新型电化学能源转化反应中纳米催化剂的设计、制备和应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物电化学系统(BES)和CO2电化学还原反应具有从废弃物中回收、利用和合成有用资源的潜力,属于新型的电化学能源转化过程。如何设计和合成性能优异的催化剂是废弃物电化学转化中的一个共性问题,也是废弃物资源化过程中面临的一个重大挑战。本论文针对上述新型电化学能源转化反应过程中催化剂效率低的问题,以纳米材料设计合成为核心,通过电极材料制备、反应过程解析和实际应用效果评价等手段,研发新型的BES和C02电化学转化纳米催化剂,提高转化效率,为它们的实际应用提供理论指导和技术支持。论文主要研究内容和成果如下:
     1.以多壁碳纳米管为原材料制备了氧化石墨烯纳米带(GONRs),并通过电泳方法制成GONRs修饰碳纸用作BES阳极材料。电化学实验证实了GONRs能够加速Shewanella oneidensis MR-1表面细胞色素c的电子传递;同时,由于GONRs具备较大的电化学活性面积,电子媒介的电子传递作用也得到了增强。微生物燃料电池(MFC)试验进一步验证了GONRs修饰电极的应用潜力,在GONRs的帮助下,不管是使用纯菌还是混合菌的MFC的功率密度都有了较大提升。这种增强效果得益于GONRs极大的长径比,可以作为纳米线进行电子传递,同时其良好的电化学活性也增强了电子媒介的电子传递能力。
     2.利用电化学沉积法在碳纸表面沉积修饰了Pd纳米颗粒。电化学测试结果表明,所制备的纳米Pd电极在中性的电解液环境中具有较低的产氢过电位,并且具备良好的稳定性。在微生物电解池(MEC)阴极产氢反应中,纳米Pd电极表现出很好的催化活性,与商品化的铂黑催化剂相比,其单位质量的催化效果是铂黑的50多倍,而负载量则远远低于铂黑,展现了应用于MEC电极材料的良好潜力。
     3.用柠檬酸钠辅助光化学还原PdCl422-和GO的方法一步制得分散性良好的rGO载Pd纳米颗粒材料。由于未使用表面活性剂,所制得的纳米复合材料可以直接使用而无需额外的表面处理或退火。ORR测试表明用该方法制备得到的rGO-Pd具有卓越的催化活性和稳定性。这种活性的提高是石墨烯和纳米Pd相互作用的结果。这种新型的催化剂具有应用于BES阴极的前景。同时,这种合成方法也提供了一种在温和条件下无需精细调控即可获得具有优异催化性能的rGO载金属纳米颗粒材料的合成新策略。
     4.合成了Au-Fe3O4纳米颗粒,并通过电化学还原使之还原为Au-Fe哑铃状纳米颗粒。所得到的Au-Fe在电化学C02还原反应过程中表现出产烃的催化活性。产物分析表明其主要催化产物为C2H4、C2H6、C3H6和C3H8,此外还有微量的CH4和HCOOH生成。电化学测试表明,Au和Fe的耦合产生协同效应,使CO在催化剂表面的吸附强度发生改变,从而使CO2被还原为吸附态的CO之后,能够发生进一步质子化作用。基于电化学实验结果,我们推测了CO2在Au-Fe还原为烃类的可能途径。该研究结果表明异质结纳米材料有望成为催化CO2电化学还原产生烃类的一类新型催化剂。
Bio-electrochemical systems (BES) and electrochemical CO2reduction reaction are two novel energy conversion processes, which offer the opportunities of resource recycling from wastes. A common challenge in these reactions is to design and synthesize powerful catalysts to enhance catalytic efficiencies. In this dissertation, efforts are focused on the syntheses and applications of novel catalysts for BES and CO2electrochemical reduction. Various characterization techniques, including microscopic, chromatographic and electrochemical approaches, are employed to evaluate the performance of the catalysts. The main contents and achievements are as follows:
     1. Graphene oxide nanoribbons (GONRs) network was assembled on carbon paper for preparing an anode to serve as efficient electron collector in BESs. It was demonstrated that the GONRs made the EET process of Shewanella oneidensis MR-1more effective. The substantial improvement was attributed to the advantages of the GONRs, which acted as nanowires and had a large electrochemical active surface area. Since GONRs can be readily modified onto electrode substrates through an electrophoretic deposition, the GONRs could be a promising material for constructing highly efficient electrodes for BESs.
     2. Carbon paper coated with Pd nanoparticles was prepared using electrochemical deposition method and used as the cathodic catalyst in an MEC to facilitate hydrogen production. The electrode coated with Pd nanoparticles showed a lower overpotential than the carbon paper cathode coated with Pt black. The coulombic efficiency, cathodic and hydrogen recoveries of the MEC with the Pd nanoparticles as catalyst were slightly higher than those with a Pt cathode, while the Pd loading was one order of magnitude less than Pt. Thus, the catalytic efficiency normalized by mass of the Pd nanoparticles was about fifty times higher than that of the Pt black catalyst.
     3. Reduced GO supported Pd nanoparticles were synthesized using one-pot photochemical citrate reduction of PdCl42-and GO. Owing to the surfactant-free synthesis process, the resulting materials did not need further surface washing or annealing. ORR tests revealed that the prepared rGO-Pd nanoparticles had an excellent catalytic activity and stability, showing a great potential in BES applications. Control experiments showed that the nanoparticles should be assembled on the rGO surface properly to achieve the improved electrochemical activity. This synthetic approach is effective to prepare rGO supported Pd nanoparticles under mild conditions without sophisticated reaction control, and may also be readily applied to synthesize other rGO-metal nano-composites like rGO-Pt and rGO-Au.
     4. The synthesis of Au-Fe dumbbell nanoparticles and application for the electrochemical hydrocarbon production from CO2were explored. Product analysis revealed that C2H4, C2H6, C3H6and C3H8, with trace amount of CH4and HCOOH were produced with the catalysis of Au-Fe dumbbell nanoparticles. Electrochemical analyses demonstrated that the CO adsorption strength was tuned due to this synergetic effect, and resulted in further protonation of the adsorbed CO. On the basis of the experimental results, it was prorposed that such a synergetic effect may lead to stable C1species adsorption and lower the activation barrier for the subsequent C-C bond formation. Our work demonstrates that heterogeneous hybrid NPs can be a new family of catalyst to catalyze CO2to hydrocarbons electrochemically.
引文
[1]Nature outlook biofuels. Nature,2011,474, S1-S25.
    [2]D. Malakoff, J. Yeston, J. Smith. Getting better to get bigger. Science,2010,329, 779.
    [3]N. S. Lewis, D. G. Nocera. Powering the planet:chemical challenges in solar energy utilization. P Natl Acad Sci USA,2006,103,15729-15736.
    [4]D. R. Lovley. Powering microbes with electricity:direct electron transfer from electrodes to microbes. Environ. Microbiol. Rep.,2011,3,27-35.
    [5]B. E. Logan, K. Rabaey. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science,2012,337,686-690.
    [6]S. C. Roy, O. K. Varghese, P. Maggie, C. A. Grimes. Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano,2010, 4,1259-1278.
    [7]S. N. Habisreutinger, L. Schmidt-Mende, J. K. Stolarczyk. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem. Int. Ed., 2013,52,2-39.
    [8]C. Finn, S. Schnittger, L. J. Yellowlees, J. B. Love. Molecular approaches to the electrochemical reduction of carbon dioxide. Chem. Commun.,2012,48, 1392-1399.
    [9]C. Costentin, M. Robert, J. M. Saveant. Catalysis of the electrochemical reduction of carbon dioxide. Chem. Soc. Rev.,2013,42,2423-2436.
    [10]C. Oloman, H. Li. Electrochemical processing of carbon dioxide. ChemSusChem,2008,1,385-391.
    [11]G Centi, E. A. Quadrelli, S. Perathoner. Catalysis for CO2 conversion:a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ. Sci.,2013,6,1711-1731.
