磁性纳米复合材料的制备与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁性纳米复合材料的制备是当今纳米新材料研究的一个重要领域。本论文首次利用L-半胱氨酸修饰Fe304颗粒,成功地得到了超顺磁性的Fe3O4/Au复合物的微米球;还利用了溶剂热的方法制备出了三维花状的Fe3O4@Bi2O3核壳结构和Fe3O4@SiO2@CeO2@Au的多壳层的复合材料,并对产物的组成、结构和性能进行了研究。具体内容如下:
     1.在水溶液中,利用L-半胱氨酸修饰Fe304纳米球使其表面功能化带上巯基(-SH)和氨基(-NH2),再利于Au纳米颗粒与巯基(氨基)间的强的配位作用将Au纳米颗粒吸附在Fe304球的表面,成功地制备出了Fe3O4/Au复合物。实验结果表明,合成出来的Fe3O4/Au复合物在近红外区有强的吸收,并且可通过调节内核Fe304的直径大小来控制其光学性质从可见光区到近红外区。制备的Fe3O4/Au纳米复合物在光热治疗、催化、生物传感、探针等领域具有潜在的应用。此外,这种制备磁性复合物的方法还可能为合成其他纳米复合材料提供了一种简便的合适的途径。
     2.将制备的Fe304颗粒分散在溶有Bi(NO3)3的乙二醇与乙醇的混合溶剂中(体积比为1:2),利用溶剂热的方法,合成出了三维花状的Fe3O4@Bi2O3核壳结构的复合材料的光催化剂。这种复合材料的形貌为420nm左右的花状的微米球,并且这些花状的微米球的表层是由一些厚度约为4-10nm、宽度约为100-140nm的纳米片组装而成。在室温下,这种复合材料具有超顺磁性。值得强调的是我们合成的这种复合材料的光催化剂不但可以容易的通过外加磁场来回收,而且在降解罗丹明B的过程中呈现出非常强的催化活性。我们制备的Fe3O4@Bi2O3复合材料的催化剂的催化效率大约为商品的Bi203催化效率的7-10倍,并且当光照时间达到50分钟时,复合材料的催化剂降解罗丹明B的效率接近到了100%。此外,由于其特殊的形貌结构,这种复合材料还有望在污水处理、传感器、微电子学、能源储备等方面得到应用。
     3.通过水解的方法在Fe304微米球的表面生成了一层Si02的壳层,接着再利用Ce4+在碱性条件下水解生成Ce02的溶胶,吸附在Si02壳层的表面,水热180℃保持36小时后成功制备出了Fe3O4@SiO2@CeO2双壳层的磁性复合物;而Fe3O4@SiO2@CeO2@Au复合物的制备则是用APTS(3-氨基丙基三乙氧基硅烷)修饰Ce02壳层使其表面氨基化,利用Au纳米颗粒与氨基间的强的配位作用将Au纳米颗粒吸附在Ce02壳层的表面。通过分步制备出来的Fe3O4@SiO2@CeO2@Au复合物可用于CO的催化氧化,有机染料的降解,传感等诸多领域。
The synthesis of magnetic nanocomposites is a very important research field in new nano-materials at present. In the thesis, we have first demonstrated a simple method to construct Fe3O4/Au composite microspheres by using L-cysteine as a linker to modify Fe3O4 nanoparticles; the solvothermal method was used to synthesize 3D flowerlike hierarchical Fe3O4@Bi2O3 core-shell architectures and Fe3O4@SiO2@CeO2@Au composite with multi-shell. The composition, construction and properties of the products have also been investigated.
     The main contents are summarized as follows:
     1. In the solution, the surface of Fe3O4 nanospheres was modified by L-cysteine. The gold nanoparticles were successfully adsorbed on the surface of Fe3O4 spheres due to strong coordinative interactions between the NH2 and SH groups of L-cysteine and Au nanoparticles. The results indicated that the Fe3O4/Au composite spheres showed a strong absorption in the NIR region and novelty tuned optical properties from the visible to the NIR by simply controlling the diameter of Fe3O4. This Fe3O4/Au hybrid nanostructure will be used as potential photothermal therapeutic agents and for catalysis, biological sensing, probing, and so on. Furthermore, this experiment also suggested a simple way to synthesize various bifunctional or multifunctional composite nanomaterials through simply linking two or several kinds of nanomaterials by chemical bonds.
     2. The 3D flowerlike Fe3O4@Bi2O3 core-shell structure composite photocatalyst was fabricated by a solvothermal method in the component solvent of glycol and ethanol (Vglycol/Vethanol=1:2). The size of these flowerlike hierarchical microspheres is about 420 nm, and the shells are composed of several nanosheets with a thickness of 4-10 nm and a width of 100-140 nm. These composite microspheres are superparamagnetic at room temperature. It is worth noting that the obtained composite photocatalysts can not only be easily recycled by applying an external magnetic field, but also exhibit powerful visible-light photocatalytic activity for the degradation of RhB. The photodegradation rates of the as-synthesized Fe3O4@Bi2O3 hierarchitectures are much higher (7-10 times) than the commercial Bi2O3 particles. Moreover, it is important to point out that the RhB degradation reaches about 100% for the as-prepared Fe3O4@Bi2O3 composite microspheres under visible-light irradiation after 50 min. In addition, due to their unique architectures, the as-obtained products may have potential applications in water treatment, sensors, microelectronics, energy storage, and other related micro- or nanoscale devices.
     3. The Fe3O4@SiO2 core-shell microspheres were prepared through a modified Stober process. Then, CeO2 colloids were adsorbed on the surface of Fe3O4@SiO2 microspheres by means of the hydrolyzation of Ce4+ under alkaline solution, and the above mixed solution was sealed in a Teflon-lined stainless-steel autoclave and maintained at 160℃for 5 h, the Fe3O4@SiO2@CeO2 multi-shell magnetic composite were obtained. The gold nanoparticles were successfully adsorbed on the surface of APTS-functionalized Fe3O4@SiO2@CeO2 spheres due to strong coordinative interactions between the NH2 of APTS and Au NPs. This Fe3O4@SiO2@CeO2@Au hybrid nanostructure will be used as catalyst for CO oxidation, sensors and so on.
引文
[1]A. P. Philipse, M. P. B. Bruggen, C. Pathmamanoharan. Magnetic Silica Dipersions:Preparation and Stability of Surface-modified Silica Particles with a Magnetic Core [J]. Langmuir 1994,10:92-99.
