky Solar Cells Based on Colloidal Nanocrystal Films. Nano Lett 2008,8,3488-3492.
    [89]Li, J. T.; Cushing, S. K.; Bright, J.; Meng, F. K.; Senty, T. R.; Zheng, P.; Bristow, A. D.; Wu, N. Q.:Ag@Cu2O Core-Shell Nanoparticles as Visible-Light Plasmonic Photocatalysts. Acs Catalysis 2013,3,47-51.
    [90]Regulacio, M. D.; Han, M. Y.:Composition-Tunable Alloyed Semiconductor Nanocrystals. Accounts Chem Res 2010,43,621-630.
    [91]Milliron, D. J.; Hughes, S. M.; Cui, Y.; Manna, L.; Li, J. B.; Wang, L. W.; Alivisatos, A. P.: Colloidal nanocrystal heterostructures with linear and branched topology. Nature 2004,430, 190-195.
    [92]Kudera, S.; Carbone, L.; Casula, M. F.; Cingolani, R.; Falqui, A.; Snoeck, E.; Parak, W. J.; Manna, L.:Selective growth of PbSe on one or both tips of colloidal semiconductor nanorods. Nano Lett 2005,5,445-449.
    [93]Manna, L.; Scher, E. C.; Alivisatos, A. P.:Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J Am Chem Soc 2000,122,12700-12706.
    [94]Liu, H. T.; Alivisatos, A. P.:Preparation of asymmetric nanostructures through site selective modification of tetrapods. Nano Lett 2004,4,2397-2401.
    [95]Bao, Z. H.; Sun, Z. H.; Xiao, M. D.; Tian, L. W.; Wang, J. F.:Hydrothermal transformation from Au core-sulfide shell to Au nanoparticle-decorated sulfide hybrid nanostructures. Nanoscale 2010,2,1650-1652.
    [96]Feng, Q. S.; Dong, L. J.; Huang, J.; Li, Q.; Fan, Y. H.; Xiong, J.; Xiong, C. X.:Fluxible Monodisperse Quantum Dots with Efficient Luminescence. Angew Chem Int Ed 2010,49, 9943-9946.
    [97]Wang, L.; Yamauchi, Y:Autoprogrammed Synthesis of Triple-Layered Au@Pd@Pt Core-Shell Nanoparticles Consisting of a Au@Pd Bimetallic Core and Nanoporous Pt Shell. JAm Chem Soc 2010,132,13636-13638.
    [98]Deng, Z. T.; Schulz, O.; Lin, S.; Ding, B. Q.; Liu, X. W.; Wei, X. X.; Ros, R.; Yan, H.; Liu, Y.: Aqueous Synthesis of Zinc Blende CdTe/CdS Magic-Core/Thick-Shell Tetrahedral-Shaped Nanocrystals with Emission Tunable to Near-Infrared. JAm Chem Soc 2010,132,5592-5593.
    [99]Mazumder, V.; Chi, M. F.; More, K. L.; Sun, S. H.:Core/Shell Pd/FePt Nanoparticles as an Active and Durable Catalyst for the Oxygen Reduction Reaction. J Am Chem Soc 2010,132, 7848-7849.
    [100]Sambur, J. B.; Parkinson, B. A.:CdSe/ZnS Core/Shell Quantum Dot Sensitization of Low Index TiO2 Single Crystal Surfaces. JAm Chem Soc 2010,132,2130-2131.
    [101]Lee, J. S.; Bodnarchuk, M. I.; Shevchenko, E. V.; Talapin, D. V: "Magnet-in-the-Semiconductor" FePt-PbS and FePt-PbSe Nanostructures:Magnetic Properties, Charge Transport, and Magnetoresistance. JAm Chem Soc 2010,132,6382-6391.
    [102]Htoon, H.; Malko, A. V.; Bussian, D.; Vela, J.; Chen, Y.; Hollingsworth, J. A.; Klimov, V. I.:Highly Emissive Multiexcitons in Steady-State Photoluminescence of Individual "Giant" CdSe/CdS Core/Shell Nanocrystals. Nano Lett 2010,10,2401-2407.
    [103]Jun, S.; Jang, E.:Bright and Stable Alloy Core/Multishell Quantum Dots. Angew Chem Int Ed 2013,52,679-682.
    [104]Ghosh, Y.; Mangum, B. D.; Casson, J. L.; Williams, D. J.; Htoon, H.; Hollingsworth, J. A.:New Insights into the Complexities of Shell Growth and the Strong Influence of Particle Volume in Nonblinking "Giant" Core/Shell Nanocrystal Quantum Dots. JAm Chem Soc 2012, 134,9634-9643.
    [105]Reiss, P.; Protiere, M.; Li, L.:Core/Shell Semiconductor Nanocrystals. Small 2009,5, 154-168.
    [106]Nan, W. N.; Niu, Y. A.; Qin, H. Y.; Cui, F.; Yang, Y.; Lai, R. C.; Lin, W. Z.; Peng, X. G.: Crystal Structure Control of Zinc-Blende CdSe/CdS Core/Shell Nanocrystals:Synthesis and Structure-Dependent Optical Properties. JAm Chem Soc 2012,134,19685-19693.
    [107]Kim, H.; Achermann, M.; Balet, L. P.; Hollingsworth, J. A.; Klimov, V. I.:Synthesis and Characterization of Co/CdSe Core/Shell Nanocomposites:Bifunctional Magnetic-Optical Nanocrystals. JAm Chem Soc 2004,127,544-546.
    [108]Gao, J.; Zhang, B.; Gao, Y.; Pan, Y; Zhang, X.; Xu, B.:Fluorescent Magnetic Nanocrystals by Sequential Addition of Reagents in a One-Pot Reaction:A Simple Preparation for Multifunctional Nanostructures. JAm Chem Soc 2007,129,11928-11935.
    [109]Lee, J.-S.; Shevchenko, E. V.; Talapin, D. V.:Au-PbS Core-Shell Nanocrystals: Plasmonic Absorption Enhancement and Electrical Doping via Intra-particle Charge Transfer. J Am Chem Soc 2008,130,9673-9675.
    [110]Zhang, J. T.; Tang, Y.; Lee, K.; Min, O. Y:Nonepitaxial Growth of Hybrid Core-Shell Nanostructures with Large Lattice Mismatches. Science 2010,327,1634-1638.
    [111]Teranishi, T.; Inoue, Y; Nakaya, M.; Oumi, Y; Sano, T.:Nanoacorns:Anisotropically phase-segregated CoPd sulfide nanoparticles. JAm Chem Soc 2004,126,9914-9915.
    [112]Choi, S. H.; Kim, E. G; Hyeon, T.:One-pot synthesis of copper-indium sulfide nanocrystal heterostructures with acorn, bottle, and larva shapes. J Am Chem Soc 2006,128, 2520-2521.
    [113]Li, X. H.; Lian, J.; Lin, M.; Chan, Y. T.:Light-Induced Selective Deposition of Metals on Gold-Tipped CdSe-Seeded CdS Nanorods. J Am Chem Soc 2011,133,672-675.
    [114]Khon, E.; Hewa-Kasakarage, N. N.; Nemitz, I.; Acharya, K.; Zamkov, M.:Tuning the Morphology of Au/CdS Nanocomposites through Temperature-Controlled Reduction of Gold-Oleate Complexes. Chem Mater 2010,22,5929-5936.
    [115]Menagen, G.; Macdonald, J. E.; Shemesh, Y.; Popov, I.; Banin, U.:Au Growth on Semiconductor Nanorods:Photoinduced versus Thermal Growth Mechanisms.J Am Chem Soc 2009,131,17406-17411.
    [116]Habas, S. E.; Yang, P. D.; Mokari, T.:Selective growth of metal and binary metal tips on CdS nanorods. J Am Chem Soc 2008,130,3294-3295.
    [117]Mirkovic, T.; Rossouw, D.; Botton, G. A.; Scholes, G D.:Broken Band Alignment in EuS-CdS Nanoheterostructures. Chem Mater 2011,23,181-187.
    [118]Zeng, H.; Sun, S. H.:Syntheses, properties and potential applications of multicomponent magnetic nanoparticles. Adv Funct Mater 2008,18,391-400.
    [119]Zhu, G X.; Xu, Z.:Controllable Growth of Semiconductor Heterostructures Mediated by Bifunctional Ag2S Nanocrystals as Catalyst or Source-Host. J Am Chem Soc 2011,133, 148-157.