    [12]E. V. Kondratenko, G Mul, J. Baltrusaitis, G O. Larrazabal, J. Perez-Ramirez. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ. Sci,2013,6, 3112-3135.
    [13]G A. Olah, G K. Prakash, A. Goeppert. Anthropogenic chemical carbon cycle for a sustainable future. J. Am. Chem. Soc.,2011,133,12881-12898.
    [14]B. E. Rittmann, P. L. McCarty,著,文湘华,王建龙,译.环境生物技术:原理与应用.清华大学出版社,2011.
    [15]A. E. Franks, K. P. Nevin. Microbial fuel cells, a current review. Energies,2010, 3,899-919.
    [16]W. Verstraete, K. Rabaey. Critical review microbial fuel cells:methodology and technology Environ. Sci. Technol.,2006,40,5181-5192.
    [17]K. Rabaey, J. Rodriguez, L. L. Blackall, J. Keller, P. Gross, D. Batstone, W. Verstraete, K. H. Nealson. Microbial ecology meets electrochemistry: electricity-driven and driving communities. ISME J.,2007,1,9-18.
    [18]K. Rabaey, W. Verstraete. Microbial fuel cells:novel biotechnology for energy generation. Trends Biotechnol,2005,23,291-298.
    [19]A. Shantaram, H. Beyenal, R. Raajan, A. Veluchamy, Z. Lewandowski. Wireless sensors powered by microbial fuel cells. Environ. Sci. Technol.,2005,39, 5037-5042.
    [20]L. Tender, S. Gray, E. Groveman, D. Lowy, P. Kauffman, J. Melhado, R. Tyce, D. Flynn, R. Petrecca, J. Dobarro. The first demonstration of a microbial fuel cell as a viable power supply:powering a meteorological buoy. J. Power Sources,2008,779,571-575.
    [21]S. Wilkinson. " Gastrobots "— benefits and challenges of microbial fuel cells in food powered robot applications. Mech. Eng.,2000,99-111.
    [22]D. a. LaVan, T. McGuire, R. Langer. Small-scale systems for in vivo drug delivery. Nat. Biotechnol.,2003,21,1184-1191.
    [23]Y. Zuo, P.-c. Maness, B. E. Logan. Electricity production from steam-exploded corn stover biomass. Renew. Energy,2006,5809-5814.
    [24]H. V. M. Hamelers, Annemiek, T. H. J. a. Sleutels, A. W. Jeremiasse, D. P. B. T. B. Strik, C. J. N. Buisman. New applications and performance of bioelectrochemical systems. Appl. Microbiol. Biotechnol.,2010,85,1673-1685.
    [25]A. P. Ballantyne, C. B. Alden, J. B. Miller. P. P. Tans, J. W. White. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature,2012,488,70-73.
    [26]M. Aresta, A. Dibenedetto. Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Trans.,2007,2975-2992.
    [27]M. Mikkelsen, M. Jorgensen, F. C. Krebs. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci.,2010.3, 43-81.
    [28]J. Qiao, Y. Liu, F. Hong, J. Zhang. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev.,2014,43, 631-675.
    [29]M. Gattrell, N. Gupta, A. Co. A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J. Electroanal. Chem.,2006,594,1-19.
    [30]F. Harnisch, U. Schroder. From MFC to MXC:chemical and biological cathodes and their potential for microbial bioelectrochemical systems. Chem. Soc. Rev.,2010,39,4433-4448.
    [31]T. H. Pham, P. Aelterman, W. Verstraete. Bioanode performance in bioelectrochemical systems:recent improvements and prospects. Trends Biotechnol,2009,27,168-178.
    [32]D. R. Lovley, D. E. Holmes, K. P. Nevin. Dissimilatory Fe(III) and Mn(IV) reduction, in Adv. Microb. Physiol. Academic Press,2004,219-286.
    [33]S. Glasauer, S. Langley, T. J. Beveridge. Intracellular iron minerals in a dissimilatory iron-reducing bacterium. Science,2002,295,117-119.
    [34]C. I. Torres, A. K. Marcus, H.-S. Lee, P. Parameswaran, R. Krajmalnik-Brown, B. E. Rittmann. A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiol. Rev.,2010,34,3-17.
    [35]M. E. Hernandez, A. Kappler, D. K. Newman. Phenazines and other redox-active antibiotics promote microbial mineral reduction. Appl. Environ. Microbiol,2004,70,921-928.
    [36]C. E. Turick, L. S. Tisa, J. Caccavo, Frank. Melanin production and use as a soluble electron shuttle for Fe(III) oxide reduction and as a terminal electron acceptor by Shewanella algae BrY. Appl. Environ. Microbiol.,2002,68, 2436-2444.
    [37]H. von Canstein, J. Ogawa, S. Shimizu, J. R. Lloyd. Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl. Environ. Microbiol,2008,74,615-623.
    [38]D. K. Newman, R. Kolter. A role for excreted quinones in extracellular electron transfer. Nature,2000,405,94-97.
    [39]G. Reguera, K. D. McCarthy, T. Mehta, J. S. Nicoll, M. T. Tuominen, D. R. Lovley. Extracellular electron transfer via microbial nanowires. Nature,2005, 455,1098-1101.
    [40]Y. A. Gorby, S. Yanina, J. S. McLean, K. M. Rosso, D. Moyles, A. Dohnalkova, T. J. Beveridge, I. S. Chang, B. H. Kim, K. S. Kim, D. E. Culley, S. B. Reed, M. F. Romine, D. A. Saffarini, E. A. Hill, L. Shi, D. A. Elias, D. W. Kennedy, G. Pinchuk, K. Watanabe, S. i. Ishii, B. Logan, K. H. Nealson, J. K. Fredrickson. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. P Natl Acad Sci USA,2006,103, 11358-11363.
    [41]D. Baron, E. LaBelle, D. Coursolle, J. A. Gralnick, D. R. Bond. Electrochemical measurement of electron transfer kinetics by Shewanella oneidensis MR-1..J. Biol. Chem.,2009,284,28865-28873.
    [42]E. Marsili, D. B. Baron, I. D. Shikhare, D. Coursolle, J. a. Gralnick, D. R. Bond. Shewanella secretes flavins that mediate extracellular electron transfer. P Natl Acad Sci USA,2008,105,3968-3973.
    [43]N. J. Kotloski, J. A. Gralnick. Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. mBio,2013,4, e00553-00512.
    [44]N. S. Malvankar, M. Vargas, K. P. Nevin, A. E. Franks, C. Leang, B. C. Kim, K. Inoue, T. Mester, S. F. Covalla, J. P. Johnson, V. M. Rotello, M. T. Tuominen, D. R. Lovley. Tunable metallic-like conductivity in microbial nanowire networks. Nat. Nanotechnol.,2011,6,573-579.
    [45]S. M. Strycharz-Glaven, R. M. Snider, A. Guiseppi-Elie, L. M. Tender. On the electrical conductivity of microbial nanowires and biofilms. Energy Environ. Sci.,2011,4,4366-4379.
    [46]G. G. Kumar, V. G. Sarathi, K. S. Nahm. Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells. Biosens. Bioelectron.,2013,43,461-475.
    [47]M. Zhou, M. Chi, J. Luo, H. He, T. Jin. An overview of electrode materials in microbial fuel cells. J. Power Sources,2011,196,4427-4435.
    [48]D. M. Guldi, V. Sgobba. Carbon nanostructures for solar energy conversion schemes. Chem. Commun.,2011,47,606-610.
    [49]D. Chen, L. Tang, J. Li. Graphene-based materials in electrochemistry. Chem. Soc. Rev.,2010,39,3157-3180.
    [50]X. Zuo, S. He. D. Li, C. Peng, Q. Huang, S. Song, C. Fan. Graphene oxide-facilitated electron transfer of metalloproteins at electrode surfaces. Langmuir,2010,26.1936-1939.