    [2]Y. Lu, Y. Yin, B. T. Mayers, Y. Xia. Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach [J]. Nano Lett.2002,2:183-186.
    [3]C. Yang, G. Wang, Z. Lu, J. Zhang, W. Yang. Effect of ultrasonic treatment on dispersibiliry of Fe3O4 nanoparticles and synthese of multi-core Fe3O4/SiO2 core/shell nanoparticles [J]. J. Mater. Chem.2005,15:4252-4257.
    [4]P. Tartaj, C. J. Serna. Synthesis of Monodisperse Superparamagnetic Fe/Silica Nanospherical Composites [J]. J. Am. Chem. Soc.2003,125:15754-15755.
    [5]X. Hong, J. Li, M. Wang, J. Xu, W. Guo, J. Li,Y. Bai, T. li. Fabrication of magnetic luminescent nanocoposite by a layer-by-layer self-assembly approach [J]. Chem. Mater.2004,16:4022-4027.
    [6]S. Y. Yu, H. J. Zhang, J. B. Yu, C. Wang, L. N. Sun, W. D. Shi. Bifunctional magnetic-optical nanocomposites:grafting lanthanide complex onto core-shell magnetic silicon nanoarchitecture [J]. Langmuir 2007,23:7836-7840.
    [7]D. K. Yi, S. S. Lee, J. Y. Ying. Synthesis and Applications of Magnetic Nanocomposite Catalysts [J]. Chem. Mater.2006,18:2459-2461.
    [8]D. Tang, R. Yuan, Y. Chai. Magnetic core-shell Fe3O4@Ag nanoparticle-coated carbon paste interface for studies of carcinoembryonic antigen in clinical immunoassay [J]. J. Phys. Chem. B 2006,110:11640-11646.
    [9]H. Gu, Z. Yang, J. Gao, C. K. Chang, B. Xu. Formation at a Liquid-Liquid Interface and Particle-Special Surface Modification by Functional Molecules [J]. J. Am. Chem. Soc.2005,127:34-35.
    [10]A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. J. Carroll, L. E. Brus. Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media [J]. J. Am. Chem. Soc.1990,112:1327-1332.
    [11]X. G. Peng, M. C. Schlamp, A. V. Kadavanich, A. P. Alivisatos. Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility [J]. J. Am. Chem. Soc.1997,119: 7019-7029.
    [12]S. Kim, B. Fisher, H. J. Eisler, M. Bawendi. Type-II Quantum Dots: CdTe/CdSe(Core/Shell) and CdSe/ZnTe(Core/Shell) Heterostructures [J]. J. Am. Chem. Soc.2003,125:11466-11467.
    [13]H. Zeng, J. Li, Z. L. Wang, J. P. Liu, S. Sun. Bimagnetic Core/Shell FePt/Fe3O4 Nanoparticles [J]. Nano Lett.2004,4:187-190.
    [14]H. Zeng, S. Sun, J. Li, Z. L. Wang, J. P. Liu. Tailoring magnetic properties of core/shell nanoparticles [J]. Appl. Phys. Lett.2004,85:792-794.
    [15]Z. Xu, Y. Hou, S. Sun. Magnetic Core/Shell Fe3O4/Au and Fe3O4/Au/Ag Nanoparticles with Tunable Plasmonic Properties [J]. J. Am. Chem. Soc.2007, 129:8698-8699.
    [16]L. Y. Wang, J. Luo, Q. Fan, M. Suzuki, I. S. Suzuki, M. H. Engelhard, Y. H. Lin, N. Kim, J. Q. Wang, C. J. Zhong. Monodispersed Core-Shell Fe3O4@Au Nanoparticles [J]. J. Phys. Chem. B 2005,109:21593-21601.
    [17]X. W. Teng, D. Black, N. J. Watkins, Y. L. Gao, H. Yang. Platinum-Maghemite Core-Shell Nanoparticles Using a Sequential Synthesis [J]. Nano Lett.2003,3: 261-264.
    [18]J. I. Park, J. Cheon. Synthesis of "Solid Solution" and "Core-Shell" Type Cobalt-Platinum Magnetic Nanoparticles via Transmetalation Reactions [J]. J. Am. Chem. Soc.2001,123:5743-5746.
    [19]W. L. Shi, H. Zeng, Y. Sahoo, T. Y. Ohulchanskyy, Y. Ding, Z. L.Wang, M. Swihart, P. N. Prasad. A General Approach to Binary and Ternary Hybrid Nanocrystals [J]. Nano Lett.2006,6:875-881.
    [20]J. Bao, W. Chen, T. T. Liu, Y. L. Zhu, P. Y. Jin, L. Y. Wang, J. F. Liu, Y. G. Wei, Y. D. Li. Bifunctional Au-Fe3O4 Nanoparticles for Protein Separation [J]. ACS Nano 2007,1:293-298.
    [21]H. W. Gu, K. M. Xu, C. J. Xu, B. Xu. Biofunctional magnetic nanoparticles for protein separation and pathogen detection [J]. Chem. Commun.2006,941-949.
    [22]A. K. Gupta, M. Gupta. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications [J]. Biomaterials 2005,26:3995-4021.
    [23]S. J. Son, J. Reichel, B. He, M. Schuchman, S. B. Lee. Magnetic Nanotubes for Magnetic-Field-Assisted Bioseparation, Biointeraction, and Drug Delivery [J]. J. Am. Chem. Soc.2005,127:7316-7317.
    [24]S. Sieben, C. Bergemann, A. Lubbe, B. Brockmann, D. J. Rescheleit. Comparison of different particles and methods for magnetic isolation of circulating tumor cells [J]. Magn. Magn. Mater.2001,225:175-179.
    [25]L. Z. Gao, J. Zhuang, L. Nie, J. B. Zhang, Y. Zhang, N. Gu, T. H. Wang, J. D. Feng, L. Yang, S. Peeeett, X. Y. Yan. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles [J]. Nat. Nanotechnol.2007,2:577-583.
    [26]A. H. Lu, E. L. Salabas, F. Schth. Magnetic Nanoparticles:Synthesis, Protection, Functionalization, and Application [J]. Angew. Chem. Int. Ed.2007,46: 1222-1244.
    [27]K. El-Boubbou, C. Gruden, X. F. Huang. Magnetic Glyco-nanoparticles:A Unique Tool for Rapid Pathogen Detection, Decontamination, and Strain Differentiation [J]. J. Am. Chem. Soc.2007,129:13392-13393.
    [28]A. J. Haes, R. P. Van Duyne. A Nanoscale Optical Biosensor: Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver Nanoparticles [J]. J. Am. Chem. Soc.2002, 124:10596-10604.