    [120]Kwon, K.-W.; Shim, M.:γ-Fe2O3/Ⅱ-Ⅵ Sulfide Nanocrystal Heterojunctions. J Am Chem Soc 2005,127,10269-10275.
    [121]Gu, H.; Zheng, R.; Zhang, X.; Xu, B.:Facile One-Pot Synthesis of Bifunctional Heterodimers of Nanoparticles:A Conjugate of Quantum Dot and Magnetic Nanoparticles. JAm Chem Soc 2004,126,5664-5665.
    [122]Pellegrino, T.; Fiore, A.; Carlino, E.; Giannini, C.; Cozzoli, P. D.; Ciccarella, G.; Respaud, M.; Palmirotta, L.; Cingolani, R.; Manna, L.:Heterodimers Based on CoPt3-Au Nanocrystals with Tunable Domain Size. JAm Chem Soc 2006,128,6690-6698.
    [123]Teranishi, T.; Saruyama, M.; Nakaya, M.; Kanehara, M.:Anisotropically phase-segregated Pd-Co-Pd sulfide nanoparticles formed by fusing two Co-Pd sulfide nanoparticles. Angew Chem Int Ed 2007,46,1713-1715.
    [124]Lee, D. C.; Robel, I.; Pietryga, J. M.; Klimov, V. I.:Infrared-Active Heterostructured Nanocrystals with Ultra long Carrier Lifetimes. J Am Chem Soc 2010,132,9960-9962.
    [125]Deka, S.; Miszta, K.; Dorfs, D.; Genovese, A.; Bertoni, G.; Manna, L.:Octapod-Shaped Colloidal Nanocrystals of Cadmium Chalcogenides via "One-Pot" Cation Exchange and Seeded Growth. Nano Lett 2010,10,3770-3776.
    [126]Zhong, H. Z.; Scholes, G. D.:Shape Tuning of Type Ⅱ CdTe-CdSe Colloidal Nanocrystal Heterostructures through Seeded Growth. J Am Chem Soc 2009,131, 9170-9171.
    [127]Xi, L. F.; Boothroyd, C.; Lam, Y. M.:Controlled Synthesis of CdTe and CdSe Multiblock Heteronanostructures. Chem Mater 2009,21,1465-1470.
    [128]Zhao, N.; Liu, K.; Greener, J.; Nie, Z. H.; Kumacheva, E.:Close-Packed Superlattices of Side-by-Side Assembled Au-CdSe Nanorods. Nano Lett 2009,9,3077-3081.
    [129]Sugimoto, T.:Preparation of monodispersed colloidal particles. Adv Colloid Intetfac 1987,28,65-108.
    [130]Rivest, J. B.; Jain, P. K.:Cation exchange on the nanoscale:an emerging technique for new material synthesis, device fabrication, and chemical sensing. Chem Soc Rev 2013,42, 89-96.
    [131]Son, D. H.; Hughes, S. M.; Yin, Y. D.; Alivisatos, A. P.:Cation exchange reactions-in ionic nanocrystals. Science 2004,306,1009-1012.
    [132]Robinson, R. D.; Sadtler, B.; Demchenko, D. O.; Erdonmez, C. K.; Wang, L. W.; Alivisatos, A. P.:Spontaneous superlattice formation in nanorods through partial cation exchange. Science 2007,317,355-358.
    [133]Rivest, J. B.; Swisher, S. L.; Fong, L. K.; Zheng, H. M.; Alivisatos, A. P.:Assembled Monolayer Nanorod Heterojunctions. ACS Nano 2011,5,3811-3816.
    [134]Miszta, K.; Dorfs, D.; Genovese, A.; Kim, M. R.; Manna, L.:Cation Exchange Reactions in Colloidal Branched Nanocrystals. ACS Nano 2011,5,7176-7183.
    [135]Sadtler, B.; Demchenko, D. O.; Zheng, H.; Hughes, S. M.; Merkle, M. G.; Dahmen, U.; Wang, L. W.; Alivisatos, A. P.:Selective Facet Reactivity during Cation Exchange in Cadmium Sulfide Nanorods. J Am Chem Soc 2009,131,5285-5293.
    [136]Samal, A. K.; Pradeep, T.:Hybrid A-B-A type nanowires through cation exchange. Nanoscale 2011,3,4840-4847.
    [137]Mukherjee, B.; Peterson, A.; Subramanian, V.:1D CdS/PbS heterostructured nanowire synthesis using cation exchange. Chem Commun 2012,48,2415-2417.
    [138]Luther, J. M.; Zheng, H. M.; Sadtler, B.; Alivisatos, A. P.:Synthesis of PbS Nanorods and Other Ionic Nanocrystals of Complex Morphology by Sequential Cation Exchange Reactions. JAm Chem Soc 2009,131,16851-16857.
    [139]Jain, P. K.; Amirav, L.; Aloni, S.; Alivisatos, A. P.:Nanoheterostructure Cation Exchange:Anionic Framework Conservation. J Am Chem Soc 2010,132,9997-9999.
    [140]Wark, S. E.; Hsia, C.-H.; Son, D. H.:Effects of Ion Solvation and Volume Change of Reaction on the Equilibrium and Morphology in Cation-Exchange Reaction of Nanocrystals. JAm Chem Soc 2008,130,9550-9555.
    [141]Saruyama, M.; So, Y. G.; Kimoto, K.; Taguchi, S.; Kanemitsu, Y.; Teranishi, T.: Spontaneous Formation of Wurzite-CdS/Zinc Blende-CdTe Heterodimers through a Partial Anion Exchange Reaction. JAm Chem Soc 2011,133,17598-17601.
    [1]Chaudhuri, R. G.; Paria, S.:Core/Shell Nanoparticles:Classes, Properties, Synthesis Mechanisms, Characterization, and Applications. Chem Rev 2012,112,2373-2433.
    [2]Burda, C.; Chen, X. B.; Narayanan, R.; El-Sayed, M. A.:Chemistry and properties of nanocrystals of different shapes. Chem Rev 2005,105,1025-1102.
    [3]Zhuang, Z. B.; Peng, Q.; Li, Y. D.:Controlled synthesis of semiconductor nanostructures in the liquid phase. Chem Soc Rev 2011,40,5492-5513.
    [4]Yin, Y.; Alivisatos, A. P.:Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 2005,437,664-670.
    [5]de Mello Donega, C.:Synthesis and properties of colloidal heteronanocrystals. Chem Soc Rev 2011,40,1512-46.
    [6]Vaneski, A.; Susha, A. S.; Rodriguez-Fernandez, J.; Berr, M.; Jackel, F.; Feldmann, J.; Rogach, A. L.:Hybrid Colloidal Heterostructures of Anisotropic Semiconductor Nanocrystals Decorated with Noble Metals:Synthesis and Function. Adv Funct Mater 2011, 21,1547-1556.
    [7]Costi, R.; Saunders, A. E.; Banin, U.:Colloidal Hybrid Nanostructures:A New Type of Functional Materials. Angew Chem Int Ed 2010,49,4878-4897.
    [8]Cozzoli, P. D.; Pellegrino, T.; Manna, L.:Synthesis, properties and perspectives of hybrid nanocrystal structures. Chem Soc Rev 2006,35,1195-1208.
    [9]Donega, C. D.:Synthesis and properties of colloidal heteronanocrystals. Chem Soc Rev 2011, 40,1512-1546.
    [10]Cortie, M. B.; McDonagh, A. M.:Synthesis and Optical Properties of Hybrid and Alloy Plasmonic Nanoparticles. Chem Rev 2011,111,3713-3735.
    [11]Halpert, J. E.; Porter, V. J.; Zimmer, J. P.; Bawendi, M. G.:Synthesis of CdSe/CdTe nanobarbells. J Am Chem Soc 2006,128,12590-12591.
    [12]Justo, Y.; Goris, B.; Kamal, J. S.; Geiregat, P.; Bals, S.; Hens, Z.:Multiple Dot-in-Rod PbS/CdS Heterostructures with High Photoluminescence Quantum Yield in the Near-Infrared. JAm Chem Soc 2012,134,5484-5487.
    [13]Kim, H.; Achermann, M.; Balet, L. P.; Hollingsworth, J. A.; Klimov, V. I.:Synthesis and Characterization of Co/CdSe Core/Shell Nanocomposites:Bifunctional Magnetic-Optical Nanocrystals. JAm Chem Soc 2004,127,544-546.