    [51]H. L. Poh, F. Sanek, A. Ambrosi, G. Zhao, Z. Sofer, M. Pumera. Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties. Nanoscale, 2012,4,83515-3522.
    [52]M. C. Gutierrez, Z. Y. Garcia-Carvajal, M. J. Hortiguela, L. Yuste, F. Rojo, M. L. Ferrer, F. del Monte. Biocompatible MWCNT scaffolds for immobilization and proliferation of E.coli. J. Mater. Chem.,2007,17,2992-2995.
    [53]X. Xie, L. Hu, M. Pasta, G. F. Wells, D. Kong, C. S. Criddle, Y. Cui. Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells. Nano Lett.,2011,11,291-296.
    [54]Z. He, J. Liu, Y. Qiao, C. M. Li, T. T. Tan. Architecture engineering of hierarchically porous chitosan/vacuum-stripped graphene scaffold as bioanode for high performance microbial fuel cell. Nano Lett.,2012,12,4738-4741.
    [55]C. Zhao, P. Gai, C. Liu, X. Wang, H. Xu, J. Zhang, J.-J. Zhu. Polyaniline networks grown on graphene nanoribbons-coated carbon paper with a synergistic effect for high-performance microbial fuel cells. J. Mater. Chem. A, 2013,7,12587-12594.
    [56]H. Wang, G. Wang, Y. Ling, F. Qian, Y. Song, X. Lu, S. Chen, Y. Tong, Y. Li. High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode. Nanoscale,2013,5,10283-10290.
    [57]Y. Zhao, K. Watanabe, R. Nakamura, S. Mori, H. Liu, K. Ishii, K. Hashimoto. Three-dimensional conductive nanowire networks for maximizing anode performance in microbial fuel cells. Chem. Eur. J.,2010,16,4982-4985.
    [58]Y. Qiao, S.-J. Bao, C. M. Li, X.-Q. Cui, Z.-S. Lu, J. Guo. Nano structured polyaniline/titanium dioxide composite anode for microbial fuel cells. ACS Nano,2008,2,113-119.
    [59]X. W. Liu, J. J. Chen, Y X. Huang, X. F. Sun, G. P. Sheng, D. B. Li, L. Xiong, Y Y. Zhang, F. Zhao, H. Q. Yu. Experimental and theoretical demonstrations for the mechanism behind enhanced microbial electron transfer by CNT network. Sci. Rep.,2014,4,3732.
    [60]X. W. Liu, X. F. Sun, J. J. Chen, Y. X. Huang, J. F. Xie, W. W. Li, G. P. Sheng, Y. Y. Zhang, F. Zhao, R. Lu, H. Q. Yu. Phenothiazine derivative-accelerated microbial extracellular electron transfer in bioelectrochemical system. Sci. Rep., 2013,3,1616.
    [61]A. Kundu, J. N. Sahu, G. Redzwan, M. A. Hashim. An overview of cathode material and catalysts suitable for generating hydrogen in microbial electrolysis cell. Int. J. Hydrog. Energy,2013,38,1745-1757.
    [62]S. Cheng, H. Liu, B. E. Logan. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ. Sci. Technol.,2006,40,364-369.
    [63]F. Harnisch, N. A. Savastenko, F. Zhao, H. Steffen, V. Bruser, U. Schroder. Comparative study on the performance of pyrolyzed and plasma-treated iron(II) phthalocyanine-based catalysts for oxygen reduction in pH neutral electrolyte solutions. J. Power Sources,2009,193,86-92.
    [64]J. M. Morris, S. Jin, J. Wang, C. Zhu, M. A. Urynowicz. Lead dioxide as an alternative catalyst to platinum in microbial fuel cells. Electrochem. Commun., 2007,9,1730-1734.
    [65]I. Roche, K. Scott. Carbon-supported manganese oxide nanoparticles as electrocatalysts for oxygen reduction reaction (orr) in neutral solution. J. Appl. Electrochem.,2009,39,197-204.
    [66]X. W. Liu, X. F. Sun, Y. X. Huang, G. P. Sheng, K. Zhou, R. J. Zeng, F. Dong, S. G. Wang, A. W. Xu, Z. H. Tong, H. Q. Yu. Nano-structured manganese oxide as a cathodic catalyst for enhanced oxygen reduction in a microbial fuel cell fed with a synthetic wastewater. Water Res.,2010,44,5298-5305.
    [67]F. Harnisch, G. Sievers, U. Schroder. Tungsten carbide as electrocatalyst for the hydrogen evolution reaction in pH neutral electrolyte solutions. Appl. Catal. B-Environ.,2009,89,455-458.
    [68]H. Hu, Y. Fan, H. Liu. Hydrogen production in single-chamber tubular microbial electrolysis cells using non-precious-metal catalysts. Int. J. Hydrog. Energy,2009,34,8535-8542.
    [69]P. A. Selembo, M. D. Merrill, B. E. Logan. The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells. J. Power Sources, 2009,790,271-278.
    [70]D. F. Call, M. D. Merrill, B. E. Logan. High surface area stainless steel brushes as cathodes in microbial electrolysis cells. Environ. Sci. Technol,2009,43, 2179-2183.
    [71]J. C. Tokash, B. E. Logan. Electrochemical evaluation of molybdenum disulfide as a catalyst for hydrogen evolution in microbial electrolysis cells. Int . J. Hydrog. Energy,2011,36,9439-9445.
    [72]W. Hou, W. H. Hung, P. Pavaskar, A. Goeppert, M. Aykol, S. B. Cronin. Photocatalytic conversion of CO2 to hydrocarbon fuels via plasmon-enhanced absorption and metallic interband transitions. ACS Catal,2011,1,929-936.
    [73]. X. Zhang, F. Han, B. Shi, S. Farsinezhad, G P. Dechaine, K. Shankar. Photocatalytic conversion of diluted CO2 into light hydrocarbons using periodically modulated multiwalled nanotube arrays. Angew. Chem. Int. Ed, 2012,57,12732-12736.
    [74]T. Arai, S. Sato, K. Uemura, T. Morikawa, T. Kajino, T. Motohiro. Photoelectrochemical reduction of CO2 in water under visible-light irradiation by a p-type InP photocathode modified with an electropolymerized ruthenium complex. Chem. Commun.,2010,46,6944-6946.
    [75]J. Pan, X. Wu, L. Wang, G Liu, G. Q. Lu, H. M. Cheng. Synthesis of anatase TiO2 rods with dominant reactive{010} facets for the photoreduction of CO2 to CH4 and use in dye-sensitized solar cells. Chem. Commun.,2011,47, 8361-8363.
    [76]Y. Oh, X. Hu. Organic molecules as mediators and catalysts for photocatalytic and electrocatalytic CO2 reduction. Chem. Soc. Rev.,2013,42,2253-2261.
    [77]Y. Izumi. Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coord. Chem. Rev.,2013,257,171-186.
    [78]C. Ampelli, G Centi, R. Passalacqua, S. Perathoner. Synthesis of solar fuels by a novel photoelectrocatalytic approach. Energy Environ. Sci.,2010,3,292-301.
    [79]A. Dhakshinamoorthy, S. Navalon, A. Corma, H. Garcia. Photocatalytic CO2 reduction by TiO2 and related titanium containing solids. Energy Environ. Sci., 2012,5,9217-9233.
    [80]E. E. Barton, D. M. Rampulla, A. B. Bocarsly. Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. J. Am. Chem. Soc.,2008,130,6342-6344.
    [81]K. W. Frese, D. Canfield. Reduction of CO2 at n-type semiconductor electrodes. J. Electrochem. Soc.,1983,130, C108-C109.
    [82]J. L. Inglis, B. J. MacLean, M. T. Pryce, J. G. Vos. Electrocatalytic pathways towards sustainable fuel production from water and CO2. Coord. Chem. Rev., 2012,256,2571-2600.