    [29]C. Sonnichsen, B. M. Reinhard, J. Liphardt, A. P. Alivisatos. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles [J]. Nat. Biotechnol.2005,23:741-745.
    [30]X. Huang, I. H. El-Sayed, W. Qian, M. A. El-Sayed. Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods [J]. J. Am. Chem. Soc.2006,128:2115-2120.
    [31]M. Kettering, J. Winter, M. Zeisberger, S. H. Bremer-Streck. Magnetic nanoparticles as bimodal tools in magnetically induced labelling and magnetic heating of tumour cells:an in vitro study [J]. Nanotechnology 2007,18: 175101.
    [32]C. B. Murray, C. R. Kagan, M. G. Bawendi, Annu. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies [J]. Rev. Mater. Sci.2000,30:545-610.
    [33]H. Yu, M. Chen, P. M. Rice, S. X. Wang, R. L. White, S. Sun. Dumbbell-like Bifunctional Au-Fe3O4 Nanoparticles [J]. NanoLett.2005,5:379-382.
    [34]C. Wang, H. Daimon, S. Sun. Dumbbell-like Pt-Fe3O4 Nanoparticles and Their Enhanced Catalysis for Oxygen Reduction Reaction [J]. Nano Lett.2009,9: 1493-1496.
    [35]H. W. Gu, R. K. Zheng, X. X. Zhang, B. Xu. Facile One-Pot Synthesis of Bifunctional Heterodimers of Nanoparticles:A Conjugate of Quantum Dot and Magnetic Nanoparticles [J]. J. Am. Chem. Soc.2004,126:5664-5665.
    [36]H. W. Gu, Z. M. Yang, J. H. Gao, C. K. Chang, B. Xu. Heterodimers of Nanoparticles:Formation at a Liquid-Liquid Interface and Particle-Specific Surface Modification by Functional Molecules [J]. J. Am. Chem. Soc.2005,127: 34-35.
    [37]W. L. Shi, H. Zeng, Y. Sahoo, T. Y. Ohulchanskyy, Y. Ding, Z. L. Wang, M. Swihart, P. N. Prasad. A General Approach to Binary and Ternary Hybrid Nanocrystals [J]. Nano Lett.2006,6:875-881.
    [38]J. Kim, J. E. Lee, S. H. Lee, J. H. Yu, J. H. Lee, T. G. Park, T. Hyeon. Designed Fabrication of a Multifunctional Polymer Nanomedical Platform for Simultaneous Cancer-Targeted Imaging and Magnetically Guided Drug Delivery [J]. Adv. Mater.2008,20:478-483.
    [39]J. H. Lee, Y. W. Jun, S. I. Yeon, J. S. Shin, J. Cheon. Dual-Mode Nanoparticle Probes forHigh-Performance Magnetic Resonance and Fluorescence Imaging of Neuroblastoma [J]. Angew. Chem. Int. Ed.2006,45:8160-8162.
    [40]Y. Yin, R. M. Rioux, C. K. Erdonmez, S. Hughes, G. A. Somorjai, A. P. Alivisatos. Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect [J]. Science 2004,304:711-741.
    [41]S. Kim, Y. Yin, A. P. Alivisatos, G. A. Somorjai, J. T. Yates. IR Spectroscopic Observation of Molecular Transport through Pt@Sbell) Yolk Nanostructures [J] J. Am. Chem. Soc.2007,129:9510-9513.
    [42]S. Ikeda, S. Ishino, T. Harada, N. Okamoto, T. Sakata, H. Mori, S. Kuwabata, T. Torimoto, M. Matsumura. Ligand-Free Platinum Nanoparticles Encapsulated in a Hollow Porous Carbon Shell as a Highly Active Heterogeneous Hydrogenation Catalyst [J]. Angew. Chem.2006,118:7221-7224.
    [43]J. Lee, J. C. Park, H. Song. A Nanoreactor Framework of a Au@SiO2 Yolk/Shell Structure for Catalytic Reduction of p-Nitrophenol [J]. Adv. Mater.2008,20:, 1523-1528.
    [44]X. Q. Huang, C. Y. Guo, L. Q. Zuo, N. F. Zheng, G. D. Stucky. An Assembly Route to Inorganic Catalytic Nanoreactors Containing Sub-10-nm Gold Nanoparticles with Anti-Aggregation Properties [J]. Small 2009,5:361-365.
    [45]X. W. Lou, L. A. Archer, Z. C. Yang. Hollow Micro-/Nanostructures:Synthesis and Applications [J]. Adv. Mater.2008,20:3987-4019.
    [46]Y. Zhao, L. Jiang. Hollow Micro/Nanomaterials with Multilevel Interior Structures [J]. Adv. Mater.2009,21:3621-3638.
    [47]K. Kamata, Y. Lu, Y. N. Xia. Synthesis and Characterization of Monodispersed Core-Shell Spherical Colloids with Movable Cores [J]. J. Am. Chem. Soc.2003, 12:2384-2385.
    [48]Q. Zhang, T. R. Zhang, J. P. Ge, Y. D. Yin. Permeable Silica Shell through Surface-Protected Etching [J]. Nano Lett.2008,8:2867-2871.
    [49]M. Kim, K. Sohn, Bin H. Na, T. Hyeon. Synthesis of Nanorattles Composed of Gold Nanoparticles Encapsulated in Mesoporous Carbon and Polymer Shells [J]. Nano Lett.2002,2:1383-1387.
    [50]K. Zhang, X. Zhang, H. Chen, X. Chen, L. Zheng, J. Zhang, B. Yang. Hollow Titania Spheres with Movable Silica Spheres Inside [J]. Langmuir 2003,20: 11312-11314.
    [51]D. M. Cheng, X. D. Zhou, H. B. Xia, H. S. O. Chan. Novel Method for the Preparation of Polymeric Hollow Nanospheres Containing Silver Cores with Different Sizes [J]. Chem. Mater.2005,17:3578-3581.
    [52]X. J. Wu, D. S. Xu. Formation of Yolk/SiO2 Shell Structures Using Surfactant Mixtures as Template [J]. J. Am. Chem. Soc.2009,131:2774-2775.
    [53]F. Caruso, R. A. Caruso, H. Mohwald. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating [J]. Science 1998,282:1111-1114.