    [14]Kwon, K.-W.; Shim, M.:γ-Fe2O3/II-VI Sulfide Nanocrystal Heterojunctions. J Am Chem Soc 2005,127,10269-10275.
    [15]Lee, J. S.; Bodnarchuk, M. I.; Shevchenko, E. V.; Talapin, D. V.: "Magnet-in-the-Semiconductor" FePt-PbS and FePt-PbSe Nanostructures:Magnetic Properties, Charge Transport, and Magnetoresistance. JAm Chem Soc 2010,132,6382-6391.
    [16]Luther, J. M.; Zheng, H. M.; Sadtler, B.; Alivisatos, A. P.:Synthesis of PbS Nanorods and Other Ionic Nanocrystals of Complex Morphology by Sequential Cation Exchange Reactions. JAm Chem Soc 2009,131,16851-16857.
    [17]McDaniel, H.; Zuo, J. M.; Shim, M.:Anisotropic Strain-Induced Curvature in Type-II CdSe/CdTe Nanorod Heterostructures. JAm Chem Soc 2010,132,3286-3288.
    [18]Teranishi, T.; Inoue, Y.; Nakaya, M.; Oumi, Y.; Sano, T.:Nanoacorns:Anisotropically phase-segregated CoPd sulfide nanoparticles. JAm Chem Soc 2004,126,9914-9915.
    [19]Wang, L.; Yamauchi, Y.:Autoprogrammed Synthesis of Triple-Layered Au@Pd@Pt Core-Shell Nanoparticles Consisting of a Au@Pd Bimetallic Core and Nanoporous Pt Shell. JAm Chem Soc 2010,132,13636-13638.
    [20]Figuerola, A.; van Huis, M.; Zanella, M.; Genovese, A.; Marras, S.; Falqui, A.; Zandbergen, H. W.; Cingolani, R.; Manna, L.:Epitaxial CdSe-Au Nanocrystal Heterostructures by Thermal Annealing. Nano Lett 2010,10,3028-3036.
    [21]Liang, S.; Liu, X. L.; Yang, Y. Z.; Wang, Y. L.; Wang, J. H.; Yang, Z. J.; Wang, L. B.; Jia, S. F.; Yu, X. F.; Zhou, L.; Wang, J. B.; Zeng, J.; Wang, Q. Q.; Zhang, Z. Y.:Symmetric and Asymmetric Au-AgCdSe Hybrid Nanorods. Nano Lett 2012,12,5281-5286.
    [22]Sun, X. L.; Guo, S. J.; Liu, Y.; Sun, S. H.:Dumbbell-like PtPd-Fe3O4 Nanoparticles for Enhanced Electrochemical Detection of H2O2. Nano Lett 2012,12,4859-4863.
    [23]Li, J. T.; Cushing, S. K.; Bright, J.; Meng, F. K.; Senty, T. R.; Zheng, P.; Bristow, A. D.; Wu, N. Q.:Ag@Cu2O Core-Shell Nanoparticles as Visible-Light Plasmonic Photocatalysts. Acs Catalysis 2013,3,47-51.
    [24]Sun, X. L.; Guo, S. J.; Chung, C. S.; Zhu, W. L.; Sun, S. H.:A Sensitive H2O2 Assay Based on Dumbbell-like PtPd-Fe3O4 Nanoparticles. Adv Mater 2013,25,132-136.
    [25]Parolo, G.; Merkoci, A.:Paper-based nanobiosensors for diagnostics. Chem Soc Rev 2013,42, 450-457.
    [26]Selinsky, R. S.; Ding, Q.; Faber, M. S.; Wright, J. C.; Jin, S.:Quantum dot nanoscale heterostructures for solar energy conversion. Chem Soc Rev 2013,42,2963-2985.
    [27]Zhang, H.; Jin, M. S.; Xia, Y. N.:Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd. Chem Soc Rev 2012,41, 8035-8049.
    [28]Agranovich, V. M.; Gartstein, Y. N.; Litinskaya, M.:Hybrid Resonant Organic Inorganic Nanostructures for Optoelectronic Applications. Chem Rev 2011,111,5179-5214.
    [29]Aragay, G.; Pino, F.; Merkoci, A.:Nanomaterials for Sensing and Destroying Pesticides. Chem Rev 2012,112,5317-5338.
    [30]Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S.:Semiconductor-based Photocatalytic Hydrogen Generation. Chem Rev 2010,110,6503-6570.
    [31]Hochbaum, A. I.; Yang, P. D.:Semiconductor Nanowires for Energy Conversion. Chem Rev 2010,110,527-546.
    [32]Mahmoudi, M.; Azadmanesh, K.; Shokrgozar, M. A.; Journeay, W. S.; Laurent, S.:Effect of Nanoparticles on the Cell Life Cycle. Chem Rev 2011,111,3407-3432.
    [33]Talapin, D. V.; Lee, J. S.; Kovalenko, M. V.; Shevchenko, E. V.:Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications. Chem Rev 2010,110,389-458.
    [34]Beveridge, J. S.; Buck, M. R.; Bondi, J. F.; Misra, R.; Schiffer, P.; Schaak, R. E.; Williams, M. E.:Purification and Magnetic Interrogation of Hybrid Au-Fe3O4 and FePt-Fe3O4 Nanoparticles. Angew Chem Int Ed 2011.
    [35]Wu, H.; Chen, O.; Zhuang, J.; Lynch, J.; LaMontagne, D.; Nagaoka, Y.; Cao, Y. C.: Formation of heterodimer nanocrystals:UO2/In2O3 and FePt/In2O3. J Am Chem Soc 2011, 133,14327-37.
    [36]Buck, M. R.; Bondi, J. F.; Schaak, R. E.:A total-synthesis framework for the construction of high-order colloidal hybrid nanoparticles. Nat Chem 2012,4,37-44.
    [37]Pang, M. L.; Hu, J. Y.; Zeng, H. C.:Synthesis, Morphological Control, and Antibacterial Properties of Hollow/Solid Ag2S/Ag Heterodimers. J Am Chem Soc 2010,132, 10771-10785.
    [38]Robinson, R. D.; Sadtler, B.; Demchenko, D. O.; Erdonmez, C. K.; Wang, L. W.; Alivisatos, A. P.:Spontaneous superlattice formation in nanorods through partial cation exchange. Science 2007,317,355-8.
    [39]Demchenko, D. O.; Robinson, R. D.; Sadtler, B.; Erdonmez, C. K.; Alivisatos, A. P.; Wang, L. W.:Formation mechanism and properties of CdS-Ag2S nanorod superlattices. Acs Nano 2008,2,627-636.
    [40]Shen, S.; Zhang, Y.; Peng, L.; Du, Y.; Wang, Q.:Matchstick-shaped Ag2S-ZnS heteronanostructures preserving both UV/blue and near-infrared photoluminescence. Angew Chem Int Ed'2011,50,7115-8.
    [41]Zhu, G. X.; Xu, Z.:Controllable Growth of Semiconductor Heterostructures Mediated by Bifunctional Ag2S Nanocrystals as Catalyst or Source-Host.J Am Chem Soc 2011,133, 148-157.
    [42]Han, W.; Yi, L. X.; Zhao, N.; Tang, A. W.; Gao, M. Y.; Tang, Z. Y.:Synthesis and shape-tailoring of copper sulfide/indium sulfide-based nanocrystals. J Am Chem Soc 2008, 130,13152-13161.
    [43]Connor, S. T.; Hsu, C. M.; Weil, B. D.; Aloni, S.; Cui, Y.:Phase Transformation of Biphasic Cu2S-CuInS2 to Monophasic CuInS2 Nanorods. J Am Chem Soc 2009,131,4962-4966.
    [44]Sadtler, B.; Demchenko, D.O.; Zheng, H.; Hughes, S. M.; Merkle, M. G.; Dahmen, U.; Wang, L. W.; Alivisatos, A. P.:Selective facet reactivity during cation exchange in cadmium sulfide nanorods. J Am Chem Soc 2009,131,5285-93.
    [45]Rivest, J. B.; Swisher, S. L.; Fong, L. K.; Zheng, H. M.; Alivisatos, A. P.:Assembled Monolayer Nanorod Heterojunctions. ACSNano 2011,5,3811-3816.