    [83]M. Gattrell, N. Gupta, A. Co. Electrochemical reduction of CO2 to hydrocarbons to store renewable electrical energy and upgrade biogas. Energy Convers. Manage.,2007,48,1255-1265.
    [84]Y. Hori. Electrochemical CO2 reduction on metal electrodes, in Modern Aspects of Electrochemistry. Springer New York,2008,89-189.
    [85]K. W. Frese, S. Leach. Electrochemical reduction of carbon dioxide to methane, methanol, and CO on Ru electrodes. J. Electrochem. Soc.,1985,132,259-260.
    [86]D. P. Summers, K. W. Frese. Electrochemical reduction of carbon dioxide. Characterization of the formation of methane at ruthenium electrodes in carbon dioxide saturated aqueous solution. Langmuir,1988,4,51-57.
    [87]Y. Hori, K. Kikuchi, S. Suzuki. Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution. Chem. Lett.,1985,14,1695-1698.
    [88]Y. Hori, K. Kikuchi, A. Murata, S. Suzuki. Production of methane and ethylene in electrochemical reduction of carbon dioxide at copper electrode in aqueous hydrogencarbonate solution. Chem. Lett.,1986,15,897-898.
    [89]Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga. Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta,1994,39,1833-1839.
    [90]Y. Terunuma, A. Saitoh, Y. Momose. Relationship between hydrocarbon production in the electrochemical reduction of CO2 and the characteristics of the Cu electrode. J. Electroanal. Chem.,1997,434,69-75.
    [91]R. Shiratsuchi, S. Ishimaru, G. Nogami. Influence of anions on the production efficiency in pulsed electroreduction of CO2 on metal and alloy electrodes, in Advances in Chemical Conversions for Mitigating Carbon Dioxide.1998, 573-576.
    [92]S. Ishimaru, R. Shiratsuchi, G. Nogami. Pulsed electroreduction of CO2 on Cu-Ag alloy electrodes. J. Electrochem. Soc.,2000,147,1864-1867.
    [93]Y. Hori, I. Takahashi, O. Koga, N. Hoshi. Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. J. Phys. Chem. B,2002,106,15-17.
    [94]I. Takahashi, O. Koga, N. Hoshi, Y. Hori. Electrochemical reduction of CO2 at copper single crystal Cu(S)-[n (111) x (111)] and Cu(S)-[n (110)×(100)] electrodes. J. Electroanal. Chem.,2002,533.135-143.
    [95]Y. Hori, I. Takahashi, O. Koga, N. Hoshi. Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes. J. Mol. Catal. A: Chem.,2003,199,39-47.
    [96]J. Yano, S. Yamasaki. Pulse-mode electrochemical reduction of carbon dioxide using copper and copper oxide electrodes for selective ethylene formation. J. Appl. Electrochem.,2008,38,1721-1726.
    [97]W. J. Durand, A. A. Peterson, F. Studt, F. Abild-Pedersen, J. K. N(?)rskov. Structure effects on the energetics of the electrochemical reduction of CO2 by copper surfaces. Surf. Sci.,2011,605,1354-1359.
    [98]M. Le, M. Ren, Z. Zhang, P. T. Sprunger, R. L. Kurtz, J. C. Flake. Electrochemical reduction of CO2 to CH3OH at copper oxide surfaces. J. Electrochem. Soc.,2011,158, E45-E49.
    [99]B. A. Rosen, A. Salehi-Khojin, M. R. Thorson, W. Zhu, D. T. Whipple, P. J. Kenis, R. I. Masel. Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials. Science,2011,334,643-644.
    [100]W. Tang, A. A. Peterson, A. S. Varela, Z. P. Jovanov, L. Bech, W. J. Durand, S. Dahl, J. K. N(?)rskov, I. Chorkendorff. The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction. Phys. Chem. Chem. Phys.,2012,14,76-81.
    [101]J. Qiao, P. Jiang, J. Liu, J. Zhang. Formation of Cu nanostructured electrode surfaces by an annealing-electroreduction procedure to achieve high-efficiency CO2 electroreduction. Electrochem. Commun.,2014,38,8-11.
    [102]S. Wasmus, E. Cattaneo, W. Vielstich. Reduction of carbon dioxide to methane and ethene-an on-line MS study with rotating electrodes. Electrochim. Acta, 1990,35,771-775.
    [103]Y. Hori, O. Koga, H. Yamazaki, T. Matsuo. Infrared spectroscopy of adsorbed CO and intermediate species in electrochemical reduction of CO2 to hydrocarbons on a Cu electrode. Electrochim. Acta,1995,40,2617-2622.
    [104]I. Oda, H. Ogasawara, M. Ito. Carbon monoxide adsorption on copper and silver electrodes during carbon dioxide electroduction studied by infrared reflection absorption spectroscopy and surface-enhanced raman spectroscopy. Langmuir, 1996,12,1094-0974.
    [105]P. Friebe, P. Bogdanoff, N. AlonsoVante, H. Tributsch. A real-time mass spectroscopy study of the (electro)chemical factors affecting CO2 reduction at copper. J. Catal.,1997,168,374-385.
    [106]B. D. Smith, D. E. Irish, P. Kedzierzawski, J. Augustynski. A surface enhanced Raman scattering study of the intermediate and poisoning species formed during the electrochemical reduction of CO2 on copper. J. Electrochem. Soc.,1997,144, 4288-4296.
    [107]D. W. DeWulf, T. Jin, A. J. Bard. Electrochemical and surface studies of carbon dioxide reduction to methane and ethylene at copper electrodes in aqueous solutions. J. Electrochem. Soc.,1989,136,1686-1691.
    [108]Y. Hori, R. Takahashi, Y. Yoshinami, A. Murata. Electrochemical reduction of CO at a copper electrode. J. Phys. Chem. B,1997,101,7075-7081.
    [109]J. Lee, Y. Tak. Electrocatalytic activity of Cu electrode in electroreduction of CO2. Electrochim. Acta,2001,46,3015-3022.
    [110]K. J. P. Schouten, Y. Kwon, C. J. M. van der Ham, Z. Qin, M. T. M. Koper. A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem. Sci.,2011,2, 1902-1909.
    [111]K. J. Schouten, Z. Qin, E. Perez Gallent, M. T. Koper. Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. J. Am. Chem. Soc.,2012,134,9864-9867.
    [112]F. Calle-Vallejo, M. T. Koper. Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew. Chem. Int. Ed,2013,52, 7282-7285.
    [113]K. J. P. Schouten, E. Perez Gallent, M. T. M. Koper. Structure sensitivity of the electrochemical reduction of carbon monoxide on copper single crystals. ACS Catal,2013,3,1292-1295.
    [114]K. P. Kuhl, E. R. Cave, D. N. Abram, T. F. Jaramillo. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci.,2012,5,7050-7059.
    [115]A. A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J. K. N(?)rskov. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci.,2010,3,1311-1315.
    [116]A. A. Peterson, J. K. N(?)rskov. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett.,2012.3,251-258.
    [117]X. Nie, M. R. Esopi, M. J. Janik, A. Asthagiri. Selectivity of CO2 reduction on copper electrodes:the role of the kinetics of elementary steps. Angew. Chem. Int. Ed.,2013,52,2459-2462.
    [118]Y. Hori, H. Konishi, T. Futamura, A. Murata, O. Koga, H. Sakurai, K. Oguma. "Deactivation of copper electrode" in electrochemical reduction of CO2. Electrochim. Acta,2005,50,5354-5369.
    [119]Y. Chen, M. W. Kanan. Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. J. Am. Chem. Soc.,2012,134,1986-1989.
    [120]Y. Chen, C. W. Li, M. W. Kanan. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc.,2012,134, 19969-19972.
    [121]C. W. Li, M. W. Kanan. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick CU2O films. J. Am. Chem. Soc.,2012,134, 7231-7234.
    [122]C. W. Li, J. Ciston, M. W. Kanan. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature,2014,508, 504-507.