    [54]S. M. Marinakos, J. P. Novak, L. C. Brousseau, A. B. House, E. M. Edeki, J. C. Feldhaus, D. L. Feldheim. Gold Particles as Templates for the Synthesis of Hollow Polymer Capsules. Control of Capsule Dimensions and Guest Encapsulation [J]. J. Am. Chem. Soc.1999,121:8518-8522.
    [55]X. W. Lou, C. Yuan, E. Rhoades, Q. Zhang, L. A. Archer. Encapsulation and Ostwald Ripening of Au and Au-Cl Complex Nanostructures in Silica Shells [J]. Adv. Funct. Mater.2006,16:1679-1684.
    [56]P. Jiang, J. F. Bertone, V. L. Colvin. A Lost-Wax Approach to Monodisperse Colloids and Their Crystals [J]. Science 2001,291:453-457.
    [57]Q. L. Fang, S. H. Xuan, W. Q. Jiang, X.L. Gong. Yolk-like Micro/Nanoparticles with Superparamagnetic Iron Oxide Cores and Hierarchical Nickel Silicate Shells [J]. Adv. Funct. Mater.2011, DOI:10.1002/adfm.201002191.
    [58]Y. Lu, Y. Zhao, L. Yu, L. Dong, C. Shi, M. J. Hu, Y. J. Xu, L. P. Wen, S. H. Yu. Hydrophilic Co@Au Yolk/Shell Nanospheres:Synthesis, Assembly, and Application to Gene Delivery [J]. Adv. Mater.2010,22:1407-1411.
    [59]J. H. Gao, H. W. Gu, B. Xu. Multifunctional Magnetic Nanoparticles:Design, Synthesis, and Biomedical Applications [J]. Acc. Chem. Res.,2009,42: 1097-1107.
    [60]H. W. Gu, K. M. Xu, C. J. Xu, B. Xu. Biofunctional magnetic nanoparticles for protein s eparation and pathogen detection [J]. Chem. Commun.2006,941-949.
    [61]J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo. Whitesides, G. M. Selfassembled monolayers of thiolates on metals as a form of nanotechnology [J]. Chem. Rev.2005,105:1103-1169.
    [62]H. W. Gu, P. L. Ho, K. W. T. Tsang, L. Wang, B. Xu. Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other gram-positive bacteria at ultralow concentration [J]. J. Am. Chem. Soc.2003, 125:15702-15703.
    [63]J. H. Gao, L. Li, P. L. Ho, G. C. Mak, H. W. Gu, B. Xu. Combining fluorescent probes and biofunctional magnetic nanoparticles for rapid detection of bacteria in human blood [J]. Adv. Mater.2006,18:3145-3148.
    [64]Z. Saiyed, S. Telang, C. Ramchand. Application of magnetic techniques in the field of drug discovery and biomedicinec[J]. Biomagn. Res. Technol.2003,1:2.
    [65]I. Safarik, M. Safarikova. Magnetic techniques for the isolation and purification of proteins and peptides [J]. Biomagn. Res. Technol.2004,2:7.
    [66]C. J. Xu, K. M. Xu, H. W. Gu, R. K. Zheng, H. Liu, X. X. Zhang, Z. H. Guo, B. Xu. Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles [J]. J. Am. Chem. Soc.2004,126: 9938-9939.
    [67]C. J. Xu, K. M. Xu, H. W. Gu, X. F. Zhong, Z. H. Guo, R. K. Zheng, X. X. Zhang, B. Xu. Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins [J]. J. Am. Chem. Soc.2004,126: 3392-3393.
    [68]J. C. Leroux. Injectable nanocarriers for biodetoxification [J]. Nat. Nanotechnol. 2007,2:679-684.
    [69]L. Wang, Z. M. Yang, J. H. Gao, K. M. Xu, H. W. Gu, B. Zhang, X. X. Zhang, B. Xu. A biocompatible method of decorporation:Bisphosphonate-modified magnetite nanoparticles to remove uranyl ions from blood [J]. J.Am. Chem. Soc. 2006,128:13358-13359.
    [70]H. Y. Lee, D. R. Bae, J. C. Park, H. J. Song, W. S.k Han, J. H. Jung. A Selective Fluoroionophore Based on BODIPY-functionalized Magnetic Silica Nanoparticles:Removal of Pb2+from Human Blood [J]. Angew. Chem. Int. Ed. 2009,48:1239-1243
    [71]Y. Klichk, M. Liong, E. Choi, S. Angelos, A. E. Nel, J. F. Stoddart, F. Tamanoi, J. I. Zink. Mesostructured Silica for Optical Functionality, Nanomachines, and Drug Delivery [J]. J. Am. Ceram. Soc.2009,92:S2-S10.
    [72]S. Santra, C. Kaittanis, J. Grimm, J. M. Perez. Drug/Dye-Loaded, Multifunctional Iron Oxide Nanoparticles for Combined Targeted Cancer Therapy and Dual Optical/Magnetic Resonance Imaging [J]. Small 2009,5: 1862-1868.
    [73]N. Kohler, C. Sun, J. Wang, M. Q. Zhang. Methotrexate-Modified Superparamagnetic Nanoparticles and Their Intracellular Uptake into Human Cancer Cells [J]. Langmuir 2005,21:8858-8864.
    [74]N. Kohler, C. Sun, A. Fichtenholtz, J. Gunn, C. Fang, M. Q. Zhang. Methotrexate-Immobilized Poly(ethylene glycol) Magnetic Nanoparticles for MR Imaging and Drug Delivery [J]. Small 2006,2:785-792.
    [75]C. Xu, J. Xie, D. Ho, C. Wang, N. Kohler, E. G. Walsh, J. R. Morgan, Y. E. Chin, S. Sun. Au-Fe3O4 Dumbbell Nanoparticles as Dual-Functional Probes [J]. Angew. Chem. Int. Ed.2008,47:173-176.
    [76]C. Xu, B. Wang, S. Sun. Dumbbell-like Au-Fe3O4 Nanoparticles for Target-Specific Platin Delivery [J]. J. Am. Chem. Soc.2009,131:4216-4217.
    [77]K. Cheng, S. Peng, C. J. Xu, S. Sun. Porous Hollow Fe3O4 Nanoparticles for Targeted Delivery and Controlled Release of Cisplatin [J]. J. Am. Chem. Soc. 2009,131:10637-10644.
    [78]S. J. Guo, S. J. Dong, E. K. Wang. A General Route to Construct Diverse Multifunctional Fe3O4/Metal Hybrid Nanostructures [J]. Chem. Eur. J.2009,15: 2416-2424.
