二维原子团簇和缺陷团簇的跃迁及扩散行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以几种典型的BCC结构金属、合金和萤石结构氧化物UO2作为研究对象,选取能够合理描述原子间相互作用的势函数模型,对晶体中点缺陷团簇和金属表面原子团簇的跃迁和扩散行为展开了系统的研究,并得到与实验一致的结果。在Fe-Cr合金体系中,研究Cr-V原子空位对的最小能量路径,发现Cr原子的长程跃迁是通过空位辅助机制完成的。单个Cr替位原子跃迁至近邻空位位置所需能量为0.56eV,但单独依靠这一机制无法完成Cr原子的长程跃迁,除非体系中有过饱和浓度的空位分布。Cr-V原子空位团簇的迁移过程是通过自空位辅助跃迁机制,即Fe原子和Cr原子相继跃迁至最近邻空位来完成,它可以导致Cr原子的长程跃迁,其跃迁能量势垒范围为0.64-0.89eV。NEB研究结果表明在α-Fe体系中,混合型Cr-Fe哑铃状填隙原子对很容易发生跃迁,所需能量为0.17eV,低于Fe-Fe哑铃状填隙原子对跃迁所需能量。其中,Cr-Fe填隙原子对的原地旋转和Cr原子的最近邻跃迁是完成一次净跃迁过程的主要跃迁机制。对Cr空位团簇的结合能计算结果发现,团簇的结合能强烈依赖于缺陷团簇的尺寸和缺陷团簇中Cr原子的含量。
     选用Yakub势函数描述U、O和Xe原子之间的相互作用,所计算的跃迁势垒与实验值符合得很好。在UO2体系中,单空位的跃迁通过空位机制完成,其中单铀空位跃迁的能量势垒高于单氧空位跃迁所需能量。完成双氧空位净跃迁所需能量势垒为0.85eV,能量势垒的计算结果表明具有双空位结构的缺陷团簇易于发生空位的解离。在引入裂变气体Xe后,缺陷团簇有了更为复杂和多样的跃迁行为。Xe填隙原子在近邻没有空位存在的情况下很难发生跃迁,当第一近邻位置引入空位后,通过空位辅助跃迁机制使Xe填隙原子的跃迁势垒减少了1.50eV。计算结果还表明,U空位捕获Xe原子后形成替位原子,由Xe替位原子和U空位组成的缺陷团簇的跃迁势垒较高,且无法发生Xe原子的长程跃迁。较之U空位对Xe原子的捕获能力,O空位对Xe原子的捕获能力则较弱,位于O空位的Xe替位原子很容易通过简单跃迁机制直接跃迁至八面体间隙位置,并且终态结构能量更稳定。对于包含两个及以上空位的缺陷团簇,能量势垒结果同样表明空位聚集现象不会发生,双氧空位只需要很低的能量势垒就可以发生空位的解离。在Xe填隙原子和双氧空位组成的缺陷团簇中,最近邻氧空位的作用使八面体间隙位置不再是Xe原子的稳定位置,Xe填隙原子可以占据相邻U原子晶格位置,而U原子被推挤至相邻八面体间隙成为填隙原子,这一过程所需能量势垒为0.16eV。
     采用dimer方法寻找可能跃迁过程的最小能量路径,研究W团簇在W纳米颗粒表面的跃迁机制、可能路径及相应的势垒能量。钨团簇结合能的计算结果表明,W团簇更趋向于在颗粒表面形成二维密排结构。相比纳米颗粒尺寸的影响,菱形十二面体界面和顶角区域对团簇跃迁行为有更明显的影响。当团簇位于边界和顶角区域时,基体原子倾向参与扩散团簇的跃迁,并形成更大的团簇继续迁移,或者通过与基体原子的交换导致团簇的解离。三聚体团簇的跃迁能量势垒表明整体跃迁机制比单原子的相继跃迁更能准确描述三聚体的跃迁行为,这是因为三聚体为密排结构,打破这样一个密排结构要求更高的能量势垒。由于四聚体的高对称性,四聚体的跃迁需要克服更高的能量势垒,dimer剪切过程是四聚体跃迁的主要机制。
     采用分子动力学结合描述原子间相互作用的分析型嵌入势模型,对原子团簇在BCC(110)金属表面的自扩散动力学行为进行了系统的研究。淬火分子动力学得到的团簇结合能表明,扩散团簇的稳定构型为密排小岛结构。同时,长时分子动力学模拟得到二维团簇表面扩散的相关表征量,如扩散迁移能、扩散系数及扩散前因子,其中扩散迁移能随团簇尺寸的变化呈现非单调振荡增加的趋势。与拥有非对称性的二维团簇结构相比,密排封闭团簇结构(如四聚体和七聚体)有着明显较高的扩散迁移能。并且,采用NEB方法着重分析了W四聚体、五聚体、六聚体和七聚体的速率限制步骤所需克服的能量,以及完成一次四聚体和五聚体团簇净跃迁过程的最小能量路径。扩散机制的讨论表明,较大尺寸的二维原子团簇的扩散主要通过外围原子的跃迁、二聚体滑移或组态变化等扩散机制的共同作用来完成。
     本文中所使用的两种寻找最小能量路径的方法可以很好地描述原子团簇和缺陷团簇的表面扩散与体扩散过程,并且得到了一些与实验相符的结果,说明这些方法在处理跃迁和扩散问题中具有很好的普适性和实用性。
In the present work, the appropriate empirical interatomic potentials are employed to describe the interactions between atoms in typical bcc metals, alloy and UO2. And thus the migration and diffusion behaviors of defect clusters in bulk and atomic clusters on metal surfaces have been studied systematically, which are consisted with the experimental results.