    [46]Regulacio, M. D.; Ye, C; Lim, S. H.; Bosman, M.; Polavarapu, L.; Koh, W. L.; Zhang, J.; Xu, Q. H.; Han, M. Y.:One-pot synthesis of Cu1.94S-CdS and Cu1.94S-ZnxCd1-xS nanodisk heterostructures. J Am Chem Soc 2011,133,2052-5.
    [47]Tang, J. Y.; Huo, Z. Y.; Brittman, S.; Gao, H. W.; Yang, P. D.:Solution-processed core-shell nanowires for efficient photovoltaic cells. Nature Nanotechnology 2011,6,568-572.
    [48]Wang, W. S.; Goebl, J.; He, L.; Aloni, S.; Hu, Y. X.; Zhen, L.; Yin, Y. D.:Epitaxial Growth of Shape-Controlled Bi2Te3-Te Heterogeneous Nanostructures. J Am Chem Soc 2010,132, 17316-17324.
    [49]Liu, X.; Wang, X.; Zhou, B.; Law, W.-C.; Cartwright, A. N.; Swihart, M. T.:Size-Controlled Synthesis of Cu2-xE (E=S, Se) Nanocrystals with Strong Tunable Near-Infrared Localized Surface Plasmon Resonance and High Conductivity in Thin Films. Adv Funct Mater 2013,23, 1256-1264.
    [50]Hsu, S. W.; On, K.; Tao, A. R.:Localized surface plasmon resonances of anisotropic semiconductor nanocrystals. J Am Chem Soc 2011,133,19072-19075.
    [51]Kriegel, I.; Jiang, C.; Rodriguez-Fernandez, J.; Schaller, R. D.; Talapin, D. V.; da Como, E.; Feldmann, J.:Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals. J Am Chem Soc 2012,134,1583-1590.
    [52]Scotognella, F.; Della Valle, G.; Srimath Kandada, A. R.; Dorfs, D.; Zavelani-Rossi, M.; Conforti, M.; Miszta, K.; Comin, A.; Korobchevskaya, K.; Lanzani, G.; Manna, L.; Tassone, F.:Plasmon dynamics in colloidal Cu2-xSe nanocrystals. Nano Lett 2011,11,4711-4717.
    [53]Liu, X.; Wang, X.; Zhou, B.; Law, W.-C.; Cartwright, A. N.; Swihart, M. T.:Size-Controlled Synthesis of Cu2-xE (E= S, Se) Nanocrystals with Strong Tunable Near-Infrared Localized Surface Plasmon Resonance and High Conductivity in Thin Films. Adv Funct Mater 2013, 1256-1264.
    [54]Xu, J.; Tang, Y. B.; Chen, X.; Luan, C. Y.; Zhang, W. F.; Zapien, J. A.; Zhang, W. J.; Kwong, H. L.; Meng, X. M.; Lee, S. T.; Lee, C. S.:Synthesis of Homogeneously Alloyed Cu2-x(SySe1-y) Nanowire Bundles with Tunable Compositions and Bandgaps. Adv Funct Mater 2010,20,4190-4195.
    [55]Wang, J. J.; Xue, D. J.; Guo, Y. G.; Hu, J. S.; Wan, L. J.:Bandgap Engineering of Monodispersed Cu2-xSySe1-y Nanocrystals through Chalcogen Ratio and Crystal Structure. J Am Chem Soc 2011,133,18558-18561.
    [56]Zhao, Y. X.; Pan, H. C.; Lou, Y. B.; Qiu, X. F.; Zhu, J. J.; Burda, C.:Plasmonic Cu2-xS Nanocrystals:Optical and Structural Properties of Copper-Deficient Copper(I) Sulfides. J Am Chem Soc 2009,131,4253-4261.
    [57]Dilena, E.; Dorfs, D.; George, C.; Miszta, K.; Povia, M.; Genovese, A.; Casu, A.; Prato, M.; Manna, L.:Colloidal Cu2-x(SySe1-y) alloy nanocrystals with controllable crystal phase: synthesis, plasmonic properties, cation exchange and electrochemical litjiation. J Mater Chem 2012,22,25493-25493.
    [58]Wu, Y.; Wadia, C.; Ma, W. L.; Sadtler, B.; Alivisatos, A. P.:Synthesis and photovoltaic application of copper(I) sulfide nanocrystals. Nano Lett 2008,8,2551-2555.
    [59]Zhao, Y. X.; Pan, H. C.; Lou, Y. B.; Qiu, X. F.; Zhu, J. J.; Burda, C.:Plasmonic Cu2-xS Nanocrystals:Optical and Structural Properties of Copper-Deficient Copper(I) Sulfides. J Am Chem Soc 2009,131,4253-4261.
    [60]Gur, I.; Fromer, N. A.; Geier, M. L.; Alivisatos, A. P.:Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 2005,310,462-465.
    [61]Wu, Y.; Wadia, C.; Ma, W. L.; Sadtler, B.; Alivisatos, A. P.:Synthesis and photovoltaic application of copper(I) sulfide nanocrystals. Nano Letters 2008,8,2551-2555.
    [62]Tang, J.; Kemp, K. W.; Hoogland, S.; Jeong, K. S.; Liu, H.; Levina, L.; Furukawa, M.; Wang, X. H.; Debnath, R.; Cha, D. K.; Chou, K. W.; Fischer, A.; Amassian, A.; Asbury, J. B.; Sargent, E. H.:Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nature Materials 2011,10,765-771.
    [63]Wang, X. H.; Koleilat, G. I.; Tang, J.; Liu, H.; Kramer, I. J.; Debnath, R.; Brzozowski, L. Barkhouse, D. A. R.; Levina, L.; Hoogland, S.; Sargent, E. H.:Tandem colloidal quantum dot solar cells employing a graded recombination layer. Nature Photonics 2011,5,480-484.
    [64]Hsu, S. W.; On, K.; Tao, A. R.:Localized Surface Plasmon Resonances of Anisotropic Semiconductor Nanocrystals. J Am Chem Soc 2011,133,19072-19075.
    [65]Hessel, C. M.; Pattani, V. P.; Rasch, M.; Panthani, M. G.; Koo, B.; Tunnell, J. W.; Korgel, B. A.:Copper Selenide Nanocrystals for Photothermal Therapy. Nano Letters 2011,11, 2560-2566.
    [66]Xiong, S. L.; Xi, B. J.; Wang, C. M.; Xu, D. C.; Feng, X. M.; Zhu, Z. C.; Qian, Y. T.: Tunable synthesis of various Wurtzite ZnS architectural structures and their photocaltalytic properties. Adv Funct Mater 2007,17,2728-2738.
    [1]Freeman, R.; Willner, I.:Optical molecular sensing with semiconductor quantum dots (QDs). Chem Soc Rev 2012,41,4067-4085.
    [2]Rivest, J. B.; Jain, P. K.:Cation exchange on the nanoscale:an emerging technique for new material synthesis, device fabrication, and chemical sensing. Chem Soc Rev 2013,42,89-96.
    [3]Zhuang, Z. B.; Peng, Q.; Li, Y. D.:Controlled synthesis of semiconductor nanostructures in the liquid phase. Chem Soc Rev 2011,40,5492-5513.
    [4]Chaudhuri, R. G.; Paria, S.:Core/Shell Nanoparticles:Classes, Properties, Synthesis Mechanisms, Characterization, and Applications. Chem Rev 2012,112,2373-2433.
    [5]Chen, X. B.; Li, C.; Gratzel, M.; Kostecki, R.; Mao, S. S.:Nanomaterials for renewable energy production and storage. Chem Soc Rev 2012,41,7909-7937.
    [6]Parolo, C.; Merkoci, A.:Paper-based nanobiosensors for diagnostics. Chem Soc Rev 2013,42, 450-457.
    [7]Zhang, H.; Jin, M. S.; Xia, Y. N.:Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd. Chem Soc Rev 2012,41, 8035-8049.
    [8]Aragay, G; Pino, F.; Merkoci, A.:Nanomaterials for Sensing and Destroying Pesticides. Chem Rev 2012,112,5317-5338.
    [9]Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S.:Semiconductor-based Photocatalytic Hydrogen Generation. Chem Rev 2010,110,6503-6570.