    [79]L. Y. Wang, J. W. Bai, Y. Y. Li, Y. Huang. Multifunctional Nanoparticles Displaying Magnetization and Near-IR Absorption [J]. Angew. Chem. Int. Ed. 2008,47:2439-2442.
    [80]X. Huang, I. H. El-Sayed, W. Qian, M. A. El-Sayed. Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods[J]. J. Am. Chem. Soc.2006,128:2115.
    [81]C. G. Wang, J. J. Chen, T. Talavage, J. Irudayaraj. Gold Nanorod/Fe3O4 Nanoparticle "Nano-Pearl-Necklaces" for Simultaneous Targeting, Dual-Mode Imaging, and Photothermal Ablation of Cancer Cells [J]. Angew. Chem. Int. Ed. 2009,48:2759-2763.
    [1]W. Schartl. Crosslinked Spherical Nanoparticles with Core-Shell Topology [J]. Adv. Mater.2000,12:1899-1908.
    [2]F. Caruso. Nanoengineering of Particle Surf aces [J]. Adv. Mater.2001,13:11-12.
    [3]V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord, J. Nogues. Beating the superparamagnetic limit with exchange bias [J]. Nature 2003,423: 850-853.
    [4]H. Zeng, J. Li, Z. L.Wang, J. P. Liu, S. H. Sun. Bimagnetic Core/Shell FePt/Fe3O4 Nanoparticles [J]. Nano Lett.2004,4:187-190.
    [5]D. V. Goia, E. Matijevic. Preparation of monodispersed metal particles [J]. New J. Chem.1998,22:1203-1215.
    [6]J. P. Ge, Y. X. Hu, T. R. Zhang, Y. D. Yin. Superparamagnetic Composite Colloids with Anisotropic Structures [J]. J. Am. Chem. Soc.2007,129:8974-8975.
    [7]K. P. Velikov, A. Moroz, A. Van Blaaderen. Photonic crystals of core-shell colloidal particles [J]. Appl. Phys. Lett.2002,80:49-52.
    [8]M. C. Daniel, D. D. Astruc. Gold Nanoparticles:Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology [J]. Chem. Rev.2004,104:293-346.
    [9]J. Bao, W. Chen, T. T. Liu, Y. L. Zhu, P. Y. Jin, L. Y. Wang, J. F. Liu, Y. G. Wei, Y. D. Li. Bifunctional Au-Fe3O4 Nanoparticles for Protein Separation [J]. ACS Nano 2007,1:293-298.
    [10]H. W. Gu, K. M. Xu, C. J. Xu, B. Xu. Biofunctional magnetic nanoparticles for protein separation and pathogen detection [J]. Chem. Commun.2006,941-949.
    [11]A. K. Gupta, M. Gupta. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications [J]. Biomaterials 2005,26:3995-4021.
    [12]S. J. Son, J. Reichel, B. He, M. Schuchman, S. B. Lee. Magnetic Nanotubes for Magnetic-Field-Assisted Bioseparation, Biointeraction, and Drug Delivery [J]. J. Am. Chem. Soc.2005,127:7316-7317.
    [13]S. Sieben, C. Bergemann, A. Lubbe, B. Brockmann, D. J. Rescheleit. Comparison of different particles and methods for magnetic isolation of circulating tumor cells [J]. Magn. Magn. Mater.2001,225:175-179.
    [14]L. Z. Gao, J. Zhuang, L. Nie, J. B. Zhang, Y. Zhang, N. Gu, T. H. Wang, J. D. Feng, L. Yang, S. Peeeett, X. Y. Yan. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles [J]. Nat. Nanotechnol.2007,2:577-583.
    [15]A. H. Lu, E. L. Salabas, F. Schth. Magnetic Nanoparticles:Synthesis, Protection, Functionalization, and Application [J]. Angew. Chem. Int. Ed.2007,46: 1222-1244.
    [16]K. El-Boubbou, C. Gruden, X. F. Huang. Magnetic Glyco-nanoparticles:A Unique Tool for Rapid Pathogen Detection, Decontamination, and Strain Differentiation [J]. J. Am. Chem. Soc.2007,129:13392-13393.
    [17]A. J. Haes, R. P. Van Duyne. A Nanoscale Optical Biosensor: Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver Nanoparticles [J]. J. Am. Chem. Soc.2002, 124:10596-10604.
    [18]C. Sonnichsen, B. M. Reinhard, J. Liphardt, A. P. Alivisatos. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles [J]. Nat. Biotechnol.2005,23:741-745.
    [19]X. Huang, I. H. El-Sayed, W. Qian, M. A. El-Sayed. Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods [J]. J. Am. Chem. Soc.2006,128:2115-2120.
    [20]M. Kettering, J. Winter, M. Zeisberger, S. H. Bremer-Streck. Magnetic nanoparticles as bimodal tools in magnetically induced labelling and magnetic heating of tumour cells:an in vitro study [J]. Nanotechnology 2007,18: 175101.
    [21]C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, C. P. Lin. Selective Cell Targeting with Light-Absorbing Microparticles and Nanoparticles [J]. Biophys. J. 2003,84:4023-4032.
    [22]N. J. Halas, J. L. West. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance [J]. Proc. Natl. Acad. Sci. U.S.A. 2003,23:13549-13554.
    [23]L. Y. Wang, J. W. Bai, Y. J. Li, Y. Huang. Multifunctional Nanoparticles Displaying Magnetization and Near-IR Absorption [J]. Angew. Chem. Int. Ed. 2008,47:2439-2442.
    [24]S. J. Guo, S. J. Dong, E. K. Wang. A General Route to Construct Diverse Multifunctional Fe3O4/Metal Hybrid Nanostructures [J]. Chem. Eur. J.2009,15: 2416-2424.
    [25]C. G. Wang, J. J. Chen, T. Talavage, J. Irudayaraj. Gold Nanorod/Fe3O4 Nanoparticle "Nano-Pearl-Necklaces" for Simultaneous Targeting, Dual-Mode Imaging, and Photothermal Ablation of Cancer Cells [J]. Angew. Chem. Int. Ed. 2009,48:2759-2763.
    [26]H. Deng, X. L. Li, Q. Peng, X. Wang, J. P. Chen, Y. D. Li. Monodisperse Magnetic Single-Crystal Ferrite Microspheres [J]. Angew. Chem. Int. Ed.2005, 44:2782-2785.
    [27]Y. Lalatonne, J. Richardi, M. P. Pileni. Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals [J]. Nat. Mater. 2004,3:121-125.