     In Fe-Cr alloy systems, it is found for the first time that the Cr migration in Fe is controlled by a vacancy-assistant mechanism, and the corresponding minimum energy paths of Cr-vacancy (Cr-V) clusters and Cr interstitials inα-Fe have been determined. A substitutional Cr atom can migrate to a nearest-neighbor vacancy through an energy barrier of 0.56 eV but this simple mechanism alone is unlikely to lead to the long-distance migration of Cr unless there is a supersaturated concentration of vacancies in the system. The Cr-vacancy clusters can lead to long-distance migration of a Cr atom that is accomplished by Fe and Cr atoms successively jumping to nearest-neighbor vacancy positions, defined as a self-vacancy-assisted migration mechanism, with the migration energies ranging from 0.64 to 0.89 eV. In addition, using the NEB method, a mixed Cr-Fe dumbbell interstitial can easily migrate through Fe lattices, with the migration energy barrier of 0.17, which is lower than that of the Fe-Fe interstitial. The on-site rotation of the Cr-Fe interstitial and Cr atom hopping from one site to another are believed to comprise the dominant migration mechanism. The calculated binding energies of Cr-V clusters are strongly depend on the size of clusters and the concentration of Cr atoms in clusters.
     The Xe-Xe, Xe-O and Xe-U interatomic potential were described using a potential model by Yakub. The calculated energy barriers in Xe-U-O systems show that the potential of Yakub gives a better description of the migration properties. A single vacancy can migrate through the vacancy mechanism. Moreover, the energy barrier of a U-vacancy is higher than that for an O-vacancy. The net migration of an O-divacancy needs to overcome an energy barrier of 0.85eV, while the dissociation energy of the divacancy is only 0.05eV, which suggests that the O-divacancy tends to dissociate. The migration behaviors of defect clusters become more complex and various by introducing fission gases, xenon. In the case of the interstitial Xe atom migration without vacancies at nearest neighboring sites, the energy barrier is very high after introducing an O-vacancy at the nearest neighboring site, the migration barrier of interstitial Xe atom is lowered by 1.50eV via vacancy-assisted migration mechanism. The Xe atom is easy to be trapped at the U-vacancy, becoming a substitutional atom. The relatively large energy implies that, if a Xe is trapped at a U-vacancy, it can hardly lead to a long distance migration. On the other hand, the energy of a Xe trapped at the O-vacancy is lower. As a result, the substitutional Xe atom at the O-vacancy is expected to move to the octahedral interstitial site via the direct migration mechanism. The octahedral interstitial site was found to be the most stable configuration for Xe. For a defect cluster including two or more vacancies, vacancy aggregation did not happen and divacancy is more likely to dissociate. Particularly, for a defect cluster including an interstitial Xe atom and the O-divacancy, the octahedral interstitial site is unstable for Xe due to the existence of the O-divacancy. The energy barrier for the interstitial Xe to form a substitutional Xe atom and an interstitutional U atom was calculated to be 0.16eV.
     The dimer method presented here for effective finding the minimum energy path has been employed to investigate the migration mechanisms of W clusters on W nanoparticles, and to determine the corresponding migration energies for the possible migration paths of these clusters. The tungsten clusters containing up to four adatoms are found to prefer 2D-compact structures with relatively low binding energies. The effect of interface and vertex regions on the migration behavior of the clusters is significantly strong, as compared to that of nanoparticle size. The migration mechanisms are quite different when the clusters are located at the center of the nanoparticle and near the interface or vertex areas. Near the interfaces and vertex areas, the substrate atoms tend to participate in the migration processes of the clusters, and can join the adatoms to form a larger cluster or lead to the dissociation of a cluster via the exchange mechanism, which results in the adatom crossing the facets. The calculated energy barriers for the trimers suggest that the concerted migration is more probable than the successive jumping of a single adatom in the clusters. One atom of the trimer jumps to the next nearest neighbor position, leading to a non-compact triangular trimer with a higher energy barrier. In addition, it is of interest to note that the dimer shearing is a dominate migration mechanism for the tetramer, but needs to overcome a relatively higher migration energy than other clusters.
     The dynamic self-diffusion behaviors of clusters on a bcc (110) surface have been investigated using molecular dynamics simulations based on a modified analytic embedded-atom method. The stable configurations of clusters are predicted to be close-packed islands configurations for Fe and W cluster size up to nine atoms or even larger by the quenched MD simulation. The characterizations of diffusion behavior, such as the migration energy, the diffusion coefficient and the diffusion prefactor, can be obtained by the MD simulation for a long enough time. The migration energies show an interesting and oscillating behavior with increasing cluster size. As compared to the structures with extra atoms at the periphery, the compact geometric configurations of clusters (four- and seven-atom clusters) have an obviously higher migration energy. Moreover, the NEB method is employed to obtain the energies of the rate-limiting steps in the migration processes of W4, W5, W6 and W7, and also determine the minimum energy paths of the net migration process for tetramer and pentamer, respectively. The diffusion mechanism of 2D small clusters containing more than two atoms is achieved by the migration of extra atoms at the periphery, the dimer-shearing mechanism and the changes of the cluster shape.
     Surface diffusion of atomic clusters and lattice diffusion of defect clusters could be achieved with the dimer method and NEB method for finding a minimum energy path. In principle the methods could be used to establish the understanding of migration and diffusion behaviors in the atomic scale effectively.