    [10]Habas, S. E.; Platt, H. A. S.; van Hest, M. F. A. M.; Ginley, D. S.:Low-Cost Inorganic Solar Cells:From Ink To Printed Device. Chem Rev 2010,110,6571-6594.
    [11]Hochbaum, A. I.; Yang, P. D.:Semiconductor Nanowires for Energy Conversion. Chem Rev 2010,110,527-546.
    [12]Mahmoudi, M.; Azadmanesh, K.; Shokrgozar, M. A.; Journeay, W. S.; Laurent, S.:Effect of Nanoparticles on the Cell Life Cycle. Chem Rev 2011,111,3407-3432.
    [13]Saha, K.; Agasti, S. S.; Kim, C.; Li, X. N.; Rotello, V. M.:Gold Nanoparticles in Chemical and Biological Sensing. Chem.Rev 2012,112,2739-2779.
    [14]Talapin, D. V.; Lee, J. S.; Kovalenko, M. V.; Shevchenko, E. V.:Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications. Chem Rev 2010,110,389-458.
    [15]Ho, D.; Sun, X. L.; Sun, S. H.:Monodisperse Magnetic Nanoparticles for Theranostic Applications. Accounts Chem Res 2011,44,875-882.
    [16]Peng, X. G:Band Gap and Composition Engineering on a Nanocrystal (BCEN) in Solution. Accounts Chem Res 2010,43,1387-1395.
    [17]Peng, X. G.:Mechanisms for the shape-control and shape-evolution of colloidal semiconductor nanocrystals. Adv Mater 2003,15,459-463.
    [18]Lee, S. M.; Cho, S. N.; Cheon, J.:Anisotropic shape control of colloidal inorganic nanocrystals. Adv Mater 2003,15,441-444.
    [19]Vaneski, A.; Susha, A. S.; Rodriguez-Fernandez, J.; Berr, M.; Jackel, F.; Feldmann, J.; Rogach, A. L.:Hybrid Colloidal Heterostructures of Anisotropic Semiconductor Nanocrystals Decorated with Noble Metals:Synthesis and Function. Adv Funct Mater 2011,21, 1547-1556.
    [20]Zhuang, Z.; Peng, Q.; Li, Y.:Controlled synthesis of semiconductor nanostructures in the liquid phase. Chem Soc Rev 2011,40,5492-513.
    [21]Yu, L. P.; Kokenyesi, R. S.; Keszler, D. A.; Zunger, A.:Inverse Design of High Absorption Thin-Film Photovoltaic Materials. Advanced Energy Materials 2013,3,43-48.
    [22]Wang, G; Wang, S.; Cui, Y.; Pan, D.:A Novel and Versatile Strategy to Prepare Metal-Organic Molecular Precursor Solutions and Its Application in Cu(In,Ga)(S,Se)2Solar Cells. Chem Mater 2012,24,3993-3997.
    [23]Chirila, A.; Buecheler, S.; Pianezzi, F.; Bloesch, P.; Gretener, C.; Uhl, A. R.; Fella, C.; Kranz, L.; Perrenoud, J.; Seyrling, S.; Verma, R.; Nishiwaki, S.; Romanyuk, Y. E.; Bilger, G.; Tiwari, A. N.:Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films. Nat Mater 2011,10,857-861.
    [24]Boon, J. W.:The crystal structure of chalcopyrite (CuFeS2) and AgFeS2 the permutoidic reactions KFeS2-> CuFeS2 and KFeS2-> AgFeS2. Recueil Des Travaux Chimiques Des Pays-Bas 1944,63,69-80.
    [25]Cortie, M. B.; McDonagh, A. M.:Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. Chem Rev 2011,111,3713-35.
    [26]de Mello Donega, C.:Synthesis and properties of colloidal heteronanocrystals. Chem Soc Rev 2011,40,1512-46.
    [27]Han, W.; Yi, L. X.; Zhao, N.; Tang, A. W.; Gao, M. Y.; Tang, Z. Y:Synthesis and shape-tailoring of copper sulfide/indium sulfide-based nanocrystals. J Am Chem Soc 2008, 130,13152-13161.
    [28]Buck, M. R.; Bondi, J. F.; Schaak, R. E.:A total-synthesis framework for the construction of high-order colloidal hybrid nanoparticles. Nat Chem 2012,4,37-44.
    [29]Sun, X. L.; Guo, S. J.; Chung, C. S.; Zhu, W. L.; Sun, S. H.:A Sensitive H2O2 Assay Based on Dumbbell-like PtPd-Fe3O4 Nanoparticles. Adv Mater 2013,25,132-136.
    [30]Lee, K. S.; Anisur, R. M.; Kim, K. W.; Kim, W. S.; Park, T.-J.; Kang, E. J.; Lee, I. S.:Seed Size-Dependent Formation of Fe3O4/MnO Hybrid Nanocrystals:Selective, Magnetically Recyclable Catalyst Systems. Chem Mater 2012,24,682-687.
    [31]Wu, H.; Chen, O.; Zhuang, J.; Lynch, J.; LaMontagne, D.; Nagaoka, Y.; Cao, Y. C.: Formation of heterodimer nanocrystals:UO2/In2O3 and FePt/In2O3. J Am Chem Soc 2011, 133,14327-37.
    [32]Robinson, R. D.; Sadtler, B.; Demchenko, D. O.; Erdonmez, C. K.; Wang, L. W.; Alivisatos, A. P.:Spontaneous superlattice formation in nanorods through partial cation exchange. Science 2007,317,355-8.
    [33]Shen, S.; Zhang, Y.; Peng, L.; Du, Y.; Wang, Q.:Matchstick-shaped Ag2S-ZnS heteronanostructures preserving both UV/blue and near-infrared photoluminescence. Angew Chem Int Ed 2011,50,7115-8.
    [34]Zhu, G. X.; Xu, Z.:Controllable Growth of Semiconductor Heterostructures Mediated by Bifunctional Ag2S Nanocrystals as Catalyst or Source-Host. J Am Chem Soc 2011,133, 148-157.
    [35]Han, S. K.; Gong, M.; Yao, H. B.; Wang, Z. M.; Yu, S. H.:One-pot controlled synthesis of hexagonal-prismatic Cu11.94S-ZnS, Cu1.94S-ZnS-Cu1.94S, and Cu1.94S-ZnS-Cu1.94S-ZnS-Cu1.94S heteronanostructures. Angew Chem Int Ed 2012,51,6365-8.
    [36]Zhuang, T. T.; Fan, F. J.; Gong, M.; Yu, S. H.:Cu1.94S nanocrystal seed mediated solution-phase growth of unique Cu2S-PbS heteronanostructures. Chem Commun 2012,48, 9762-9764.
    [37]Connor, S. T.; Hsu, C. M.; Weil, B. D.; Aloni, S.; Cui, Y.:Phase Transformation of Biphasic Cu2S-CuInS2 to Monophasic CuInS2 Nanorods. J Am Chem Soc 2009,131,4962-4966.
    [38]Regulacio, M. D.; Ye, C.; Lim, S. H.; Bosman, M.; Polavarapu, L.; Koh, W. L.; Zhang, J.; Xu, Q. H.; Han, M. Y:One-pot synthesis of Cu1.94-CdS and Cu1.94S-ZnxCd1-xS nanodisk heterostructures. JAm Chem Soc 2011,133,2052-5.
    [39]Sadtler, B.; Demchenko, D. O.; Zheng, H.; Hughes, S. M.; Merkle, M. G.; Dahmen, U.; Wang, L. W.; Alivisatos, A. P.:Selective facet reactivity during cation exchange in cadmium sulfide nanorods. JAm Chem Soc 2009,131,5285-93.
    [40]Wang, W. S.; Goebl, J.; He, L.; Aloni, S.; Hu, Y. X.; Zhen, L.; Yin, Y. D.:Epitaxial Growth of Shape-Controlled Bi2Te3-Te Heterogeneous Nanostructures. J Am Chem Soc 2010,132, 17316-17324.
    [41]Zhou, W. W.; Zhu, J. X.; Li, D.; Hng, H. H.; Boey, F. Y. C.; Ma, J.; Zhang, H.; Yan, Q. Y.: Binary-Phased Nanoparticles for Enhanced Thermoelectric Properties. Adv Mater 2009,21, 3196-+.