    [123]W. Zhu, R. Michalsky, O. Metin, H. Lv, S. Guo, C. J. Wright, X. Sun, A. A. Peterson, S. Sun. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J. Am. Chem. Soc.,2013,135,16833-16836.
    [124]Z. Xu, E. Lai, Y. Shao-Horn, K. Hamad-Schifferli. Compositional dependence of the stability of AuCu alloy nanoparticles. Chem. Commun.,2012,48, 5626-5628.
    [125]Q. Lu, J. Rosen, Y. Zhou, G S. Hutchings, Y. C. Kimmel, J. G Chen, F. Jiao. A selective and efficient electrocatalyst for carbon dioxide reduction. Nat. Commun.,2014,5,3242-3247.
    [126]S. Zhang, P. Kang, T. J. Meyer. Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J. Am. Chem. Soc., 2014,136,1734-1737.
    [1]K. Rabaey, W. Verstraete. Microbial fuel cells:novel biotechnology for energy generation. Trends Biotechnol.,2005,23,291-298.
    [2]Z. Du, H. Li, T. Gu. A state of the art review on microbial fuel cells:A promising technology for wastewater treatment and bioenergy. Biotechnol. Adv., 2007,25,464-482.
    [3]A. E. Franks, K. P. Nevin. Microbial fuel cells, a current review. Energies,2010, 3,899-919.
    [4]C. I. Torres, A. K. Marcus, H.-S. Lee, P. Parameswaran, R. Krajmalnik-Brown, B. E. Rittmann. A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiol. Rev.,2010,34,3-17.
    [5]F. Harnisch, U. Schroder. From MFC to MXC:chemical and biological cathodes and their potential for microbial bioelectrochemical systems. Chem. Soc. Rev.,2010,39,4433-4448.
    [6]M. Zhou, M. Chi, J. Luo, H. He, T. Jin. An overview of electrode materials in microbial fuel cells. J. Power Sources,2011,196,4427-4435.
    [7]M. C. Gutierrez, Z. Y. Garcia-Carvajal, M. J. Hortiguela, L. Yuste, F. Rojo, M. L Ferrer, F. del Monte. Biocompatible MWCNT scaffolds for immobilization and proliferation of E. coli.J. Mater. Chem.,2007,17,2992-2995.
    [8]Y. Qiao, S.-J. Bao, C. M. Li, X.-Q. Cui, Z.-S. Lu, J. Guo. Nanostructured polyaniline/titanium dioxide composite anode for microbial fuel cells. ACS Nano,2008,2,113-119.
    [9]Y. Zhao, K. Watanabe, R. Nakamura, S. Mori, H. Liu, K. Ishii, K. Hashimoto. Three-dimensional conductive nanowire networks for maximizing anode performance in microbial fuel cells. Chem. Eur. J.,2010,16,4982-4985.
    [10]X. Xie, L. Hu, M. Pasta, G. F. Wells, D. Kong, C. S. Criddle, Y. Cui. Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells. Nano Lett.,2011,11,291-296.
    [11]Z. He, J. Liu, Y. Qiao, C. M. Li, T. T. Tan. Architecture engineering of hierarchically porous chitosan/vacuum-stripped graphene scaffold as bioanode for high performance microbial fuel cell. Nano Lett.,2012,12,4738-4741.
    [12]H. Wang, G. Wang. Y. Ling, F. Qian, Y. Song, X. Lu, S. Chen. Y. Tong, Y. Li. High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode. Nanoscale,2013,5,10283-10290.
    [13]C, Zhao, P. Gai, C. Liu, X. Wang, H. Xu, J. Zhang, J.-J. Zhu. Polyaniline networks grown on graphene nanoribbons-coated carbon paper with a synergistic effect for high-performance microbial fuel cells. J. Mater. Chem. A, 2013,1,12587-12594.
    [14]D. R. Lovley. Live wires:direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination. Energy Environ. Sci., 2011,4,4896-4906.
    [15]L. Shi, D. J. Richardson, Z. Wang, S. N. Kerisit, K. M. Rosso, J. M. Zachara, J. K. Fredrickson. The roles of outer membrane cytochromes of Shewanella and Geobacter in extracellular electron transfer. Environ. Microbiol. Rep.,2009,1, 220-227.
    [16]A. A. Carmona-Martinez, F. Harnisch, L. A. Fitzgerald, J. C. Biffinger, B. R. Ringeisen, U. Schroder. Cyclic voltammetric analysis of the electron transfer of Shewanella oneidensis MR-1 and nanofilament and cytochrome knock-out mutants. Bioelectrochemistry,2011,81,74-80.
    [17]T. A. Clarke, M. J. Edwards, A. J. Gates, A. Hall, G. F. White, J. Bradley, C. L. Reardon, L. Shi, A. S. Beliaev, M. J. Marshall, Z. Wang, N. J. Watmough, J. K. Fredrickson, J. M. Zachara, J. N. Butt, D. J. Richardson. Structure of a bacterial cell surface decaheme electron conduit. P Natl Acad Sci USA,2011,108, 9384-9389.
    [18]A. K. Geim, K. S. Novoselov. The rise of graphene. Nat. Mater.,2007,6, 183-191.
    [19]A. K. Geim. Graphene:status and prospects. Science,2009,324,1530-1534.
    [20]D. Chen, L. Tang, J. Li. Graphene-based materials in electrochemistry. Chem. Soc. Rev.,2010,39,3157-3180.
    [21]X. Zuo, S. He, D. Li, C. Peng, Q. Huang, S. Song, C. Fan. Graphene oxide-facilitated electron transfer of metalloproteins at electrode surfaces. Langmuir,2010,26,1936-1939.
    [22]M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff. Graphene-based ultracapacitors. Nano Lett,2008,8,3498-3502.
    [23]Z. Yin, J. Zhu, Q. He, X. Cao, C. Tan, H. Chen, Q. Yan, H. Zhang. Graphene-based materials for solar cell applications. Adv. Energy Mater,2013, 4,DOI:10.1002/aenm.201300574.
    [24]D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, J. M. Tour. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature,2009,458,872-876.
    [25]P. V. Kamat, K. G. Thomas, S. Barazzouk, G. Girishkumar, K. Vinodgopal, D. Meisel. Self-assembled linear bundles of single wall carbon nanotubes and their alignment and deposition as a film in a dc field. J. Am. Chem. Soc.,2004,126, 10757-10762.
    [26]E. Marsili, D. B. Baron, I. D. Shikhare, D. Coursolle, J. a. Gralnick, D. R. Bond. Shewanella secretes flavins that mediate extracellular electron transfer. P Natl Acad Sci USA,2008,105,3968-3973.
    [27]W. Verstraete, K. Rabaey. Critical review microbial fuel cells:methodology and technology Environ. Sci. Technol,2006,40,5181-5192.
    [28]A. J. Bard, L. R. Faulkner,著,邵元华,朱果逸,董献堆,张柏林,译.电化学方法原理和应用.第二版ed.北京工业出版社,2005.
    [29]H. L. Poh, F. Sanek, A. Ambrosi, G. Zhao, Z. Sofer, M. Pumera. Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties. Nanoscale, 2012,4,83515-3522.
    [30]L. a. Meitl, C. M. Eggleston, P. J. S. Colberg, N. Khare, C. L. Reardon, L. Shi. Electrochemical interaction of Shewanella oneidensis MR-1 and its outer membrane cytochromes OmcA and MtrC with hematite electrodes. Geochim. Cosmochim. Acta,2009,73,5292-5307.
    [31]N. J. Kotloski, J. A. Gralnick. Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. mBio,2013,4, e00553-00512.
