SiO_2基有机—无机复合耐腐蚀薄膜的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着复合耐腐蚀薄膜应用的拓展及使用环境的恶化,对薄膜技术及其性能也相应提出了更高的要求。作为一种优异的耐腐蚀材料,无机有机复合耐腐蚀薄膜在金属防腐上得到了广泛应用。但目前采用的制备方式大部分都是通过引入高分子物质或纳米级无机颗粒对薄膜进行改性,其制备过程复杂且不易控制。本文针对有机无机复合薄膜研究及应用中存在的问题开展研制工作,对有机无机复合薄膜的成膜过程及其结构性能进行理论分析与实验论证。
     以正硅酸乙酯(TEOS)和γ-甲基丙烯酰氧丙基三甲氧基硅烷(KH570)为前驱体,以过氧化二苯甲酰(BPO)为引发剂,通过溶胶凝胶法制备SiO_2基有机无机复合溶胶,陈化后采用旋涂法在冷轧钢板表面成膜,制备有机无机复合防腐涂层。通过傅立叶红外光谱(FTIR)、扫描电镜(sEM)、溶胶凝胶色谱(GPC)等测试手段研究了复合防腐涂层的形貌及结构,通过盐雾腐蚀实验和电化学阻抗谱(EIS)测试对复合涂层的耐腐蚀性能进行研究。系统研究了加水量(R)、改性剂种类、添加量、pH值、反应温度等工艺条件对该溶胶体系下的分子结构及复合涂层性能的影响;同时考察了引发剂的种类、特性及添加方式对复合溶胶结构及最终涂层性能的影响。结果表明,在TEOS:KH570=1,R=3,pH=4.5的条件下,制备出的KH570改性SiO_2有机无机复合耐腐蚀涂层在铝板和冷轧钢板上分别能够耐盐雾腐蚀超过240小时和24小时,硬度大于8H,表面光泽度好,可直接应用到工业化生产;加入引发剂可以提高薄膜的韧性,增强其耐腐蚀性能:引发剂BPO的适宜用量为引发对象总质量的0.25%,反应前、后期的温度分别为75℃和65℃时,引发效率最佳,在R=2,TEOS:KH570=1:1条件下制备出的复合防腐涂层在冷轧钢板上能够耐盐雾腐蚀48小时以上,硬度大于8H。
     本文初步研究了有机硅烷改性SiO_2-体系的薄膜制备及性能,为该薄膜的进一步应用奠定了一定理论和实验基础。
With the expansion in application of composite anti-corrosion thin-film and the deterioration of environment for its use, requirements for thin film technology and its performance are getting higher day by day. As an excellent anti-corrosion material, inorganic-organic composite anti-corrosion coating has been widely used on mesoporphyrin protection. However, the coating preparation method mostly used currently is adding polymer materials or inorganic nano-particles in to modify the coating, with the process complex and hard to control. The present paper aims to study the problems in research and application of organic-inorganic composite thin-film, and to testify and analyse the film-forming process, structure and properties of organic-inorganic composite coating and its structural properties.
     With ethyl orthosilicate (TEOS) andγ-methacryloxypropyl trimethoxysilane (KH570) as precursor, dibenzoyl peroxide (BPO) as evocating agent, SiO_2-based organic-inorganic composite anti-corrosion sol was prepared by sol-gel method. After aging, the composite coating on the surface of cold-rolled steel sheet was obtained , using spin-coating method. After heat treatment, Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Sol-gel Chromatography (GPC) were applied to characterized the morphology and structure of composite anti-corrosion coating, andthe anti-corrosion property of composite coatings was examined by Salt-spray Test and Electrochemical Impedance Spectroscopy (E1S). The paper systematically studied the influence on structure and properties of composite coatings under this sol system of process conditions including the amount of added water(R) and the modifier, pH, temperature etc..Meanwhile it investigated the influence on structure and properties of composite coatings of type, conditions of use and adding ways of evocating agent. The results show that, the best anti-corrosion performance is achieved at TEOS:KH570=1, R=3, pH=4.5, and the coating can endure salt-spray for over 240 hours on aluminum plate or over 24 hours on steel plate, the hardness is greater than 8H, surface gloss and can be applied to industrial production directly;initiator can improve the tenacity of coating, enhanced anti-corrosion performance of system at the same time:the appropriate dosage of BPO is 0.25% of the total mass of triggered object, when the temperature of prior and later period in reaction are 75℃and 65℃, the efficiency of initiation is best, and with the conditions of R=2, TEOS:KH570=1:1, the composite anti-corrosion coating can endure salt-spray for over 48 hours on steel plate, the hardness is greater than 8H.