引文
[1]王恩哥.薄膜生长中的表面动力学(I).物理学进展, 2003, 23 (1):1-61
    [2]王恩哥.薄膜生长中的表面动力学(II).物理学进展, 2003, 23 (2):145-191
    [3] Wang Z L, Petroski J M, Green T C, et al. Shape Transformation and Surface Melting of Cubic and Tetrahedral Platinum Nanocrystals. The Journal of Physical Chemistry, 1998, 102 (32): 6145–6151
    [4] Kawasaki H, Sakai G, Kijima T. Direct Observation of Dynamic Shape Transformation and Coalescence in Platinum Nanosheets on Graphite Surface at Room Temperature by Time-resolved AFM. Applied Surface Science, 2006, 253 (3): 1512-1516
    [5] Bardotti L, Jenson P, Hoareau A, et al. Experimental Observation of Fast Diffusion of Large Antimony Clusters on Graphite Surfaces. Physical Review Letter, 1995, 74 (23): 4694-4697
    [6] Oh S M, Kyuno K, Kon S J, et al. Atomic Jumps in Surface Self-diffusion: W on W(110). Physical Review B, 2003, 66 (23): 3406-3409
    [7] Oh S M, Kyuno K, Kon S J, et al. Non-Nearest-Neighbor Jumps in 2D Diffusion: Pd on W(110). Physical Review Letter, 2002, 88 (23): 6102-6105
    [8] Goldstein J T, Ehrlich G. Atom and Cluster Diffusion on Re(0001). Surface Science, 1999, 443 (1-2): 105-115
    [9] Kyuno K, Ehrlich G. Diffusion and Dissociation of Platinum Clusters on Pt(111). Surface Science, 1999, 437 (1-2): 29-37
    [10] Wang S C, Ehrlich G. Structure, Stability and Surface Diffusion of Clusters: Irx on Ir(111). Surface Science, 1990, 239 (3): 301-332
    [11] Wang S C, Kurpick U, Ehrlich G. Surface Diffusion of Compact and Other Clusters: Irx on Ir(111). Physical Review Letter, 1998, 81 (22): 4923-4926
    [12] Wang S C, Ehrlich G. Diffusion of Large Surface Clusters: Direct Observations on Ir(111). Physical Review Letter, 1997, 79 (21): 4234-4237
    [13] Fu T Y, Tsong T T. Structure and diffusion of small Ir and Rh clusters on Ir(001) surfaces. Surface Science, 1999, 421 (1-2): 157-166
    [14] Fu T Y, Hwang Y J, Tsong T T. Structure and diffusion of Pd clusters on the W(110) surface. Applied Surface Science, 2003, 219 (1-2): 143-148
    [15]向嵩,庄军,刘磊.吸附原子在Ag,Pt,Au(110)表面上的自扩散现象.物理学报, 1998, 47 (4): 678-685
    [16]谢国锋,王德武,应纯同.分子动力学模拟Gd原子在Cu(110)表面的扩散过程.物理学报, 2003, 52 (9): 2254-2258
    [17]庄军,刘磊. Pt(100)表面上通过二聚物结构转移的自扩散现象.中国科学A, 2000, 30 (8): 740-745
    [18]刘庆炜,庄军. fcc金属(001)表面吸附二聚物自扩散的分子动力学模拟.中国科学E辑, 2004, 34 (1): 49-57
    [19] Hamilton J C, Daw M S, Foiles S M. Dislocation Mechanism for Island Diffusion on fcc (111) Surfaces. Physical Review Letter, 1995, 74 (14): 2760-2763
    [20] Hamilton J C. Magic Size Effects for Heteroepitaxial Island Diffusion. Physical Review Letter, 1996, 77 (5): 885-888
    [21] Wen J M, Chang S L, Burnett J W. Diffusion of Large Two-Dimensional Ag Clusters on Ag(100). Physical Review Letter, 1994, 73 (19): 2591-2594
    [22] Sholl D S, Skodje R T. Diffusion of Clusters of Atoms and Vacancies on Surfaces and the Dynamics of Diffusion-Driven Coarsening. Physical Review Letter, 1995, 75 (17): 3158-3161
    [23] Liu S, Zhang Z, Norskov J. The mobility of Pt atoms and small Pt clusters on Pt(111) and its implications for the early stages of epitaxial growth. Surface Science, 1994, 321 (1-2): 161-171
    [24] Chang C M, Wei C M, Chen S P. Self-Diffusion of Small Clusters on fcc Metal (111) Surfaces. Physical Review Letter, 2000, 85 (5): 1044-1047
    [25] Resende F J, Costa B V. Molecular-dynamics study of the diffusion coefficient on a crystal surface. Physical Review B, 2000, 61 (19): 12697-12700
    [26] Nishida I, Kimoto K. Crystal habit and crystal structure of fine chromium particles: An electron microscope and electron diffraction study of fine metallic particles prepared by evaporation in argon at low pressures (III). Thin Solid Films, 1974, 23 (2): 179-189
    [27] Bernal J D. The Bakerian lecture, 1962: The structure of liquids. Proceedings of the Royal Society, 1964, 280: 299-322
    [28] Rahman A. Correlations in the Motion of Atoms in Liquid Argon. Physical Review, 1964, 136: A405-A411
    [29] Alder B J, Wainwright T E. Studies in Molecular Dynamics. I. General Method. Journal of Chemical Physics, 1959, 31(2): 459-466
    [30] Verlet L. Computer“experiments”on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules, Physical Review, 1967, 159 (1): 98-103
    [31] Honeycutt R W. The potential calculation and some applications. Methods in Computational Physics, 1970, 9 (2): 136-211
    [32] Swope W C, Anderson H C, Berens P H, et al. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. Journal of Chemical Physics, 1982, 76 (1): 637-649
    [33] Beeman D. Some Multistep Methods for Use in Molecular Dynamics Calculations. Journal of Computational Physics, 1976, 20 (1): 130-139
    [34] Gear C W. Numerical initial value problems in ordinary differential equations. Englewood Cliffs, NJ: Prentice-Hall, 1971
    [35] NoséS. A unified formulation of the constant temperature molecular dynamics methods. Journal of Chemical Physics, 1984, 81(1): 511-519
    [36] Hoover W G. Canonical Dynamics: Equilibrium phase-space distributions. Physical Review A, 1985, 31 (3): 1695-1697
    [37] Andersen H C. Molecular dynamics simulations at constant pressure and/or temperature. Journal of Chemical Physics, 1980, 72(4): 2384-2393