    [42]Guo, Q.; Kim, S. J.; Kar, M.; Shafarman, W. N.; Birkmire, R. W.; Stach, E. A.; Agrawal, R.; Hillhouse, H. W.:Development of CuInSe2 Nanocrystal and Nanoring Inks for Low-Cost Solar Cells. Nano Lett 2008,8,2982-2987.
    [43]Li, Y. C.; Zhong, H. Z.; Li, R.; Zhou, Y.; Yang, C. H.; Li, Y. F.:High-Yield Fabrication and Electrochemical Characterization of Tetrapodal CdSe, CdTe, and CdSexTe1-x Nanocrystals. Adv Funct Mater 2006,16,1705-1716.
    [44]Kucur, E.; Riegler, J. r.; Urban, G A.; Nann, T.:Determination of quantum confinement in CdSe nanocrystals by cyclic voltammetry. The Journal of Chemical Physics 2003,119,2333.
    [45]Yue, W.; Han, S.; Peng, R.; Shen, W.; Geng, H.; Wu, F.; Tao, S.; Wang, M.:CuInS2 quantum dots synthesized by a solvothermal route and their application as effective electron acceptors for hybrid solar cells. J Mater Chem 2010,20,7570.
    [46]Galembeck, A.; Alves, O. L.:Thermal behavior of alpha-Ba(FeS2)2 and AgFeS2: quasi-unidimensional and 3D network compounds prepared from ion-exchange on the same precursor. JMater Sci 1999,34,3275-3280.
    [47]Stoch, L.:Internal Thermal-Reactions in Minerals and Materials. Journal of Thermal Analysis 1993,40,107-114.
    [1]Talapin, D. V.; Lee, J. S.; Kovalenko, M. V.; Shevchenko, E. V.:Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications. Chem Rev 2010,110,389-458.
    [2]Kovalenko, M. V.; Scheele, M.; Talapin, D. V.:Colloidal nanocrystals with molecular metal chalcogenide surface ligands. Science 2009,324,1417-20.
    [3]Yin, Y.; Alivisatos, A. P.:Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 2005,437,664-70.
    [4]Han, S. K.; Gong, M.; Yao, H. B.; Wang, Z. M.; Yu, S. H.:One-Pot controlled synthesis of hexagonal-prismatic Cui.94S-ZnS, Cu1.94S-ZnS-Cu1.94S, and Cu1.94S-ZnS-Cu1.94S-ZnS-Cu1.94S heteronanostructures. Angew Chem Int Ed 2012,51,6365-6368.
    [5]Bai, F.; Wang, D. S.; Huo, Z. Y.; Chen, W.; Liu, L. P.; Liang, X.; Chen, C.; Wang, X.; Peng, Q.; Li, Y. D.:A versatile bottom-up assembly approach to colloidal spheres from nanocrystals. Angew Chem Int Ed 2007,46,6650-6653.
    [6]Wang, T.; Zhuang, J. Q.; Lynch, J.; Chen, O.; Wang, Z. L.; Wang, X. R.; LaMontagne, D.; Wu, H. M.; Wang, Z. W.; Cao, Y. G.:Self-Assembled Colloidal Superparticles from Nanorods. Science 2012,338,358-363.
    [7]Jain, P. K.; Amirav, L.; Aloni, S.; Alivisatos, A. P.:Nanoheterostructure Cation Exchange: Anionic Framework Conservation. J Am Chem Soc 2010,132,9997-9999.
    [8]Luther, J. M.; Zheng, H. M.; Sadtler, B.; Alivisatos, A. P.:Synthesis of PbS Nanorods and Other Ionic Nanocrystals of Complex Morphology by Sequential Cation Exchange Reactions. JAm Chem Soc 2009,131,16851-16857.
    [9]Sadtler, B.; Demchenko, D. O.; Zheng, H.; Hughes, S. M.; Merkle, M. G.; Dahmen, U.; Wang, L. W.; Alivisatos, A. P.:Selective Facet Reactivity during Cation Exchange in Cadmium Sulfide Nanorods. JAm Chem Soc 2009,131,5285-5293.
    [10]Robinson, R. D.; Sadtler, B.; Demchenko, D. O.; Erdonmez, C. K.; Wang, L. W.; Alivisatos, A. P.:Spontaneous superlattice formation in nanorods through partial cation exchange. Science 2007,317,355-358.
    [11]Son, D. H.; Hughes, S. M.; Yin, Y. D.; Alivisatos, A. P.:Cation exchange reactions-in ionic nanocrystals. Science 2004,306,1009-1012.
    [12]Tian, Q. W.; Jiang, F. R.; Zou, R. J.; Liu, Q.; Chen, Z. G.; Zhu, M. F.; Yang, S. P.; Wang, J. L.; Wang, J. H.; Hu, J. Q.:Hydrophilic Cu9S5 Nanocrystals:A Photothermal Agent with a 25.7% Heat Conversion Efficiency for Photothermal Ablation of Cancer Cells in Vivo. ACS Nano 2011,5,9761-9771.
    [13]Liu, X.; Wang, X.; Zhou, B.; Law, W.-C.; Cartwright, A. N.; Swihart, M. T.:Size-Controlled Synthesis of Cu2.xE (E= S, Se) Nanocrystals with Strong Tunable Near-Infrared Localized Surface Plasmon Resonance and High Conductivity in Thin Films. Adv Funct Mater 2013, 1256-1264.
    [14]Liu, X. H.; Mayer, M. T.; Wang, D. W.:Understanding Ionic Vacancy Diffusion Growth of Cuprous Sulfide Nanowires. Angew Chem Int Ed 2010,49,3165-3168.
    [15]Low, K. H.; Li, C. H.; Roy, V. A. L.; Chui, S. S. Y.; Chan, S. L. F.; Che, C. M.:Homoleptic copper(I) phenylselenolate polymer as a single-source precursor for Cu2Se nanocrystals. Structure, photoluminescence and application in field-effect transistor. Chemical Science 2010,1,515-518.
    [16]Dorfs, D.; Hartling, T.; Miszta, K.; Bigall, N. C.; Kim, M. R.; Genovese, A.; Falqui, A.; Povia, M.; Manna, L.:Reversible Tunability of the Near-Infrared Valence Band Plasmon Resonance in Cu2.xSe Nanocrystals. JAm Chem Soc 2011,133,11175-11180.
    [17]Kriegel, I.; Jiang, C. Y.; Rodriguez-Fernandez, J.; Schaller, R. D.; Talapin, D. V; da Como, E.; Feldmann, J.:Tuning the Excitonic and Plasmonic Properties of Copper Chalcogenide Nanocrystals. J Am Chem Soc 2012,134,1583-1590.
    [18]Larsen, T. H.; Sigman, M.; Ghezelbash, A.; Doty, R. C.; Korgel, B. A.:Solventless synthesis of copper sulfide nanorods by thermolysis of a single source thiolate-derived precursor. J Am Chem Soc 2003,125,5638-5639.
    [19]Zhao, Y. X.; Pan, H. C.; Lou, Y. B.; Qiu, X. F.; Zhu, J. J.; Burda, C.:Plasmonic Cu2-xS Nanocrystals:Optical and Structural Properties of Copper-Deficient Copper(I) Sulfides. J Am Chem Soc 2009,131,4253-4261.
    [20]Hessel, C. M.; Pattani, V. P.; Rasch, M.; Panthani, M. G.; Koo, B.; Tunnell, J. W.; Korgel, B. A.:Copper Selenide Nanocrystals for Photothermal Therapy. Nano Lett 2011,11,2560-2566.
    [21]Wu, Y.; Wadia, C.; Ma, W. L.; Sadtler, B.; Alivisatos, A. P.:Synthesis and photovoltaic application of copper(I) sulfide nanocrystals. Nano Lett 2008,8,2551-2555.
    [22]Peng, X. G:Band Gap and Composition Engineering on a Nanocrystal (BCEN) in Solution. Accounts Chem Res 2010,43,1387-1395.
    [23]Regulacio, M. D.; Han, M. Y:Composition-Tunable Alloyed Semiconductor Nanocrystals. Accounts Chem Res 2010,43,621-630.
    [24]Deng, Z. T.; Yan, H.; Liu, Y:Band Gap Engineering of Quaternary-Alloyed ZnCdSSe Quantum Dots via a Facile Phosphine-Free Colloidal Method. J Am Chem Soc 2009,131, 17744-17745.