     The paper preliminarily studied the preparation and characterization of coating of SiO_2-organic-silane compound system, and thus provides some theoretical and experimental basis for the application of this the organic-inorganic anti-corrosion thin-film system.in the future.
引文
[1]J.H.Osborne.Observations on chromate conversion coatings from a sol-gel perspective[J].Prog.Org.Coat.,2001,41(4):280-286.
    [2]田军,周兆福,薛群基.聚氨酯/聚四氟乙烯耐磨防腐涂层表面结构的研究[J].腐蚀科学与防护技术,1997,9(3):182.
    [3]Chemimi M M,Watts J F.J adhesion sci.Technol,1992,6(3):377.
    [4]Badey J P,et al.Polymer,1994,35(12):2472.
    [5]倪永泉,王海英.化工防腐,1997,(4):28.
    [6]宣兆龙,易建政.环氧树脂防腐涂料与功能性固化剂[J].化工设备与防腐蚀,1999(5):40-42.
    [7]王德武.聚硫橡胶改性环氧防水防腐涂料[J].涂料工业,1998(4):20-21.
    [8]王生杰.功能性有机硅涂层材料[J].涂料工业,2005,36(6):48-53.
    [9]T EMTCHENKOT,et al.[J].Progress in Granic coatings,2001(43):75-84.
    [10]杨光付.氟碳涂料在舰船上的应用前景[J].现代涂料与涂装,2004(3):36-38.
    [11]黄微波.喷涂聚豚弹性体技术[M].北京:化工出版社,2005.
    [12]王巍.钛纳米聚合物涂料在储油罐上的应用[J].全面腐蚀控制,2005(8):12-14.
    [13]行业关注:达克罗无铬涂层的应用及发展[J].勤加缘商情,2005(5):83-84.
    [14]曲志敏,黄金铃.达克罗处理技术的应用概况[J].中国涂料,2005(3):47-48.
    [15]V.Subramanian W.J.van Ooij.Silane based metal pretreatments as alternatives to chromating[J].Surf.Eng.1999,15(2):168-172.
    [16]N.Tang W.J.van Ooij G.Gorecki.Comparative EIS study of pretreatment performance in coated metals[J].Prog.Org.Coat.1997,30(4):255-263.
    [17]G.P.Sundararajan W.J.van Ooij.Silane based pre-treatments for automotive steels [J].Surf.Eng.2000,16(4):315-320.
    [18]D.Q.Zhu W.J.van Ooij.Corrosion protection of metals by water-based silane mixtures of bis-[trimethoxysi-lylpropyl]amine and vinyltriacetoxysilane [J].Prog.Org.Coat.2004,49(1):42-53.
    [19]D.Q.Zhu W.J.van Ooij.Enhanced corrosion resis-tance of AA 2024-T3 and hot-dip galvanized steel using a mixture of bis-[triethoxysilylpropyl]tetrasulfide and bis-[trimethoxysilylpropyl]amine[J].Electrochim.Acta,2004,49(7):1113-1125.
    [20]W.J.van Ooij D.Q.Zhu G.Prasad et al.Silane based chromate replacements for corrosion control,paint adhe-sion,and rubber bonding[J].Surf.Eng.,2000,16(5):386-396.
    [21]W.J.Van Ooij,T.Child.Protecting metals with silane coupling agents[J].Chemtech,1998,28(2):26-35.
    [22]W.J.Van Ooij.Metal preteated with an aqueous solution containing a dissolved inorganic silicate or aluminate,organofunctional and a nonfunctional silane for enhance corrosion resistance[P].US.5,433,976;July 18,1995.
    [23]Li X and King TA[J].SPIE,1994;2 2 88:216.
    [23]T.P.Chou,C.Chandrasekaran,S.J.Limmer,et al.Organic-inorganic hybrid coatings for corrosion protection[J],J.Non-Crystalline Solids,290(2001):153-162.
    [24]T.L.Metroke,J.S.Gandhi,A.Apblett,Corrosion resistance properties of Ormosil coatings on 2024-T3 aluminum alloy[J],Prog.Org.Coat.,50(2004):231-246.