    [38] Nose S. A Molecular Dynamics Method for Simulations in the Canonical Ensemble. Molecular Physics, 1984, 52(2): 255-268
    [39] Lennard-Jones J E. On the determination of molecular fields II. From the equation of state of a gas. Proceedings of the Royal Society London A, 1924, A106: 463-469
    [40] Raoult B, Farges J, de Feraudy M F, et al. Comparison between icosahedral, decahedral and crystalline Lennard-Jones models containing 500 to 6000 atoms, Philosophical Magazine B, 1989, 60 (6): 881-906
    [41] Romero G, Barrón C, Gómez S. The optimal geometry of Lennard-Jones clusters: 148–309. Computer Physics Communications, 1999, 123 (1-3): 87-96
    [42] Honeycutt J D, Andersen H C. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. The Journal of Physical Chemistry, 1987, 91 (19): 4950-4963
    [43] Frantz D D. Magic number behavior for heat capacities of medium-sized classical Lennard-Jones clusters. Journal of Chemical Physics, 2001, 115 (13): 6136-6157
    [44] H.Y. Geng, Y. Chen, Y. Kaneta and M. Kinoshita, Molecular dynamics study on planar clustering of xenon in UO2. Journal of Alloys and Compounds, 2008, 457 (1-2): 465-471
    [45] Morse P M. Diatomic molecules according to the wave mechanics. II. Vibrational levels. Physical Review, 1929, 34 (1):57-64
    [46] Axilrod B M, Teller E. Interaction of the van der Waals type between three atoms. Journal of Chemical Physics, 1943, 11 (6):299-300
    [47] Murrell J N, Mottram R E. Potential energy functions for atomic solids. Molecular Physics, 1990, 69 (3): 571-585
    [48] Daw M S, Baskes M I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Physical Review B, 1984, 29 (12): 6443-6453
    [49] Foiles S M, Baskes M I, Daw M S. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Physical Review B, 1986, 33 (12): 7983-7991
    [50] Finnis M W, Sinclair J. E. A simple empirical N-body potential for transition metals. Philosophical Magazine A, 1984, A50 (1): 45-55
    [51] Ackland G J, Thetford R. An improved N-body semi-empirical model for body-centred cubic transition metals. Philosophical Magazine A, 1987, 56 (1): 15-30
    [52] Ackland G J, Tichy G, Vitek V, et al. Simple N-body potentials for transition metals and nickel. Philosophical Magazine A, 1987, 56 (6): 735-756
    [53] Ackland G J, Vitek V. Many-body potentials and atomic-scale relaxations in noble-metal alloys. Physical Review B, 1990, 41 (15): 10324-10333
    [54] Foiles S M, Daw M S. Calculation of the thermal expansion of metals using the embedded-atom method. Physical Review B, 1988, 38 (17): 12643-12644
    [55] Foiles S M, Adams J B. Thermodynamic properties of fcc transition metals as calculated with the embedded-atom method. Physical Review B, 1989, 40 (9): 5909-5915
    [56] Johnson R A. Analytic nearest-neighbor model for fcc metals. Physical Review B, 1988, 37 (8): 3924-3931.
    [57] Johnson R A. Alloy models with the embedded-atom method. Physical Review B, 1989, 39 (17): 12554-12559
    [58] Johnson R A. Phase stability of fcc alloys with the embedded-atom method. Physical Review B, 1990, 41 (14): 9717-9720
    [59] Zhang B W. Application of Miedema coordinates to the formation of binary amorphous-alloys. Physica B & C, 1983, 121 (3): 405-408
    [60] Zhang B W. Description of the formation of binary amorphous-alloys bychemical coordinates. Physica B & C, 1985, 132 (3): 319-322
    [61] Zhang B W. Semi-empirical theory of solid solubility in binary-alloys. Z Metallkd, 1985, 76 (4): 264-270
    [62] Zhang B W. A semiempirical approach to the prediction of the amorphous-alloys formed by ion-beam mixing. Physica Status Solidi A, 1987, 102 (1): 199-206
    [63] Zhang B, Ouyang Y, Liao S, et al. An analytic MEAM model for all BCC transition metals. Physica B, 1999, 262 (3-4): 218-225
    [64]张邦维,胡望宇,舒小林。嵌入原子方法理论及其在材料科学中的应用—原子尺度材料设计理论。长沙:湖南大学出版社,2003
    [65] Hu W, Shu X, Zhang B. Point-defect properties in body-centered cubic transition metals with analytic EAM interatomic potentials. Computational Materials Science, 2002, 23 (1-4): 175-189
    [66] Hu W, Zhang B, Huang B, Gao F, et al. Analytic modified embedded atom potentials for HCP metals. Journal of Physics: Condensed Matter, 2001, 13 (6): 1193-1213
    [67] Hu W Y. The application of the analytic embedded atom potentials to face-centered cubic metals. Proc. Int. Conf. on New Frontiers of Process Science and Engineering in Advanced Materials, 14th IKETANI Conf. Kyoto, Japan, 2004
    [68] Mills G, Jónsson H. Quantum and Thermal Effects in H2 Dissociative Adsorption: Evaluation of Free Energy Barriers in Multidimensional Quantum Systems. Physical Review Letter, 1994, 72 (7): 1124-1127
    [69] Mills G, Jónsson H, Schenter G K. Reversible work transition state theory: application to dissociative adsorption of hydrogen. Surface Science, 1995, 324 (2-3): 305-337
    [70] Jónsson H, Mills G, Jacobsen K W. Classical and Quantum Dynamics in Condensed Phase Simulations. World Scientific, Singapore, 1998
    [71] Polanyi J C, Wong W H. Location of Energy Barriers. I. Effect on the Dynamics of Reactions A+BC. Journal of Chemical Physics, 1969, 51 (4): 1439-1450
    [72] Henkelman G, Jónsson H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. Journal of Chemical Physics, 2000, 113 (22): 9978-9985