    [28]Z. M. Cui, L. Y. Jiang, W. G. Song, Y. G. Guo. High-Yield Gas-Liquid Interfacial Synthesis of Highly Dispersed Fe3O4 Nanocrystals and Their Application in Lithium-Ion Batteries [J]. Chem. Mater.2009,21:1162-1166.
    [29]Z. H. Xu, Y. L. Hou, S. H. Sun. Magnetic Core/Shell Fe3O4/Au and Fe3O4/Au/Ag Nanoparticles with Tunable Plasmonic Properties [J]. J. Am. Chem. Soc.2007, 129:8698-8699.
    [30]Y. M. Zhai, J. F. Zhai, Y L. Wang, S. J. Guo, W. Ren, S. J. Dong. Fabrication of Iron Oxide Core/Gold Shell Submicrometer Spheres with Nanoscale Surface Roughness for Efficient Surface-Enhanced Raman Scattering [J]. J. Phys. Chem. C 2009,113:7009-7014.
    [31]E. Boisselier, D. Astruc. Gold nanoparticles in nanomedicine:preparations, imaging, diagnostics, therapies and toxicity [J]. Chem. Soc. Rev.2009,38: 1759-1782.
    [32]H.,Wang, G. P. Goodrich, F. Tam, C. Oubre, P. Nordlander, N. J. Halas. Controlled Texturing Modifies the Surface Topography and Plasmonic Properties of Au Nanoshells [J]. J. Phys. Chem. B 2005,109:11083-11087.
    [33]R. Sardar, A. M. Funston, P. Mulvaney. Gold Nanoparticles:Past, Present, and Future [J]. Langmuir 2009,25:13840-13851.
    [34]A. M. Funston, C. Novo, T. J. Davis. Plasmon Coupling of Gold Nanorods at Short Distances and in Different Geometries [J]. Nano Lett.2009,9:1651-1658.
    [35]S. J. Oldenburg, R. D. Averitt, S. L.Westcott, N. J. Halas. Nanoengineering of optical resonances [J]. Chemical Physics Letters 1998,288:243-247.
    [36]K. J. Prashant, S. L. Kyeong, H. E. Ivan, A. E. Mostafa. Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition:Applications in Biological Imaging and Biomedicine [J]. J. Phys. Chem. B 2006,110:7238-7248.
    [37]L. Wang, J. Bao, L. Wang, F. Zhang, Y. Li. One-Pot Synthesis and Bioapplication of Amine-Functionalized Magnetite Nanoparticles and Hollow Nanospheres [J]. Chem. Eur. J.2006,12:6341-6347.
    [38]C. K. Lo, D. Xiao, M. F. Choi. Homocysteine-protected gold-coated magnetic nanoparticles:synthesis and characterisation [J]. J. Mater. Chem.2007,17: 2418-2427.
    [39]T. Yonezawa, T. Kunitake. Practical preparation of anionic mercapto ligand-stabilized gold nanoparticles and their immobilization [J]. Colloids Surf., A 1999,149:193-199.
    [1]J. K. Reddy, B. Srinivas, V. D. Kumari, M. Subrahmanyam. Sm3+-Doped Bi2O3 Photocatalyst Prepared by Hydrothermal Synthesis [J]. ChemCatChem 2009,1: 492-496.
    [2]Z. Bian, J. Zhu, S. Wang, Y. Cao, X. Qian, H. Li. Self-Assembly of Active Bi2O3/TiO2 Visible Photocatalyst with Ordered Mesoporous Structure and Highly Crystallized Anatase [J]. J. Phys. Chem. C 2008,112:6258-6262.
    [3]Hana, Zcaron, abova, V. Cirkva. Microwave photocatalysis III. Transitionmetal ion-doped TiO2 thin films onmercury electrodeless discharge lamps:preparation, characterization and their effect on the photocatalytic degradation of mono-chloroacetic acid and Rhodamine B [J]. Journal of Chemical Technology & Biotechnology 2009,84:1624-1630.
    [4]A. Hameed, T. Montini, V. Gombac, P. Fornasiero. Surface Phases and Photocatalytic Activity Correlation of Bi2O3/Bi2O4-x Nanocomposite [J]. J. Am. Chem. Soc.2008,130:9658-9659.
    [5]C. Wang, C. Shao, L. Wang, L. Zhang, X. Li, Y. Liu. Electrospinning preparation, characterization and photocatalytic properties of Bi2O3 nanofibers [J]. J. Colloid Interface Sci.2009,333:242-248.
    [6]P. Shuk, H. D. Wiemhofer, U. Guth, W. Gopel, M. Greenblatt. Oxide ion conducting solid electrolytes based on Bi2O3 [J]. Solid State Ionics 1996,89: 179-196.
    [7]P. Zhou, H.-Y. You, J.-H. Jia, J. Li, T. Han, S.-Y. Wang, R.-J. Zhang, Y.-X. Zheng, L.-Y. Chen. Concentration and size dependence of optical properties of Ag:Bi2O3 composite films by using the co-sputtering method [J]. Thin Solid Films 2004, 455-456:605-608.
    [8]T. P. Gujar, V. R. Shinde, C. D. Lokhande, S.-H. Han. Electrosynthesis of Bi2O3 thin films and their use in electrochemical supercapacitors [J]. J. Power Sources 2006,161:1479-1485.
    [9]X. Gou, R. Li, GuoxiuWang, Z. Chen, DavidWexler. Room-temperature solution synthesis of Bi2O3 nanowires for gas sensing application [J]. Nanotechnology 2009,20:495501.
    [10]A. Cabot, A. Marsal, J. Arbiol, J. R. Morante. Bi2O3 as a selective sensing material for NO detection [J]. Sensors and Actuators B:Chemical 2004,99: 74-89.
    [11]Y. Qiu, D. Liu, J. Yang, S. Yang. Controlled Synthesis of Bismuth Oxide Nanowires by an Oxidative Metal Vapor Transport Deposition Technique [J]. Adv. Mater 2006,18:2604-2608.
    [12]J. C. Yu, A. Xu, L. Zhang, R. Song, L. Wu. Synthesis and Characterization of Porous Magnesium Hydroxide and Oxide Nanoplates [J]. J. Phys. Chem. B 2003, 108:64-70.
    [13]L. Zhou, W. Wang, H. Xu, S. Sun, M. Shang. Bi2O3 Hierarchical Nanostructures: Controllable Synthesis, Growth Mechanism, and their Application in Photocatalysis [J]. Chem. Eur. J.2009,15:1776-1782.