    [25]Pan, A. L.; Liu, R. B.; Sun, M. H.; Ning, C. Z.:Quaternary Alloy Semiconductor Nanobelts with Bandgap Spanning the Entire Visible Spectrum. J Am Chem Soc 2009,131,9502-9503. [26] Lan, G. Y.; Lin, Y. W.; Huang, Y. F.; Chang, H. T.:Photo-assisted synthesis of highly fluorescent ZnSe(S) quantum dots in aqueous solution. JMater Chem 2007,17,2661-2666.
    [27]Shavel, A.; Gaponik, N.; Eychmuller, A.:Efficient UV-blue photoluminescing thiol-stabilized water-soluble alloyed ZnSe(S) nanocrystals. JPhys Chem B 2004,108,5905-5908.
    [28]Chen, L. Y.; Chen, C. H.; Tseng, C. H.; Lai, F. L.; Hwanga, B. J.:Synthesis CdSexS1-x core/shell type quantum dots via one injection method. Chem Commun 2011,47,1592-1594.
    [29]Al-Salim, N.; Young, A. G.; Tilley, R. D.; McQuillan, A. J.; Xia, J.:Synthesis of CdSeS nanocrystals in coordinating and noncoordinating solvents:Solvent's role in evolution of the optical and structural properties. Chem Mater 2007,19,5185-5193.
    [30]Lovingood, D. D.; Oyler, R. E.; Strouse, G. F.:Composition Control and Localization of S2-in CdSSe Quantum Dots Grown from Li-4[Cd10Se4(SPh)(16)]. J Am Chem Soc 2008,130, 17004-17011.
    [31]Swafford, L. A.; Weigand, L. A.; Bowers, M. J.; McBride, J. R.; Rapaport, J. L.; Watt, T. L.; Dixit, S. K.; Feldman, L. C.; Rosenthal, S. J.:Homogeneously alloyed CdSxSe1-X) nanocrystals:Synthesis, characterization, and composition/size-dependent band gap. J Am Chem Soc 2006,128,12299-12306.
    [32]Ouyang, J. Y.; Vincent, M.; Kingston, D.; Descours, P.; Boivineau, T.; Zaman, M. B.; Wu, X. H.; Yu, K.:Noninjection, One-Pot Synthesis of Photoluminescent Colloidal Homogeneously Alloyed CdSeS Quantum Dots. Journal of Physical Chemistry C 2009,113,5193-5200.
    [33]Sarma, D. D.; Nag, A.; Santra, P. K.; Kumar, A.; Sapra, S.; Mahadevan, P.:Origin of the Enhanced Photoluminescence from Semiconductor CdSeS Nanocrystals. Journal of Physical Chemistry Letters 2010,1,2149-2153.
    [34]Onicha, A. C.; Petchsang, N.; Kosel, T. H.; Kuno, M.:Controlled Synthesis of Compositionally Tunable Ternary PbSexS1-x as Well as Binary PbSe and PbS Nanowires. ACS Nano 2012,6,2833-2843.
    [35]Akhtar, J.; Afzaal, M.; Banski, M.; Podhorodecki, A.; Syperek, M.; Misiewicz, J.; Bangert, U.; Hardman, S. J. O.; Graham, D. M.; Flavell, W. R.; Binks, D. J.; Gardonio, S.; O'Brien, P.: Controlled Synthesis of Tuned Bandgap Nanodimensional Alloys of PbSxSe1-x. J Am Chem Soc 2011,133,5602-5609.
    [36]Ma, W.; Luther, J. M.; Zheng, H. M.; Wu, Y; Alivisatos, A. P.:Photovoltaic Devices Employing Ternary PbSxSe1-x Nanocrystals. Nano Lett 2009,9,1699-1703.
    [37]Wei, H.; Su, Y. J.; Chen, S. Z.; Lin, Y; Yang, Z.; Chen, X. S.; Zhang, Y. F.:Novel SnSxSe1-x nanocrystals with tunable band gap:experimental and first-principles calculations. J Mater Chem 2011,21,12605-12608.
    [38]Deng, Z. T.; Mansuripur, M.; Muscat, A. J.:Simple Colloidal Synthesis of Single-Crystal Sb-Se-S Nanotubes with Composition Dependent Band-Gap Energy in the Near-Infrared. Nano Lett 2009,9,2015-2020.
    [39]Wang, G.; Wang, S. Y.; Cui, Y.; Pan, D. C.:A Novel and Versatile Strategy to Prepare Metal-Organic Molecular Precursor Solutions and Its Application in Cu(In,Ga)(S,Se)2 Solar Cells. Chem Mater 2012,24,3993-3997.
    [40]Li, S.; Zhao, Z.; Liu, Q.; Huang, L.; Wang, G.; Pan, D.; Zhang, H.; He, X.:Alloyed (ZnSe)x(CuInSe2)1-x and CuInSe2-x Nanocrystals with a Monophase Zinc Blende Structure over the Entire Composition Range. Inorg Chem 2011,50,11958-11964.
    [41]McDaniel, H.; Fuke, N.; Pietryga, J. M.; Klimov, V. I.:Engineered CuInSexS2-x Quantum Dots for Sensitized Solar Cells. The Journal of Physical Chemistry Letters 2013,4,355-361.
    [42]Fan, F.-J.; Wu, L.; Gong, M.; Liu, G.; Wang, Y.-X.; Yu, S.-H.; Chen, S.; Wang, L.-W.; Gong, X.-G.:Composition- and Band-Gap-Tunable Synthesis of Wurtzite-Derived Cu2ZnSn(S1-xSex)4 Nanocrystals:Theoretical and Experimental Insights. ACS Nano 2013,7, 1454-1463.
    [43]Jiang, C. Y.; Lee, J. S.; Talapin, D. V.:Soluble Precursors for CuInSe2, Culn1-xGaxSe2, and Cu2ZnSn(S,Se)4 Based on Colloidal Nanocrystals and Molecular Metal Chalcogenide Surface Ligands. J Am Chem Soc 2012,134,5010-5013.
    [44]Scragg, J. J.; Watjen, J. T.; Edoff, M.; Ericson, T.; Kubart, T.; Platzer-Bjorkman, C.:A Detrimental Reaction at the Molybdenum Back Contact in Cu2ZnSn(S,Se)4 Thin-Film Solar Cells. JAm Chem Soc 2012,134,19330-19333.
    [45]Xu, J.; Tang, Y. B.; Chen, X.; Luan, C. Y.; Zhang, W. F.; Zapien, J. A.; Zhang, W. J.; Kwong, H. L.; Meng, X. M.; Lee, S. T.; Lee, C. S.:Synthesis of Homogeneously Alloyed Cu2-x(SySe1-y) Nanowire Bundles with Tunable Compositions and Bandgaps. Adv Funct Mater 2010,20,4190-4195.
    [46]Wang, J. J.; Xue, D. J.; Guo, Y. G.; Hu, J. S.; Wan, L. J.:Bandgap Engineering of Monodispersed Cu2-xSySe1-y Nanocrystals through Chalcogen Ratio and Crystal Structure. J Am Chem Soc 2011,133,18558-18561.
    [47]Dilena, E.; Dorfs, D.; George, C.; Miszta, K.; Povia, M.; Genovese, A.; Casu, A.; Prato, M.; Manna, L.:Colloidal Cu2-x(SySe1-y) alloy nanocrystals with controllable crystal phase: synthesis, plasmonic properties, cation exchange and electrochemical lithiation. J Mater Chem 2012,22,25493-25493.
    [48]Khoury, J. G; Saluja, R.; Keel, D.; Detwiler, S.; Goldman, M. P.:Histologic evaluation of interstitial lipolysis comparing a 1064,1320 and 2100 nm laser in an ex vivo model. Lasers Surg Med 2008,40,402-6.
    [49]Guo, Q.; Kim, S. J.; Kar, M.; Shafarman, W. N.; Birkmire, R. W.; Stach, E. A.; Agrawal, R.; Hillhouse, H. W.:Development of CuInSe2 nanocrystal and nanoring inks for low-cost solar cells. Nano Lett 2008,8,2982-2987.
    [50]Rivest, J. B.; Jain, P. K.:Cation exchange on the nanoscale:an emerging technique for new material synthesis, device fabrication, and chemical sensing. Chem Soc Rev 2013,42,89-96.