    [73] Pechukas P. Dynamics of Molecular Collisions, Pt. B. Plenum, New York, 1976
    [74] Wert C, Zener C. Interstitial Atomic Diffusion Coefficients. Physical Review, 1949, 76 (8): 1169-1175
    [75] Vineyard G H. Frequency factors and isotope effects in solid state rate processes. Journal of Physics and Chemistry of Solids, 1957, 3 (1-2): 121-127
    [76] Barkema G T, Mousseau N. Event-Based Relaxation of Continuous Disordered Systems. Physical Review Letter, 1996, 77 (21): 4358-4361
    [77] Mousseau N, Barkema G T. Traveling through potential energy landscapes of disordered materials: The activation-relaxation technique. Physical Review E, 1998, 57 (2): 2419-2424
    [78] Voter A F. A method for accelerating the molecular dynamics simulation of infrequent events. Journal of Chemical Physics, 1997, 106 (11): 4665-4677
    [79] Voter A F. Hyperdynamics: Accelerated Molecular Dynamics of Infrequent Events. Physical Review Letter, 1997, 78 (20): 3908-3911
    [80] Payne M C, Teter M P, Allen D C, et al. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Reviews of Modern Physics, 1992, 64 (4): 1045-1097
    [81] Press W H, Teukolsky S A, Vetterling W T, et al. Numerical Recipes in C: The Art of Scientific Computation, 2nd ed. Cambridge University Press, Cambridge, 1992
    [82] Della Valle R G, Andersen H C. Molecular dynamics simulation of silica liquid and glass. Journal of Chemical Physics 1992, 97 (4): 2682-2689
    [83] Henkelman G, Jónsson H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. Journal of Chemical Physics, 1999, 111 (15): 7010-7022
    [84] Cerjan C J, Miller W H. On finding transition states. Journal of Chemical Physics, 1981, 75 (6): 2800-2806
    [85] Simons J, J?rgensen P, Taylor H, et al. Walking on potential energy surfaces. The Journal of Physical Chemistry, 1983, 87 (15): 2745-2753
    [86] Nichols J, Taylor H, Schmidt P, et al. Walking on potential energy surfaces. Journal of Chemical Physics, 1990, 92 (1): 340-346
    [87] Baker J. An algorithm for the location of branching points on reaction paths. Journal of Computational Chemistry, 1988, 9 (5): 465-475
    [88] Woo C H, Singh B N. Production bias due to clustering of point defects in irradiation-induced cascades. Philosophical Magazine A, 1992, 65 (4): 889-912
    [89] Annenkov A, Auffray E, Korzhik M, et al. On the Origin of the Transmission Damage in Lead Tungstate Crystals under Irradiation. Phys. Status Solidi A, 1998, 170 (1): 47-62
    [90] Gao F, Xiao H Y, Zu X T, et al. Defect-Enhanced Charge Transfer by Ion-Solid Interactions in SiC using Large-Scale Ab Initio Molecular Dynamics Simulations. Physical Review Letter, 2009, 103 (2): 027405-027408
    [91] Tuomisto F, Saarinen K, Look D C, et al. Introduction and recovery of point defects in electron-irradiated ZnO. Physical Review B, 2005, 72 (8): 085206-085216
    [92] Krasheninnikov A V, Nordlund K. Stability of irradiation-induced point defects on walls of carbon nanotubes. The Journal of Vacuum Science and Technology B, 2002, 20 (2): 728-733
    [93] Terentyev D A, Malerba L, Chakarova R, et al. Displacement cascades in Fe–Cr: A molecular dynamics study. Journal of Nuclear Materials, 2006, 349 (1-2): 119-132
    [94] Malerba L, Terentyev D, Olsson P, et al. Molecular dynamics simulation of displacement cascades in Fe–Cr alloys. Journal of Nuclear Materials, 2004, 329-333 (part 2): 1156-1160
    [95] Soneda N, De La Rubia T D. Defect production, annealing kinetics and damage evolution inα-Fe: An atomic-scale computer simulation. Philosophical Magazine A, 1998, 78 (5): 995-1019
    [96] Becquart C S, Domain C, Van Duysen J C, et al. The role of Cu in displacement cascades examined by molecular dynamics. Journal of Nuclear Materials, 2001, 294 (3): 274-287
    [97] Garner F, Toloczko M B, Sencer B H. Comparison of swelling and irradiation creep behavior of fcc-austenitic and bcc-ferritic/martensitic alloys at high neutron exposure. Journal of Nuclear Materials, 2000, 276 (1-3): 123-142
    [98] Little E A, Stow D A. Void-swelling in irons and ferritic steels: II. An experimental survey of materials irradiated in a fast reactor. Journal of Nuclear Materials, 1979, 87 (1): 25-39
    [99] Gelles D S. Microstructural examination of neutron-irradiated simple ferritic alloys. Journal of Nuclear Materials, 1982, 108-109: 515-526
    [100] Kohyama A, Hishinuma A, Gelles D S, et al. Low-activation ferritic and martensitic steels for fusion application. Journal of Nuclear Materials, 1996, 233-237 (part 1): 138-147
    [101] Brenner S, Miller M, Soffa W. Spinodal decomposition of iron-32 at.% chromium at 470°C. Scripta Metallurgica et Materialia, 1982, 16 (7): 831-836
    [102] Hyde J, Cerezo A, Miller M, et al. A critical comparison between experimentalresults and numerical simulations of phase separation in the Fe-Cr system. Applied Surface Science, 1994, 76-77: 233-241
    [103] Olsson P, Abrikosov I A, Vitos L, et al. Ab initio formation energies of Fe–Cr alloys. Journal of Nuclear Materials, 2003, 321 (1): 84-90
    [104] Olsson P. Ab initio study of interstitial migration in Fe–Cr alloys. Journal of Nuclear Materials, 2009, 386-388: 86-89