    [14]X. Song, L. Gao. Fabrication of Bifunctional Titania/Silica-Coated Magnetic Spheres and their Photocatalytic Activities [J]. J. Am. Ceram. Soc.2007,90: 4015-4019.
    [15]S. Guo, S. Dong, E. Wang. A General Route to Construct Diverse Multifunctional Fe3O4/Metal Hybrid Nanostructures [J]. Chem. Eur. J.2009,15: 2416-2424.
    [16]L. Wang, J. Bai, Y. Li, Y. Huang. Multifunctional Nanoparticles Displaying Magnetization and Near-IR Absorption [J]. Angew. Chem. Int. Ed.2008,47: 2439-2442.
    [17]H. Deng, X. Li, Q. Peng, X. Wang, J. Chen, Y. Li. Monodisperse Magnetic Single-Crystal Ferrite Microspheres [J]. Angew. Chem. Int. Ed.2005,44: 2782-2785.
    [18]X. W. Lou, C. Yuan, E. Rhoades, Q. Zhang, L. A. Archer. Encapsulation and Ostwald Ripening of Au and Au-Cl Complex Nanostructures in Silica Shells [J]. Adv. Funct. Mater 2006,16:1679-1684.
    [19]C. K. Lo, D. Xiao, M. M. F. Choi. Homocysteine-protected gold-coated magnetic nanoparticles:synthesis and characterisation [J]. J. Mater. Chem.2007,17: 2418-2427.
    [20]L. Wang, J. Luo, M. M. Maye, Q. Fan, Q. Rendeng, M. H. Engelhard, C. Wang, Y. Lin, C.-J. Zhong. Iron oxide-gold core-shell nanoparticles and thin film assembly [J]. J. Mater. Chem.2005,15:1821-1832.
    [21]C.-T. Wang, S.-H. Ro. Surface nature of nanoparticle gold/iron oxide aerogel catalysts [J]. J. Non-Cryst. Solids 2006,352:35-43.
    [22]H. Xu, L. Cui, N. Tong, H. Gu. Development of high magnetization FesO4/polystyrene/silica nanospheres via combined miniemulsion/emulsion polymerization [J]. J. Am. Chem. Soc.2006,128:15582-15583.
    [1]M. Danek, K. F. Jensen, C. B. Murray, M. G. Bawendi. Synthesis of Luminescent Thin-Film CdSe/ZnSe Quantum Dot Composites Using CdSe Quantum Dots Passivated with an Overlayer of ZnSe [J]. Chem. Mater.1996,8,173-180.
    [2]B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, M. G. Bawendi. (CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites [J]. J. Phys. Chem. B 1997,101,9463-9475.
    [3]X. Peng, M. C. Schlamp, A. V. Kadavanich, A. P. Alivisatos. Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility [J]. J. Am. Chem. Soc.1997,119,7019-7029.
    [4]M. A. Malik, P. O'Brien, N. Revaprasadu. A Simple Route to the Synthesis of Core/Shell Nanoparticles of Chalcogenides [J]. Chem. Mater.2002,14, 2004-2010.
    [5]P. Reiss, J. Bleuse, A. Pron. Highly Luminescent CdSe/ZnSe Core/Shell Nanocrystals of Low Size Dispersion [J]. Nano Lett.2002,2,781-784.
    [6]M. A. Hines, P. Guyot-Sionnest. Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals [J]. J. Phys. Chem.1996,100, 468-471.
    [7]V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord, J. Nogues. Beating the superparamagnetic limit with exchange bias [J]. Nature 2003,423, 850-853.
    [8]H. Zeng, J. Li, Z. L. Wang, J. P. Liu, S. H. Sun. Bimagnetic Core/Shell FePt/Fe3O4 Nanoparticles [J]. Nano Lett.2004,4,187-190.
    [9]M. Ohmori, E. Matijevic. Conductance and NMR Studies of Cetyltrimethylammonium Bromide and Chloride Micelles in the Presence of Several Additives [J]. J. Colloid Interface Sci.1993,160,288-294.
    [10]D. V. Goia, E. Matijevic. Preparation of monodispersed metal particles [J]. New J. Chem.1998,22,1203-1215.
    [11]R. Partch, S. Brown. Aerosol and Solution Modification of Particle-Polymer Interfaces [J]. J. Adhes.1998,67,259-276.
    [12]K. P. Velikov, A. Moroz, A. van Blaaderen. Photonic crystals of core-shell colloidal particles [J]. Appl. Phys. Lett.2002,80,49-51.
    [13]C. W. Chen, M. Q. Chen, T. Serizawa, M. Akashi. In situ synthesis and the catalytic properties of platinum colloids on polystyrene microspheres with surface-grafted poly(N-isopropylacrylamide) [J]. Chem Commun.1998, 831-832.
    [14]C. W. Chen, T. Serizawa, M. Akashi. Preparation of Platinum Colloids on Polystyrene Nanospheres and Their Catalytic Properties in Hydrogenation [J]. Chem. Mater.1999,11,1381-1389.
    [15]C. Schuler, F. Caruso, Preparation of enzyme multilayers on colloids for biocatalysis [J]. Macromol. Rapid Commun.2000,21,750-753.
    [16]F. Caruso, H. Fiedler, K. Haage. Assembly of β-glucosidase multilayers on spherical colloidal particles and their use as active catalysts [J]. Colloids Surf. A 2000,169,287-293.
    [17]S. J. Oldenburg, S. L. Westcott, R. D. Averitt, N. J. Halas. Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates [J]. J. Chem. Phys.1999,111,4729-4739.
    [18]K. S. Oh, K. E. Lee, S. S. Han, S. U. H. Cho, D. Kim, S. H. Yuk. Formation of Core/Shell Nanoparticles with a Lipid Core and Their Application as a Drug Delivery System [J]. Biomacromolecules 2005,6,1062-1067.
    [19]K. S. Soppimath, D. C. W. Tan, Y. Y. Yang. pH-Triggered Thermally Responsive Polymer Core-Shell Nanoparticles for Drug Delivery [J]. Adv. Mater.2005,17, 318-323;
    [20]T. Riley, C. R. Heald, S. Stolnik, M. C. Garnett, L. Illum, S. S. Davis, S. M. King, R. K. Heenan, S. C. Purkiss, R. J. Barlow, P. R. Gellert, C. Washington. Core-Shell Structure of PLA-PEG Nanoparticles Used for Drug Delivery [J]. Langmuir 2003,19,8428-8435.
    [21]B. C. H. Steele, A. Heinzel. Materials for fuel-cell technologies [J]. Nature,2001, 414,345-352
    [22]A. Trovarelli, C. de Leitenburg, M. Boaro and G. Dolcetti. The utilization of ceria in industrial catalysis [J]. Catal. Today,1999,50,353-367.