    [32]Y. a. Gorby, S. Yanina, J. S. McLean, K. M. Rosso, D. Moyles, A. Dohnalkova, T. J. Beveridge, I. S. Chang, B. H. Kim, K. S. Kim, D. E. Culley, S. B. Reed, M. F. Romine, D. a. Saffarini, E. a. Hill, L. Shi. D. a. Elias, D. W. Kennedy, G. Pinchuk, K. Watanabe, S. i. Ishii, B. Logan, K. H. Nealson, J. K. Fredrickson. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. P Natl Acad Sci USA,2006,103, 11358-11363.
    [33]D. Baron, E. LaBelle, D. Coursolle, J. A. Gralnick, D. R. Bond. Electrochemical measurement of electron transfer kinetics by Shewanella oneidensis MR-1. J. Biol. Chem.,2009,284,28865-28873.
    [34]M. Y. El-Naggar, G Wanger, K. M. Leung, T. D. Yuzvinsky, G. Southam, J. Yang, W. M. Lau, K. H. Nealson, Y. A. Gorby. Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1, P Natl Acad Sci USA, 2010,107,18127-18131.
    [35]Y. Qiao, C. M. Li, S.-J. Bao, Z. Lu, Y. Hong. Direct electrochemistry and electrocatalytic mechanism of evolved Escherichia coli cells in microbial fuel cells. Chem. Commun.,2008,1290-1292.
    [36]E. Barsoukov, J. R. Macdonald. Imdedance spectroscopy:theory, experiment, and applications.2nd ed. John Wiley & Sons, Inc.,2005.
    [1]F. Harnisch, U. Schroder. From MFC to MXC:chemical and biological cathodes and their potential for microbial bioelectrochemical systems. Chem. Soc. Rev.,2010,39,4433-4448.
    [2]A. Kundu, J. N. Sahu, G. Redzwan, M. A. Hashim. An overview of cathode material and catalysts suitable for generating hydrogen in microbial electrolysis cell. Int. J. Hydrog. Energy,2013,38,1745-1757.
    [3]H. Liu, S. Grot, B. E. Logan. Electrochemically assisted microbial production of hydrogen from acetate. Environ. Sci. Technol,2005,39,4317-4320.
    [4]R. A. Rozendal, H. V. M. Hamelers, G J. W. Euverink, S. J. Metz, C. J. N. Buisman. Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int. J. Hydrog. Energy,2006,31,1632-1640.
    [5]S. Cheng, H. Liu, B. E. Logan. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ. Sci. Technol.,2006,40,364-369.
    [6]J. M. Morris, S. Jin, J. Wang, C. Zhu, M. A. Urynowicz. Lead dioxide as an alternative catalyst to platinum in microbial fuel cells. Electrochem. Commun., 2007,9,1730-1734.
    [7]D. F. Call, M. D. Merrill, B. E. Logan. High surface area stainless steel brushes as cathodes in microbial electrolysis cells. Environ. Sci. Technol.,2009,43, 2179-2183.
    [8]F. Harnisch, N. A. Savastenko, F. Zhao, H. Steffen, V. Bruser, U. Schroder. Comparative study on the performance of pyrolyzed and plasma-treated iron(II) phthalocyanine-based catalysts for oxygen reduction in pH neutral electrolyte solutions. J. Power Sources,2009,193,86-92.
    [9]F. Harnisch, G Sievers, U. Schroder. Tungsten carbide as electrocatalyst for the hydrogen evolution reaction in pH neutral electrolyte solutions. Appl. Catal. B-Environ.,2009,89,455-458.
    [10]H. Hu, Y. Fan, H. Liu. Hydrogen production in single-chamber tubular microbial electrolysis cells using non-precious-metal catalysts. Int. J. Hydrog. Energy,2009,34,8535-8542.
    [11]I. Roche, K. Scott. Carbon-supported manganese oxide nanoparticles as electrocatalysts for oxygen reduction reaction (orr) in neutral solution. J. Appl. Electrochem.,2009,39,197-204.
    [12]P. A. Selembo, M. D. Merrill, B. E. Logan. The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells. J. Power Sources, 2009,190,271-278.
    [13]X. W. Liu, X. F. Sun, Y. X. Huang, G. P. Sheng, K. Zhou, R. J. Zeng, F. Dong, S. G. Wang, A. W. Xu, Z. H. Tong, H. Q. Yu. Nano-structured manganese oxide as a cathodic catalyst for enhanced oxygen reduction in a microbial fuel cell fed with a synthetic wastewater. Water Res.,2010,44,5298-5305.
    [14]J. C. Tokash, B. E. Logan. Electrochemical evaluation of molybdenum disulfide as a catalyst for hydrogen evolution in microbial electrolysis cells. Int. J. Hydrog. Energy,2011,36,9439-9445.
    [15]P. P. Andonoglou, A. D. Jannakoudakis. Palladium deposition on activated carbon fibre supports and electrocatalytic activity of the modified electrodes towards the hydrogen evolution reaction. Electrochim. Acta,1997,42, 1905-1913.
    [16]J. L. Fernandez, V. Raghuveer, A. Manthiram, A. J. Bard. Pd-Ti and Pd-Co-Au electrocatalysts as a replacement for platinum for oxygen reduction in proton exchange membrane fuel cells. J. Am. Chem. Soc.,2005,727,13100-13101.
    [17]B. Lim, M. J. Jiang, P. H. C. Camargo, E. C. Cho, J. Tao, X. M. Lu, Y. M. Zhu, Y. A. Xia. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science,2009,324,1302-1305.
    [18]L. Xiao, L. Zhuang, Y. Liu, J. T. Lu, H. D. Abruna. Activating Pd by morphology tailoring for oxygen reduction. J. Am. Chem. Soc.,2009,131, 602-608.
    [19]Y. G. Suo, L. Zhuang, J. T. Lu. First-principles considerations in the design of Pd-alloy catalysts for oxygen reduction. Angew. Chem. Int. Ed,2007,46, 2862-2864.
    [20]S. Uhm, H. J. Lee, Y. Kwon, J. Lee. A stable and cost-effective anode catalyst structure for formic acid fuel cells. Angew. Chem. Int. Ed.,2008,47, 10163-10166.
    [21]M. Sun, G. P. Sheng, L. Zhang, C. R. Xia, Z. X. Mu, X. W. Liu. H. L. Wang, H. Q. Yu, R. Qi, T. Yu, M. Yang. An MEC-MFC-coupled system for biohydrogen production from acetate. Environ. Sci. Technol.,2008,42,8095-8100.
    [22]S. J. Zhang, H. Q. Yu, H. M. Feng. PVA-based activated carbon fibers with lotus root-like axially porous structure. Carbon,2006,44,2059-2068.
    [23]A. Wieckowski, E. R. Savinova, C. G Vayenas. Catalysis and Electrocatalysis at Nanoparticle Surfaces. New York. Marcel Dekker,2003.
    [24]C.-H. Cui, H.-H. Li, S.-H. Yu. Large scale restructuring of porous Pt-Ni nanoparticle tubes for methanol oxidation:A highly reactive, stable, and restorable fuel cell catalyst. Chem. Sci,2011,2,1611-1614.
    [25]P. Strasser, S. Koh, J. Greeley. Voltammetric surface dealloying of Pt bimetallic nanoparticles:an experimental and DFT computational analysis. Phys. Chem. Chem. Phys.,2008,10,3670-3683.
    [26]X. Chen, G. Wu, J. Chen, X. Chen, Z. Xie, X. Wang. Synthesis of "clean" and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide. J. Am. Chem. Soc.,2011,133,3693-3695.
    [27]S. Moussa, A. R. Siamaki, B. F. Gupton, M. S. El-Shall. Pd-partially reduced graphene oxide catalysts (Pd/PRGO):laser synthesis of Pd nanoparticles supported on PRGO nanosheets for carbon-carbon cross coupling reactions. ACS Catal,2012,2,145-154.
    [28]M. Shao, J. Odell, M. Humbert, T. Yu, Y. Xia. Electrocatalysis on shape-controlled palladium nanocrystals:oxygen reduction reaction and formic acid oxidation. J. Phys. Chem. C,2013,117,4172-4180.