    [105] Olsson P, Domain C, Wallenius J. Ab initio study of Cr interactions with point defects in bcc Fe. Physical Review B, 2007, 75 (1): 014110-014121
    [106] Olsson P, Wallenius J, Domain C, et al. Two-band modeling ofα-prime phase formation in Fe-Cr. Physical Review B, 2005, 72 (21): 214119-214114; Erratum: Two-band modeling ofα-prime phase formation in Fe-Cr. Physical Review B, 2006. 74 (22): 229906
    [107] Gao F, Henkelman G, Weber W J, et al. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. Nuclear Instruments and Methods in Physics Research Section B, 2003, 202: 1-7
    [108] Gordon S M J, Kenny S D, Smith R. Diffusion dynamics of defects in Fe and Fe-P systems. Physical Review B, 2005, 72 (21): 214104 -214103
    [109] Meslin E, Fu C C, Barbu A, et al. Theoretical study of atomic transport via interstitials in dilute Fe-P alloys. Physical Review B, 2007, 75 (9): 094303-094310
    [110] Kurtz R J, Heinisch H L, Gao F. Modeling of He–defect interactions in ferritic alloys for fusion. Journal of Nuclear Materials, 2008, 382 (2-3): 134-142
    [111] Bacon D J, Gao F, Osetsky Yu N. The primary damage state in fcc, bcc and hcp metals as seen in molecular dynamics simulations. Journal of Nuclear Materials, 2000, 276 (1-3): 1-12
    [112] Bacon D J, Calder A F, Harder J M, et al. Computer simulation of low-energy displacement events in pure bcc and hcp metals. Journal of Nuclear Materials, 1993, 205: 52-58
    [113] Caturla M J, Soneda N, Alonso E, et al. Comparative study of radiation damage accumulation in Cu and Fe. Journal of Nuclear Materials, 2000, 276 (1-3): 13-21
    [114] Stoller R E. The role of cascade energy and temperature in primary defect formation in iron. Journal of Nuclear Materials, 2000, 276 (1-3): 22-32
    [115] Phythian W J, Stoller R E, Foreman A J E, et al. A comparison of displacementcascades in copper and iron by molecular dynamics and its application to microstructural evolution. Journal of Nuclear Materials, 1995, 223 (3): 245-261
    [116] Ackland G J, Bacon D J, Calder A F, et al. Computer simulation of point defect properties in dilute Fe-Cu alloy using a many-body interatomic potential. Philosophical Magazine A, 1997, 75 (3): 713-732
    [117] Becquart C S, Domain C, Legris A, et al. Influence of the interatomic potentials on molecular dynamics simulations of displacement cascades. Journal of Nuclear Materials, 2000, 280 (1): 73-85
    [118] Ackland G, Mendelev M, Srolovitz D, et al. Development of an interatomic potential for phosphorus impurities inα-iron. Journal of Physics: Condensed Matter, 2004, 16: S2629-S2642
    [119] Calder A F, Bacon D J, Barashev A V, et al. Computer simulation of cascade damage inα-iron with carbon in solution. Journal of Nuclear Materials, 2008, 382 (2-3), 91-95
    [120] Seletskaia T, Osetsky Yu N, Stoller R E, et al. Calculation of helium defect clustering properties in iron using a multi-scale approach. Journal of Nuclear Materials, 2006, 351 (1-3): 109-118 [ 1 21] Willaime F, Fu C C, Marinica M C, et al. Stability and mobility of self-interstitials and small interstitial clusters inα-iron: ab initio and empirical potential calculations. Nuclear Instruments and Methods in Physics Research Section B, 2005, 228 (1-4): 92-99
    [122] Bj?rkas C, Nordlund K, Malerba L, et al. Simulation of displacement cascades in Fe90Cr10 using a two band model potential. Journal of Nuclear Materials, 2008, 372 (2-3): 312-317
    [123] Terentyev D, Olsson P, Klaver T P C, et al. On the migration and trapping of single self-interstitial atoms in dilute and concentrated Fe–Cr alloys: Atomistic study and comparison with resistivity recovery experiments. Computational Materials Science, 2008, 43 (4): 1183-1192
    [124] Hivert V, Pichon R, Bilger H, et al. Internal friction in low temperature irradiated bcc metals. Journal of Physics and Chemistry of Solids, 1970, 31 (8): 1843-1855
    [125] M?slang A, Graf H, Balzer G, et al. Muon trapping at monovacancies in iron. Physical Review B, 1983, 27 (5): 2674-2681
    [126] Johnson R A. Interstitials and Vacancies inαIron. Physical Review, 1964, 134 (5A): A1329- A1336
    [127] Maury F, Lucasson P, Lucasson A, et al. A study of irradiated FeCr alloys: deviations from Matthiessen's rule and interstitial migration. Journal of Physics F-Metal Physics, 1987, 17 (5): 1143-1165
    [128] Abe H, Kuramoto E. Interaction of solutes with irradiation-induced defects of electron-irradiated dilute iron alloys. Journal of Nuclear Materials, 1999, 271-272: 209-213
    [129] Meis C, Chartier A. Calculation of the threshold displacement energies in UO2 using ionic potentials. Journal of Nuclear Materials, 2005, 341 (1): 25-30
    [130] Fink J K. Thermophysical properties of uranium dioxide. Journal of Nuclear Materials, 2000, 279 (1): 1-18
    [131] Ronchi C. On the thermal conductivity and diffusivity of solid and liquid uranium dioxide. Journal of Physics: Condensed Matter, 1994, 6 (38): L561-L567
    [132] Lawrence G T. A review of the diffusion coefficient of fission-product rare gases in uranium dioxide. Journal of Nuclear Materials, 1978, 71 (2): 195-218