    [23]P. Jasinski, T. Suzuki, H. U. Anderson. Nanocrystalline undoped ceria oxygen sensor [J]. Sens. Actuators, B,2003,95,73-77.
    [24]S. Tsunekawa, T. Fukuda. Blue shift in ultraviolet absorption spectra of monodisperse CeO2-x nanoparticles [J]. J. Appl. Phys.2000,87,1318-1321.
    [25]L. S. Zhong, J. Q. Hu, A. M. Cao, Q. Liu, W. G Song, L. J. Wan.3D Flowerlike Ceria Micro/Nanocomposite Structure and Its Application for Water Treatment and CO Removal [J]. Chem. Mater.2007,19,1648-1655.
    [26]X. D. Feng, D. C. Sayle, Z. L. Wang, M. S. Paras, B. Santora, A. C. Sutorik, T. X. T. Sayle, Y. Yang, Y Ding, X. D. Wang, Y. S. Her. Converting Ceria Polyhedral Nanoparticles into Single-Crystal Nanospheres [J]. Science 2006,312, 1504-1508.
    [27]S. M. Hirst, A. S. Karakoti, R. D. Tyler, N. Sriranganathan, S. Seal, C. M. Reilly. Anti-inflammatory Properties of Cerium Oxide Nanoparticles [J]. Small,2009,5, 2848-2856.
    [28]A. Ahniyaz, Y. Sakamoto, L. Bergstrom. Tuning the Aspect Ratio of Ceria Nanorods and Nanodumbbells by a Face-Specific Growth and Dissolution Process [J]. Cryst. Growth Des.,2008,8,1798-1800.
    [29]T. Masui, K. Fujiwara, K. Machida, G. Adachi, T. Sakata, H. Mori. Characterization of Cerium(IV) Oxide Ultrafine Particles Prepared Using Reversed Micelles [J]. Chem. Mater.,1997,9,2197-2204.
    [30]T. Y. Yu, J. Joo, Y. I. Park, T. Hyeon. Large-Scale Nonhydrolytic Sol-Gel Synthesis of Uniform-Sized Ceria Nanocrystals with Spherical, Wire, and Tadpole Shapes [J]. Angew. Chem. Int. Ed.2005,44,7411-7414.
    [31]L. Yan, R. B. Yu, J. Chen and X. R. Xing. Template-Free Hydrothermal Synthesis of CeO2 Nano-octahedrons and Nanorods:Investigation of the Morphology Evolution [J]. Cryst. Growth Des.,2008,8,1474-1477.
    [32]G. Z. Chen, C. X. Xu, X. Y. Song, S. L. Xu, Y Ding, S. X. Sun. Template-free Synthesis of Single-Crystalline-like CeO2 Hollow Nanocubes [J]. Cryst. Growth Des.,2008,8,4449-4453.
    [33]J. Zhang, S. Ohara, M. Umetsu, T. Naka, Y. Hatakeyama, T. Adschiri. Colloidal Ceria Nanocrystals:A Tailor-Made Crystal Morphology in Supercritical Water [J]. Adv. Mater.,2007,19,203-206.
    [34]S. W. Yang, L. Gao. Controlled Synthesis and Self-Assembly of CeO2 Nanocubes [J]. J. Am. Chem. Soc.,2006,128,9330-9331.
    [35]A. Vantomme, Z. Y. Yuan, G. H. Du, B. L. Su, Surfactant-Assisted Large-Scale Preparation of Crystalline CeO2 Nanorods [J]. Langmuir,2005,21,1132-1135.
    [36]B. Tang, L. H. Zhuo, J. C. Ge, G. L. Wang, Z. Q. Shi, J. Y. Niu. A surfactant-free route to single-crystalline CeO2 nanowires [J]. Chem. Commun.,2005, (28), 3565-3567.
    [37]G Z. Chen, S. X. Sun, X. Sun, W. L. Fan, T. You. Formation of CeO2 Nanotubes from Ce(OH)CO3 Nanorods through Kirkendall Diffusion [J]. Inorg. Chem.2009, 48,1334-1338
    [38]H. X. Mai, L. D. Sun, Y. W. Zhang, R. Si, W. Feng, H. P. Zhang, H. C. Liu, C. H. Yan. Shape-Selective Synthesis and Oxygen Storage Behavior of Ceria Nanopolyhedra, Nanorods, and Nanocubes [J]. J. Phys. Chem. B,2005,109, 24380-24385.
    [39]Z. J. Yang, J. J. Wei, H. X. Yang, L. Liu, H. Liang,Y. Z. Yang. Mesoporous CeO2 Hollow Spheres Prepared by Ostwald Ripening and Their Environmental Applications [J]. Eur. J. Inorg. Chem.2010,3354-3359.
    [40]Z. M. Cui, L. Y. Jiang, W. G. Song, Y. G Guo. High-Yield Gas-Liquid Interfacial Synthesis of Highly Dispersed Fe3O4 Nanocrystals and Their Application in Lithium-Ion Batteries [J]. Chem. Mater.2009,21:1162-1166.
    [41]C. K. Lo, D. Xiao, M. F. Choi. Homocysteine-protected gold-coated magnetic nanoparticles:synthesis and characterisation [J]. J. Mater. Chem.2007,17: 2418-2427.
    [42]G. Cheng, J.-L. Zhang, Y.-L. Liu, D.-H. Sun, J.-Z. Ni. Synthesis of novel Fe3O4@SiO2@CeO2 microspheres with mesoporous shell for phosphopeptide capturing and labeling [J]. Chem. Commun.2011, DOI:10.1039/clcc10533g.
    [43]G. F. Wang, Q. Y. Mu, T. Chen, Y. D. Wang, J. Alloys Compd.493 (2010) 202.
    [44]F. Zhang, P. Wang, J. Koberstein, S. Khalid, S. W. Chan, Surf. Sci.2004, 563,74-78.
    [45]G. S. Li, D. Q. Zhang, J. C. Yu. Thermally stable ordered mesoporous CeO2/TiO2 visible-light photocatalysts [J]. Phys.Chem.Chem.Phys.2009,11,3775-3782.
    [46]H. Xu, L. Cui, N. Tong, H. Gu. Development of high magnetization Fe3O4/polystyrene/silica nanospheres via combined miniemulsion/emulsion polymerization [J]. J. Am. Chem. Soc.2006,128:15582-15583.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700