    [51]Li, H. B.; Zanella, M.; Genovese, A.; Povia, M.; Falqui, A.; Giannini, C.; Manna, L.: Sequential Cation Exchange in Nanocrystals:Preservation of Crystal Phase and Formation of Metastable Phases. Nano Lett 2011,11,4964-4970.
    [52]Pan, D. G.; Wang, Q.; Jiang, S. C.; Ji, X. L.; An, L. J.:Synthesis of extremely small CdSe and highly luminescent CdSe/CdS core-shell nanocrystals via a novel two-phase thermal approach. Adv Mater 2005,17,176-179.
    [53]Wang, C. R.; Ip, K. M.; Hark, S. K.; Li, Q.:Structure control of CdS nanobelts and their luminescence properties. JAppl Phys 2005,97,054303.
    [54]Zhang, F.; Wong, S. S.:Controlled Synthesis of Semiconducting Metal Sulfide Nanowires. Chem Mater 2009,21,4541-4554.
    [55]Fang, X. S.; Bando, Y.; Liao, M. Y; Zhai, T. Y.; Gautam, U. K.; Li, L.; Koide, Y; Golberg, D.: An Efficient Way to Assemble ZnS Nanobelts as Ultraviolet-Light Sensors with Enhanced Photocurrent and Stability. Adv Funct Mater 2010,20,500-508.
    [56]Sparks, J. R.; He, R. R.; Healy, N.; Krishnamurthi, M.; Peacock, A. C.; Sazio, P. J. A.; Gopalan, V.; Badding, J. V.:Zinc Selenide Optical Fibers. Adv Mater 2011,23,1647-1651.
    [57]X, F.; Meng, X. M.; Zhang, X. H.; Shi, W. S.; Zhang, W. J.; Zapien, J. A.; Lee, C. S.; Lee, S. T:Dart-shaped tricrystal ZnS nanoribbons. Angew Chem Int Ed 2006,45,2568-2571.
    [1]Cortie, M. B.; McDonagh, A. M.:Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. Chem Rev 2011,111,3713-35.
    [2]Freeman, R.; Willner, I.:Optical molecular sensing with semiconductor quantum dots (QDs). Chem Soc Rev 2012,41,4067-4085.
    [3]Chaudhuri, R. G.; Paria, S.:Core/Shell Nanoparticles:Classes, Properties, Synthesis Mechanisms, Characterization, and Applications. Chem Rev 2012,112,2373-2433.
    [4]Talapin, D. V.; Lee, J. S.; Kovalenko, M. V.; Shevchenko, E. V.:Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications. Chem Rev 2010,110,389-458.
    [5]Peng, X. G.:Band Gap and Composition Engineering on a Nanocrystal (BCEN) in Solution. Accounts Chem Res 2010,43,1387-1395.
    [6]Lee, S. M.; Cho, S. N.; Cheon, J.:Anisotropic shape control of colloidal inorganic nanocrystals. Adv Mater 2003,15,441-444.
    [7]Peng, X. G:Mechanisms for the shape-control and shape-evolution of colloidal semiconductor nanocrystals. Adv Mater 2003,15,459-463.
    [8]Zhuang, Z.; Peng, Q.; Li, Y.:Controlled synthesis of semiconductor nanostructures in the liquid phase. Chem Soc Rev 2011,40,5492-513.
    [9]Cozzoli, P. D.; Pellegrino, T.; Manna, L.:Synthesis, properties and perspectives of hybrid nanocrystal structures. Chem Soc Rev 2006,35,1195-1208.
    [10]de Mello Donega, C.:Synthesis and properties of colloidal heteronanocrystals. Chem Soc Rev 2011,40,1512-46.
    [11]Burda, C.; Chen, X. B.; Narayanan, R.; El-Sayed, M. A.:Chemistry and properties of nanocrystals of different shapes. Chem Rev 2005,105,1025-1102.
    [12]Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S.:Semiconductor-based Photocatalytic Hydrogen Generation. Chem Rev 2010,110,6503-6570.
    [13]Hochbaum, A. I.; Yang, P. D.:Semiconductor Nanowires for Energy Conversion. Chem Rev 2010,110,527-546.
    [14]Rivest, J. B.; Jain, P. K.:Cation exchange on the nanoscale:an emerging technique for new material synthesis, device fabrication, and chemical sensing. Chem Soc Rev 2013,42,89-96.
    [15]Miszta, K.; Dorfs, D.; Genovese, A.; Kim, M. R.; Manna, L.:Cation Exchange Reactions in Colloidal Branched Nanocrystals. ACS Nano 2011, 5,7176-7183.
    [16]Chen, X. B.; Li, C.; Gratzel, M.; Kostecki, R.; Mao, S. S.:Nanomaterials for renewable energy production and storage. Chem Soc Rev 2012,41,7909-7937.
    [17]Tang, Z. Y.; Wang, Y.; Sun, K.; Kotov, N. A.:Spontaneous transformation of stabilizer-depleted binary semiconductor nanoparticles into selenium and tellurium nanowires. Adv Mater 2005,17,358-+.
    [18]Zhang, H.; Wang, H.; Xu, Y.; Zhuo, S. F.; Yu, Y. F.; Zhang, B.:Conversion of Sb2Te3 Hexagonal Nanoplates into Three-Dimensional Porous Single-Crystal-Like Network-Structured Te Plates Using Oxygen and Tartaric Acid. Angew Chem Int Ed 2012,51, 1459-1463.
    [19]Rivest, J. B.; Swisher, S. L.; Fong, L. K.; Zheng, H. M.; Alivisatos, A. P.:Assembled Monolayer Nanorod Heterojunctions. ACSNano 2011,5,3811-3816.
    [20]Xi, L. F.; Boothroyd, C.; Lam, Y. M.:Controlled Synthesis of CdTe and CdSe Multiblock Heteronanostructures. Chem Mater 2009,21,1465-1470.
    [21]Halpert, J. E.; Porter, V. J.; Zimmer, J. P.; Bawendi, M. G:Synthesis of CdSe/CdTe nanobarbells. JAm Chem Soc 2006,128,12590-12591.
    [22]McDaniel, H.; Zuo, J. M.; Shim, M.:Anisotropic Strain-Induced Curvature in Type-Ⅱ CdSe/CdTe Nanorod Heterostructures. JAm Chem Soc 2010,132,3286-3288.
    [23]Nan, W. N.; Niu, Y. A.; Qin, H. Y.; Cui, F.; Yang, Y.; Lai, R. C.; Lin, W. Z.; Peng, X. G: Crystal Structure Control of Zinc-Blende CdSe/CdS Core/Shell Nanocrystals:Synthesis and Structure-Dependent Optical Properties. JAm Chem Soc 2012,134,19685-19693.
    [24]Saruyama, M.; So, Y. G; Kimoto, K.; Taguchi, S.; Kanemitsu, Y; Teranishi, T.:Spontaneous Formation of Wurzite-CdS/Zinc Blende-CdTe Heterodimers through a Partial Anion Exchange Reaction. JAm Chem Soc 2011,133,17598-17601.
    [25]Deka, S.; Miszta, K.; Dorfs, D.; Genovese, A.; Bertoni, G.; Manna, L.:Octapod-Shaped Colloidal Nanocrystals of Cadmium Chalcogenides via "One-Pot" Cation Exchange and Seeded Growth. Nano Lett 2010,10,3770-3776.
    [26]Sines, I. T.; Schaak, R. E.:Phase-Selective Chemical Extraction of Selenium and Sulfur from Nanoscale Metal Chalcogenides:A General Strategy for Synthesis, Purification, and Phase Targeting. JAm Chem Soc 2011,133,1294-1297.
    [27]Jain, P. K.; Amirav, L.; Aloni, S.; Alivisatos, A. P.:Nanoheterostructure Cation Exchange: Anionic Framework Conservation. JAm Chem Soc 2010,132,9997-9999.
    [28]Luther, J. M.; Zheng, H. M.; Sadtler, B.; Alivisatos, A. P.:Synthesis of PbS Nanorods and Other Ionic Nanocrystals of Complex Morphology by Sequential Cation Exchange Reactions. JAm Chem Soc 2009,131,16851-16857.
    [29]Li, H. B.; Zanella, M.; Genovese, A.; Povia, M.; Falqui, A.; Giannini, C.; Manna, L.: Sequential Cation Exchange in Nanocrystals:Preservation of Crystal Phase and Formation of Metastable Phases.Nano Lett 2011,11,4964-4970.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700