    [133] Matzke Hj, Davies J A. Location of Inert Gas Atoms in KCl, CaF2, and UO2 Crystals by H+ and He2+“Channeling”Studies. Journal of Applied Physics, 1967, 38 (2): 805-808
    [134] Matzke Hj, Agarwala R P. Diffusion Processes in Nuclear Materials. North Holland, 1992
    [135] Matzke Hj. Gas release mechanisms in UO2-a critical review. Radiation Effects, 1980, 53 (3-4): 219-242
    [136] Sattonnay G, Vincent L, Garrido F, et al. Xenon versus helium behavior in UO2 single crystals: A TEM investigation. Journal of Nuclear Materials, 2006, 355 (1-3): 131-135
    [137] Desgranges L, Ripert M, Piron J P, et al. Behaviour of fission gases in an irradiated nuclear fuel underαexternal irradiation. Journal of Nuclear Materials, 2003, 321 (2-3): 324-330
    [138] Catlow C R A. Fission Gas Diffusion in Uranium Dioxide. Proceedings of the Royal Society of London A., 1978, 364: 473-497
    [139] Jackson R A, Murray A D, Harding J H, et al. The calculation of defect parameters in UO2. Philosophical Magazine A, 1986, 53 (1):27-50
    [140] Grimes R W, Catlow C R A, Stoneham A M. Calculations of Solution Energies of Fission Products in Uranium Dioxide. Journal of the American Ceramic Society, 1989, 72 (10): 1856-1860
    [141] Ball R G, Grimes R W. Diffusion of Xe in UO2. Journal of the Chemical Society, Faraday Transactions, 1990, 86 (6): 1257-1261
    [142] Grimes R W, Catlow C R A. The Stability of Fission Products in Uranium Dioxide. Philosophical Transactions of The Royal Society of London A, 1991, 335 (1639): 609-634
    [143] Petit T, Jomard G, Lemaignan C, et al. Location of krypton atoms in uranium dioxide. Journal of Nuclear Materials, 1999, 275 (1): 119-123
    [144] Crocombette J-P. Ab initio energetics of some fission products (Kr, I, Cs, Sr and He) in uranium dioxide. Journal of Nuclear Materials, 2002, 305 (1): 29-36
    [145] Yun Y, Eriksson O, Oppeneer P M, et al. First-principles theory for helium and xenon diffusion in uranium dioxide. Journal of Nuclear Materials, 2009, 385 (2): 364-367
    [146] Yun Y, Kim H, Kim H, et al. Atomic diffusion mechanism of Xe in UO2. Journal of Nuclear Materials, 2008, 378 (1): 40-44.
    [147] Yun Y, Oppeneer P M, Kim H, et al. Defect energetics and Xe diffusion in UO2 and ThO2. Acta Materialia, 2009, 57 (5): 1655-1659
    [148] Yakub E, Ronchi C, Staicu D. Molecular dynamics simulation of premelting and melting phase transitions in stoichiometric uranium dioxide. Journal of Chemical Physics, 2007, 127 (9): 094508-094518
    [149] Jackson R A, Catlow C R A. Trapping and solution of fission Xe in UO2.: Part 1. Single gas atoms and solution from underpressurized bubbles. Journal of Nuclear Materials, 1985, 127 (2-3): 161-166
    [150] Henry C R. Catalytic activity of supported nanometer-sized metal clusters. Applied. Surface Science, 2000, 164 (1-4): 252-259
    [151] Jaramillo T F, Baeck S, Cuenya B R, et al. Catalytic Activity of Supported Au Nanoparticles Deposited from Block Copolymer Micelles. Journal of the American Chemical Society, 2003, 125 (24) 7148-7149
    [152] Buffat P, Borel J P. Size effect on the melting temperature of gold particles. Physical Review A, 1976, 13 (6): 2287-2298.
    [153] Valden M, Lai X, Goodman D W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science, 1998, 281 (5383): 1647-1650
    [154] Lai S. L, Guo J Y, Petrova V, et al. Size-Dependent Melting Properties of Small Tin Particles: Nanocalorimetric Measurements. Physical Review Letter, 1996, 77 (1): 99-102
    [155] Nolte P, Stierle A, Kasper N, et al. Combinatorial high-energy x-ray microbeam study of the size-dependent oxidation of Pd nanoparticles on MgO(100). Physical Review B, 2008, 77 (11): 5444-5450
    [156] Tolbert S H, Alivisatos A P. High-Pressure Structural Transformations in Semiconductor Nanocrystals. Annual Review of Physical Chemistry, 1995, 46: 595-626
    [157] Rao C N R, Müller A, Cheetham A K. The Chemistry of Nanomaterials, Synthesis, Properties and Applications. Wiley-VCH, 2004
    [158] Khosousi A Z, Dhirani A A. Charge Transport in Nanoparticle Assemblies. Chemical Reviews, 2008, 108 (10): 4072-4124
    [159] Aliev A E, Shin H W. Nanostructured materials for electrochromic devices. Solid State Ionics, 2002, 154-155: 425-431
    [160] Rachel C, Gerrit B, Nagaraja R S,et al. Coloured electrochromic windows based on nanostructured TiO2 films modified by adsorbed redox chromophores. Solar Energy Materials & Solar Cells, 1999, 57 (2): 107-125
    [161] Vystavel, T, Palasantzas G, Koch S A, et al. Nanosized iron clusters investigated with in situ transmission electron microscopy. Applied Physics Letters, 2003, 82 (2): 197-199
    [162] Wernersson L E, Litwin A, Samuelson L, et al. Controlled Carrier Depletion around Nano-Scale Metal Discs Embedded in GaAs. Japanese Journal of Applied Physics, 1997, 36: L1628-L1631
    [163] Lei H, Tang Y J, Wei J J, et al. Synthesis of tungsten nanoparticles by sonoelectrochemistry. Ultrasonics Sonochemistry, 2007, 14 (1): 81-83
    [164] Moitra A, Kim S, Houze J, et al. Melting tungsten nanoparticles: a molecular dynamics study. Journal of Physics D: Applied Physics, 2008, 41 (18): 185406-185412