    [25]T.L.Metroke,O.Kachurina,E.T.Knobbe,Spectroscopic and corrosion resistance characterization of amine and super acid-cured hybrid organic-inorganic thin films on 2024-T3 aluminum alloy[J],Prog.Org.Coat.,44(2002):185-199.
    [26]T.L.Metroke,A.Apblett,Effect of solvent dilution on corrosion protective properties of Ormosil coatings on 2024-T3 aluminum alloy[J],Prog.Org.Coat.,51(2004):36-46.
    [27]尤宏,刘琰,孙德智等,LY12铝合金表面有机—无机杂化膜的防腐性能研究,材料工程,6(2004):7-11.
    [28]Y.L iu,D.Z.Sun,H.You,et al.Corrosion resistance properties of organicinorganic hybrid coatings on 2024 aluminum alloy[J],App lied Surf.Sci.,246(2005):82-89.
    [29]T.L.Metroke,O.Kachurina,E.T.Knobbe,Spectroscopic and corrosion resistance characterization of GLYMO-TEOS Ormosil coatings for aluminum alloy corrosion inhibition[J],Prog.Org.Coat.,44(2002):295-305.
    [30]R.Zandi-zand,A.Ershad-langroudi,A.Rahimi,Silica based organic-inorganic hybrid nanocomposite coatings for corrosion protection[J],Prog.Org.Coat.,53(2005):286-291.
    [31]R.Zandi-zand,A.Ershad-langroudi,A.Rahimi,Organic-inorganic hybrid coatings for corrosion protection of 1050 aluminum alloy[J],J.Non-Crystalline So lids,351(2005):1307-1311.
    [32]A.Pepe,P.Galliano,S.Cere,et al.Hybrid silica sol-gel coatings on Austempered Ductile Iron(ADI)[J],Materials Letters.59(2005):2219-2222.
    [33]张立德,年季美.纳米科学[M].沈阳:辽宁科学技术出版社,1994.
    [34]李旭华,袁荞龙,王得宁等.杂化材料的制备\性能及应用[J].功能高分子学报,2000,13(2):212-218.
    [35]S.W Shang,J W Wiuiams,et al.Preparation and properties of EVA/SiO2hybrid,material[J].J Mater Sci,1992,27:4949-4954.
    [36]张立群,等.聚合物/无机物纳米复合胶乳的制备与性能研究[J].特种橡胶制品,1998,19(2):6-8.
    [37]曾清化等.聚合物-黏土矿物纳米复合材料[J].化工进展,1998,17(2):13-16.
    [38]章永化等.聚合物/层状无机物纳米复合材料的研究进展[J].材料导报,1998,12(2):61-63.
    [39]赵竹第等.尼龙/蒙脱土纳米复合材料的制备、结构与力学性能的研究[J].高分子学报.1997,5:519-522.
    [40]乔放等.聚酰胺/粘土纳米复合材料的制备、结构表征及性能研究[J].高分子通报.1997,3:135-137.
    [41]李强等.尼龙/蒙脱土纳米复合材料的结晶行为[J].高分子学报,1997,2:188-193.
    [42]Solomon D H,Loft B C.Poly either-segmented nylon he modialysis memberane V:Evaluation of blood compatibility of poly ether-segmented nylons[J].J Appl.Polym.Sci.,1998,67:1253-1257.
    [43]Giannelis E P.Polymer layered silicate nanoconposites[J].Adv.Mater,1996,8(1):29-35.
    [44]Vaia R A,Vssudevans,Korawice W,et al.Synthesis and properties of two uimensional nanostructues by direct intercalation of polymer melts in layered silicates[J].Adv.Mater.,1995,7:154-160.
    [45]Liu G,Ding J,Guo A,et al.Potential skin layers for membranes with tunable nanochannels[J].Macro.,1997,30:1851-1855.
    [46]赵竹第,高宗明等.苯乙烯-马来酸酐共聚物/居桂阳万纳米尺度复合材料的研究[J].高分子学报,1996.2(33):228-233.
    [47]张隽,罗胜成,等.PMMA-TiO_2有机无机杂化玻璃等制备[J].物理化学学报.1996,12:289-292.
    [48]张留成,刘玉成.聚合物互穿网络[M].北京:烃加工出版社,1990.
    [49]张启卫,章永化,房雪松等.聚醋酸乙烯酯/二氧化硅杂化材料的制备与性能研究[J].材料科学与工程,2002,20(3):381-385.
    [50]钱军民,金志浩.甲基丙烯酸甲酯-顺丁烯二酸酐共聚物/SiO_2杂化材料的制备与性能[J].高分子材料科学与工程.2003,19(4):162-165.