    [29]M. Jin, H. Zhang, Z. Xie, Y. Xia. Palladium concave nanocubes with high-index facets and their enhanced catalytic properties. Angew. Chem. Int. Ed.,2011,50, 7850-7854.
    [1]F. Harnisch, U. Schroder. From MFC to MXC:chemical and biological cathodes and their potential for microbial bioelectrochemical systems. Chem. Soc. Rev.,2010,39,4433-4448.
    [2]M. Zhou, M. Chi, J. Luo, H. He, T. Jin. An overview of electrode materials in microbial fuel cells. J. Power Sources,2011,196,4427-4435.
    [3]Y. Zhu, Y. Kang, Z. Zou, Q. Zhou, J. Zheng, B. Xia, H. Yang. A facile preparation of carbon-supported Pd nanoparticles for electrocatalytic oxidation of formic acid. Electrochem. Commun.,2008,10,802-805.
    [4]L. Xiao, L. Zhuang, Y. Liu, J. T. Lu, H. D. Abruna. Activating Pd by morphology tailoring for oxygen reduction. J. Am. Chem. Soc.,2009,131, 602-608.
    [5]H. Zhang, M. Jin, Y. Xiong, B. Lim, Y. Xia. Shape-controlled synthesis of Pd nanocrystals and their catalytic applications. Acc. Chem. Res.,2012,46, 1783-1794.
    [6]M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff. Graphene-based ultracapacitors. Nano Lett.,2008,8,3498-3502.
    [7]X. Huang, X. Qi, F. Boey, H. Zhang. Graphene-based composites. Chem. Soc. Rev.,2012,41,666-686.
    [8]Z. Yin, J. Zhu, Q. He, X. Cao, C. Tan, H. Chen, Q. Yan, H. Zhang. Graphene-based materials for solar cell applications. Adv. Energy Mater.,2013, 4,DOI:10.1002/aenm.201300574.
    [9]G. Giovannetti, P. Khomyakov, G. Brocks, V. Karpan, J. van den Brink, P. Kelly. Doping graphene with metal contacts. Phys. Rev. Lett.,2008,101,026803.
    [10]Q. J. Wang, J. G Che. Origins of distinctly different behaviors of Pd and Pt contacts on graphene. Phys. Rev. Lett.,2009,103,066802.
    [11]A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong, Y. Liu. A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials. Adv. Mater.,2010,22, 103-106.
    [12]J. Huang, L. Zhang, B. Chen, N. Ji, F. Chen, Y. Zhang, Z. Zhang. Nanocomposites of size-controlled gold nanoparticles and graphene oxide: Formation and applications in SERS and catalysis. Nanoscale,2010,2, 2733-2738.
    [13]S. Guo, S. Sun. FePt nanoparticles assembled on graphene as enhanced catalyst for oxygen reduction reaction. J. Am. Chem. Soc.,2012,134,2492-2495.
    [14]S. Guo, S. Zhang, L. Wu, S. Sun. Co/CoO nanoparticles assembled on graphene for electrochemical reduction of oxygen. Angew. Chem. Int. Ed.,2012,57, 11770-11773.
    [15]T. N. Lambert, C. A. Chavez, B. Hernandez-Sanchez, P. Lu, N. S. Bell, A. Ambrosini, T. Friedman, T. J. Boyle, D. R. Wheeler, D. L. Huber. Synthesis and characterization of titania-graphene nanocomposites. J. Phys. Chem. C,2009, 113,19812-19823.
    [16]F. Li, H. Yang, C. Shan, Q. Zhang, D. Han, A. Ivaska, L. Niu. The synthesis of perylene-coated graphene sheets decorated with Au nanoparticles and its electrocatalysis toward oxygen reduction. J. Mater. Chem.,2009,19, 4022-4025.
    [17]Y.-T. Kim, J. H. Han, B. H. Hong, Y.-U. Kwon. Electrochemical synthesis of CdSe quantum-dot arrays on a graphene basal plane using mesoporous silica thin-film templates. Adv. Mater,2010,22,515-518.
    [18]Y. H. Ng, A. Iwase, A. Kudo, R. Amal. Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting. J. Phys. Chem. Lett,2010,1,2607-2612.
    [19]X. Chen, G. Wu, J. Chen, X. Chen, Z. Xie, X. Wang. Synthesis of "clean" and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide. J. Am. Chem. Soc.,2011,133,3693-3695.
    [20]X. Huang, S. Li, Y. Huang, S. Wu, X. Zhou, S. Li, C. L. Gan, F. Boey, C. A. Mirkin, H. Zhang. Synthesis of hexagonal close-packed gold nanostructures. Nat. Commun.,2011,2,292-297.
    [21]Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai. MoS2 nanoparticles grown on graphene:an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc.,2011,133,7296-7299.
    [22]Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater.,2011,10,780-786.
    [23]S. Moussa, V. Abdelsayed, M. Samy El-Shall. Laser synthesis of Pt. Pd, CoO and Pd-CoO nanoparticle catalysts supported on graphene. Chem. Phys. Lett, 2011,510,179-184.
    [24]J. Yang, C. Tian, L. Wang, H. Fu. An effective strategy for small-sized and highly-dispersed palladium nanoparticles supported on graphene with excellent performance for formic acid oxidation. J. Mater. Chem.,2011,21,3384-3390.
    [25]S. Moussa, A. R. Siamaki, B. F. Gupton, M. S. El-Shall. Pd-partially reduced graphene oxide catalysts (Pd/PRGO):laser synthesis of Pd nanoparticles supported on PRGO nanosheets for carbon-carbon cross coupling reactions. ACS Catal.,2012,2,145-154.
    [26]H. Gu, Y. Yang, J. Tian, G. Shi. Photochemical synthesis of noble metal (Ag, Pd, Au, Pt) on graphene/ZnO multihybrid nanoarchitectures as electrocatalysis for H2O2 reduction. ACSAppl. Mater. Interfaces,2013,5,6762-6768.
    [27]V. Abdelsayed, S. Moussa, H. M. Hassan, H. S. Aluri, M. M. Collinson, M. S. El-Shall. Photothermal deoxygenation of graphite oxide with laser excitation in solution and graphene-aided increase in water temperature. J. Phys. Chem. Lett., 2010,7,2804-2809.
    [28]D. A. Sokolov, K. R. Shepperd, T. M. Orlando. Formation of graphene features from direct laser-induced reduction of graphite oxide. J. Phys. Chem. Lett.,2010, 7,2633-2636.
    [29]L.-C. Yang, Y.-S. Lai, C.-M. Tsai, Y.-T. Kong, C.-I. Lee, C.-L. Huang. One-pot synthesis of monodispersed silver nanodecahedra with optimal SERS activities using seedless photo-assisted citrate reduction method. J. Phys. Chem. C,2012, 116,24292-24300.
    [30]W. S. Hummers, R. E. Offeman. Preparation of graphitic oxide. J. Am. Chem. Soc.,1958,80,1339.
    [31]H. L. Poh, F. Sanek, A. Ambrosi, G. Zhao, Z. Sofer, M. Pumera. Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties. Nanoscale, 2012, 4,8 3515-3522.
    [32]L.-L. Fang, Q. Tao, M.-F. Li, L.-W. Liao, D. Chen, Y.-X. Chen. Determination of the real surface area of palladium electrode. Chin. J. Chem. Phys,2010,23,6.
    [33]H. Yin, H. Tang, D. Wang, Y. Gao, Z. Tang. Facile synthesis of surfactant-free Au cluster/graphene hybrids for high-performance oxygen reduction reaction. ACS Nano,2012,6,8288-8297.
    [34]T. Jin, S. Guo, J. L. Zuo, S. Sun. Synthesis and assembly of Pd nanoparticles on graphene for enhanced electrooxidation of formic acid. Nanoscale,2013,5, 160-163.