    [165] Oh S J, Huh S H, Kim H K, et al. Structural evolution of W nano clusters with increasing cluster size. Journal of Chemical Physics, 1999, 111 (16) : 7402-7404 [ 1 66] Magnusson M H, Deppert K, Malm J O. Single-crystalline tungsten nanoparticles produced by thermal decomposition of tungsten hexacarbonyl. Journal of Materials Research., 2000, 15 (7): 1564-1569
    [167] Jin Z, Gao H, Gumbsch P. Energy radiation and limiting speeds of fast moving edge dislocations in tungsten. Physical Review B, 2008, 77 (9): 4303-4310
    [168] Hagelaar J H A, Bitzek E, Flipse C F J, et al. Atomistic simulations of theformation and destruction of nanoindentation contacts in tungsten. Physical Review B, 2006, 73 (4): 045425-045438
    [169] Insepov Z, Terasawa M, Takayama K. Surface erosion and modification by highly charged ions. Physical Review A, 2008, 77 (6): 062901-062910
    [170] Villain P, Beauchamp P, Badawi K F, et al. Atomistic calculation of size effects on elastic coefficients in nanometre-sized tungsten layers and wires. Scripta Materialia, 2004, 50 (9): 1247-1251
    [171] Wolf D. Correlation between structure, energy and surface tension for free surfaces in b.c.c. metals. Philosophical Magazine A, 1991, 63 (2): 337-361
    [172] Wright A F, Daw M S, Fong C Y. Structures and energetics of Pt, Pd, and Ni adatom clusters on the Pt(001) surface: Embedded-atom-method calculations. Physical Review B, 1990, 42 (15): 9409-9419
    [173] Schwoebel P R, Foiles S M, Bisson C L, et al. Structure of platinum adatom clusters on Pt(100): Experimental observations and embedded-atom-method calculations. Physical Review B, 1989, 40 (15) : 10639-10642
    [174] Chen D, Hu W, Yang J, et al. Diffusion of Tungsten Clusters on Tungsten (110) Surface. The European Physical: Journal B, 2009, 68 (4): 479-485
    [175] Wei X, Adams J B. W single adatom diffusion on W surfaces. Surface Science, 1994, 319 (1-2 ): 58-67
    [176] Chen D, Hu W, Yang J, et al. The Dynamics Diffusion Behaviors of 2D Small Fe Clusters on Fe (110) Surface. Journal of Physics: Condensed Matter, 2007, 19 (44): 446009-446016
    [177] Feibelman P J. Diffusion path for an Al adatom on Al(001). Physical Review Letter, 1990, 65 (6): 729-732
    [178] Xu L J, Henkelman G, Campbell C T, et al. Pd diffusion on MgO(1 0 0): The role of defects and small cluster mobility. Surface Science, 2006, 600 (6): 1351-1362
    [179] Spi?ák D, Hafner J. Diffusion mechanisms for iron on tungsten. Surface Science, 2005, 584 (1): 55-61
    [180] Chen C and Tsong T T. Displacement distribution and atomic jump direction in diffusion of Ir atoms on the Ir(001) surface. Physical Review Letter, 1990, 64 (26) : 3147-3150
    [181] Davydov Yu S. Calculation of the activation energy for surface self-diffusion of transition-metal atoms. Physics of Solid State, 1999, 41 (1): 8-10
    [182] Daw M S, Baskes M I. Embedded-atom method: Derivation and application toimpurities, surfaces, and other defects in metals. Physical Review B, 1984, 29 (12): 6443-6453
    [183] Johnson R A, Oh D J. Analytic embedded atom method model for bcc metals. Journal of Materials Research, 1989, 4 (5): 1195-1201
    [184] Johnson R A. Alloy models with the embedded-atom method. Physical Review B, 1989, 39 (17): 12554-12559
    [185] Zhuang J, Liu L, Ning X, et al. Mechanisms for adatoms diffusing on metal fcc(111) surfaces. Surface Science, 2000, 465 (3): 243-248
    [186] Shi Z-P, Zhang Z, Swan A K, et al. Dimer Shearing as a Novel Mechanism for Cluster Diffusion and Dissociation on Metal (100) Surfaces. Physical Review Letter, 1996, 76 (26): 4927-4930
    [187] Kellogg G L. Field ion microscope studies of single-atom surface diffusion and cluster nucleation on metal surfaces. Surface Science Report, 1994, 21 (1-2): 1-88
    [188] Tsong T T. Experimental studies of the behaviour of single adsorbed atoms on solid surfaces. Reports on Progress in Physics, 1988, 51 (6): 759-832
    [189] Stolt K, Graham W R, Ehrlich G. Surface diffusion of individual atoms and dimers: Re on W(211). Journal of Chemical Physics, 1976, 65 (8): 3206-3222
    [190] Feibelman P J. Rebonding effects in separation and surface-diffusion barrier energies of an adatom pair. Physical Review Letter, 1987, 58 (26): 2766-2769
    [191] Pauling L. The Nature of the Chemical Bond 3rd ed. Ithaca, NY: Cornell University Press, 1960
    [192] Heinonen J, Koponen I, Merikoski J, et al. Island Diffusion on Metal fcc (100) Surfaces. Physical Review Letter, 1999, 82 (13): 2733-2736
    [193] Naumovets A G. Collective surface diffusion: An experimentalist's view. Physica A, 2005, 357 (2) 189-215
    [194] Trushin O S, Salo P, Alatalo M, et al. Atomic mechanisms of cluster diffusion on metal fcc(1 0 0) surfaces. Surface Science, 2001, 482-485 (part 1): 365-369
    [195] Trushin O S, Salo P, Ala-Nissila T. Energetics and many-particle mechanisms of two-dimensional cluster diffusion on Cu(100) surfaces. Physical Review B, 2000, 62 (3):1611-1614
    [196] DeLorenzi G. Dynamics of Atom Jumps on Surfaces. University of Illinois, Urbana-Champaign, 1989
    [197] Antczak G. Long jumps in one-dimensional surface self-diffusion: Rebound transitions. Physical Review B, 2006, 73 (3): 033406-033409

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700