    [51]钱军民,金志浩.甲基丙烯酸甲酯-顺丁烯二酸酐共聚物/SiO_2杂化材料的制备与性能[J].高分子材料科学与工程,2003,19(1):96-103.
    [52]董相廷,孙晶,刘桂霞,等.纳米CeO_2/PMMA杂化材料的制备与表征[J].化学学报,2003,61(1):122-125.
    [53]张志坤,崔作林.纳米技术与纳米材料.北京:国防工业出版社.2000.
    [54]李葵英.界面与胶体的物理化学.哈尔滨:哈尔滨工业大学出版社,1998.
    [55]刘光华.现代材料化学.上海:上海科学技术出版社,2000.
    [56]Marcel Mulder著,李琳译.膜技术基本原理.北京:清华大学出版社,1999.
    [57]Novak B M,Ellswotth M,Davies C.Polymer Prep,1990,31:698.
    [58]Wen J,Wilkes G L.Chem Mater,1996,8:1667.
    [59]Morikawa A,Lyoku Y,Kakimoto M A,et al.J Mater Chem,1992,2(7).
    [60]Novak B M.Adv Mater,1993,5(6):422.
    [61]David I A,Scherer G W.Polymer Prep,1991,32:536.
    [62]刘海兵,周根树,郑茂盛.溶胶.凝胶法制备有机改性SiO_2-TiO_2涂层的研究.功能材料,1997,28(1):56-58.
    [63]刘海兵,周根树,郑茂盛.溶胶-凝胶法在PMMA上制备SiO_2-Al_2O_3涂层过程的研究.高分子材料科学与工程,1999,15(1):108-110.
    [64]王金平,俞志欣,何捷.用Sol—Gel法在PC上制备有机—无机复合耐磨涂层.功能材料,1999,30(3):323-325.
    [65]高长有,杨柏,沈家骢.有机硅耐磨透明涂料.高分子通报,1996,(2):120-125.
    [66]高长有,杨柏,沈家骢.有机硅耐磨涂层的制备及性能研究.功能材料,1994,25(4):313-317.
    [67]杨柏,高长有,孙允秀,沈家骢.有机硅耐磨透明涂层的固化分析.应用化学,1994,11(3):54-57.
    [68]高长有,杨柏,孙允秀,沈家骢.有机硅耐磨透明涂料的固化研究.热固性树脂,1994,(1):39-43.
    [69]J.H.Osborne.Observations on chromate conversion coatings from a sol-gel perspective[J].Prog.Org.Coat.,2001,41(4):280-286.
    [70]R.L.Twite;G.P.Bierwagen.Review of alternatives to chromate for corrosion protection of aluminum aerospace alloys[J].Prog.Org.Coat.,1998,33(2):91-100.
    [71]L.De Rosa;T.Monetta;F.Bellucci et al.The effect of a conversion layer and organic coating on the electrochemical behavior of 8006 and 8079 aluminum alloys [J].Prog.Org.Coat.,2002.44(2):153-160.
    [72]T.Prosek;D.Thierry.A model for the release of chro-mate from organic coatings [J].Prog.Org.Coat.,2004,49(3):209-217.
    [73]Zuyi Zhang,Hajimu Wakabayashi,Structural study of Al(acac)_3 catalyzed CH_3SiO_(3/2) gel[J],Journal of sol-gel science and technology,1998,12:153-158.
    [74]Shizhe Song,Xiaoping Song.Electochemical Measuments of Defective Coatings on Buried Stell Subtrates[J].Electrochemistry,1999,5(2):162.
    [75]吴宏博,丁新静,于敬晖,刘在阳.有机硅树脂的种类、性能及应用.纤维复合材料,2006,(2):55-59.
    [76]Xiankang Zhong,Qing Li,Junying Hu,Yihui Lu.Characterization and corrosion studies of ceria thin film based on fluorinated AZ91D magnesium alloy[J].Corrosion Science,2008,50(8):2304-2309.
    [77]L.Bamoulid,M-T.Maurette,D.De Caro et al.An efficient protection of stainless steel against corrosion:Combination of a conversion layer and titanium dioxide deposit[J].Surface & Coatings Technology,2008,22(20):5020-5026.
    [78]Duhua Wang,Gordon.P.Bierwagen Sol-gel coatings on metals for corrosion protection[J].Prog.Org.Coat.,64(2009):327-338.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700