    [1]M. Azuma, K. Hashimoto, M. Hiramoto, M. Watanabe. T. Sakata. Electrochemical reduction of carbon dioxide on various metal electrodes in low-temperature aqueous KHCO3 media. J. Electrochem. Soc.,1990,137, 1772-1778.
    [2]Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga. Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta,1994,39,1833-1839.
    [3]M. Gattrell, N. Gupta, A. Co. A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J. Electroanal. Chem.,2006,594,1-19.
    [4]Y. Hori. Electrochemical CO2 reduction on metal electrodes, in Modern Aspects of Electrochemistry. Springer New York,2008,89-189.
    [5]A. A. Peterson, J. K. N(?)rskov. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts.J. Phys. Chem. Lett.,2012,3,251-258.
    [6]Y. Hori, O. Koga, H. Yamazaki, T. Matsuo. Infrared spectroscopy of adsorbed CO and intermediate species in electrochemical reduction of CO2 to hydrocarbons on a Cu electrode. Electrochim. Acta,1995,40,2617-2622.
    [7]I. Oda, H. Ogasawara, M. Ito. Carbon monoxide adsorption on copper and silver electrodes during carbon dioxide electroduction studied by infrared reflection absorption spectroscopy and surface-enhanced raman spectroscopy. Langmuir, 1996,72,1094-0974.
    [8]Y. Hori, R. Takahashi, Y. Yoshinami, A. Murata. Electrochemical reduction of CO at a copper electrode. J. Phys. Chem. B,1997,101,7075-7081.
    [9]B. D. Smith, D. E. Irish, P. Kedzierzawski, J. Augustynski. A surface enhanced Raman scattering study of the intermediate and poisoning species formed during the electrochemical reduction of CO2 on copper. J. Electrochem. Soc.,1997,144, 4288-4296.
    [10]A. A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J. K. Norskov. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci,2010,3,1311-1315.
    [11]K. J. P. Schouten. Y. Kwon. C. J. M. van der Ham. Z. Qin. M. T. M. Koper. A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem. Sci.,2011,2, 1902-1909.
    [12]K. P. Kuhl, E. R. Cave, D. N. Abram, T. F. Jaramillo. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci.,2012,5,7050-7059.
    [13]K. J. Schouten, Z. Qin, E. Perez Gallent, M. T. Koper. Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. J. Am. Chem. Soc.,2012,134,9864-9867.
    [14]K. J. P. Schouten, E. Perez Gallent, M. T. M. Koper. Structure sensitivity of the electrochemical reduction of carbon monoxide on copper single crystals. ACS Catal,2013,3,1292-1295.
    [15]X. Wen, W. Zhang, S. Yang. Synthesis of Cu(OH)2 and CuO nanoribbon arrays on a copper surface. Langmuir,2003,19,5898-5903.
    [16]Y. Chen, C. W. Li, M. W. Kanan. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc.,2012,134, 19969-19972.
    [17]W. Zhu, R. Michalsky, O. Metin, H. Lv, S. Guo, C. J. Wright, X. Sun, A. A. Peterson, S. Sun. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J. Am. Chem. Soc.,2013,135,16833-16836.
    [18]X. Sun, S. Guo, Y. Liu, S. Sun. Dumbbell-like PtPd-Fe3O4 nanoparticles for enhanced electrochemical detection of H2O2. Nano Lett.,2012,12,4859-4863.
    [19]Y. Lee, M. A. Garcia, N. A. Frey Huls, S. Sun. Synthetic tuning of the catalytic properties of Au-Fe3O4 nanoparticles. Angew. Chem. Int. Ed,2010,49, 1271-1274.
    [20]H. Yu, M. Chen, P. M. Rice, S. X. Wang, R. L. White, S. Sun. Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. Nano Lett.,2005,5,379-382.
    [21]S. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, G. Li. Monodisperse MFe2O4 (M=Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc., 2003,126,273-279.
    [22]F. Calle-Vallejo, M. T. Koper. Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew. Chem. Int. Ed.,2013,52, 7282-7285.
    [23]X. Nie, M. R. Esopi, M. J. Janik, A. Asthagiri. Selectivity of CO2 reduction on copper electrodes:the role of the kinetics of elementary steps. Angew. Chem. Int. Ed,2013,52,2459-2462.
    [24]P. Rodriguez, Y. Kwon, M. T. Koper. The promoting effect of adsorbed carbon monoxide on the oxidation of alcohols on a gold catalyst. Nat. Chem.,2012,4, 177-182.
    [25]P. Rodriguez, A. A. Koverga, M. T. Koper. Carbon monoxide as a promoter for its own oxidation on a gold electrode. Angew. Chem. Int. Ed.,2010,49, 1241-1243.
    [26]R. Iyyamperumal, L. Zhang, G. Henkelman, R. M. Crooks. Efficient electrocatalytic oxidation of formic acid using Au@Pt dendrimer-encapsulated nanoparticles. J. Am. Chem. Soc.,2013,135,5521-5524.
    [27]P. Rodriguez, J. M. Feliu, M. T. M. Koper. Unusual adsorption state of carbon monoxide on single-crystalline gold electrodes in alkaline media. Electrochem. Commun.,2009,11,1105-1108.
    [28]M. S. Chen, D. W. Goodman. The structure of catalytically active gold on titania. Science,2004,306,252-255.
    [29]K. W. Frese. Electrochemical reduction of CO2 at intentionally oxidizes copper electrodes.J. Electrochem. Soc.,1991,128,3338-3344.
    [30]G. Kyriacou, A. Anagnostopoulos. Electroreduction of CO2 on differently prepared copper electrodes:The influence of electrode treatment on the current efficiencies. J. Electroanal. Chem.,1992,322,233-246.
    [31]B. Jermann, J. Augustynski. Long-term activation of the copper cathode in the course of CO2 reduction. Electrochim. Acta,1994,39,1891-1896.
    [32]Y. Terunuma, A. Saitoh, Y. Momose. Relationship between hydrocarbon production in the electrochemical reduction of CO2 and the characteristics of the Cu electrode. J. Electroanal. Chem.,1997,434,69-75.
    [33]J. Yano, S. Yamasaki. Pulse-mode electrochemical reduction of carbon dioxide using copper and copper oxide electrodes for selective ethylene formation. J. Appl. Electrochem.,2008,38,1721-1726.
    [34]W. J. Durand, A. A. Peterson, F. Studt, F. Abild-Pedersen, J. K. N(?)rskov. Structure effects on the energetics of the electrochemical reduction of CO2 by copper surfaces. Surf. Sci.,2011,605,1354-1359.
    [35]M. Le, M. Ren, Z. Zhang, P. T. Sprunger, R. L. Kurtz. J. C. Flake. Electrochemical reduction of CO2 to CH3OH at copper oxide surfaces.J. Electrochem. Soc.,2011.158. E45-E49.
    [36]W. Tang, A. A. Peterson, A. S. Varela, Z. P. Jovanov, L. Bech, W. J. Durand, S. Dahl, J. K. N(?)rskov, I. Chorkendorff. The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction. Phys. Chem. Chem. Phys.,2012,14,76-81.
    [37]M. R. Goncalves, A. Gomes, J. Condeco, T. R. C. Fernandes, T. Pardal, C. A. C. Sequeira, J. B. Branco. Electrochemical conversion of CO2 to C2 hydrocarbons using different ex situ copper electrodeposits. Electrochim. Acta,2013,102, 388-392.
    [38]R. Reske, M. Duca, M. Oezaslan, K. J. Schouten, M. T. Koper, P. Strasser. Controlling catalytic selectivities during CO7 electroreduction on thin Cu metal overlayers. J. Phys. Chem. Lett.,2013,4,2410-2413.
    [39]J. Qiao, P. Jiang, J. Liu, J. Zhang. Formation of Cu nanostructured electrode surfaces by an annealing-electroreduction procedure to achieve high-efficiency CO2 electroreduction. Electrochem. Commun.,2014,38,8-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700