Ni(OH)_2电极纳米添加剂对MH/Ni电池高倍率性能影响的作用机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属氢化物镍(MH/Ni)电池是现今应用最广泛的二次电池之一,提高MH/Ni电池的功率特性是MH/Ni电池在电动汽车等领域推广应用的重要任务。但正极活性材料β-Ni(OH)_2导电性差的特点影响了MH/Ni电池高倍率性能的提高。本论文合成了纳米CoO、多壁碳纳米管、球形纳米α-Ni(OH)_2和表面非晶态纳米碳,并将这些纳米材料作为MH/Ni电池Ni(OH)_2电极的添加剂,通过XRD、SEM和TEM等方法对纳米添加剂进行了微观组织结构分析;利用循环伏安、交流阻抗和恒电流充放电等方法,对含纳米添加剂的Ni(OH)_2电极和密封MH/Ni电池进行了电化学性能测试,分析了各种纳米添加剂对MH/Ni电池综合电化学性能的影响,尤其是对高倍率性能的影响。
     采用液相沉淀法合成纳米棒状CoCO_3前驱体,真空分解前驱体制备了直径约80 nm、均匀分散的短棒状纳米CoO粉末。研究发现:同添加普通亚微米级CoO的电极相比,添加纳米CoO有效地减小了Ni(OH)_2电极电化学反应的欧姆阻抗和反应阻抗,减小电化学反应氧化还原峰值电位间距,提高电化学反应的反应电位。当纳米CoO含量为8 wt.%时,放电比容量达到283 mAh/g,与β-Ni(OH)_2的理论比容量接近。正极添加纳米CoO的密封MH/Ni电池具有放电比容量高、放电电压高、内阻小、循环寿命长和高倍率放电性能优异等特性。正极添加8 wt.%CoO的MH/Ni电池在10 C放电倍率下放电容量仍保有设计容量的90%,电池寿命为165次,相比较添加普通亚微米CoO的MH/Ni电池的115次,提高了近43%。
     利用化学气相沉积法(CVD)催化分解乙炔制备了结晶性良好的多壁碳纳米管(CNTs),管径约10 nm。研究结果表明,将纯化、分散处理后的多壁CNTs添加到MH/Ni电池的正极,形成以CNTs为骨架的复合导电网络,同时又由于CNTs的高强度和高韧性而维护了网络的完整性。电化学交流阻抗和线性极化曲线测试证实了添加CNTs电极内部欧姆阻抗和电化学反应阻抗减小,电极交换电流密度提高。正极添加CNTs的密封碱性MH/Ni二次电池,具有放电比容量高、容量衰减慢、循环寿命长、内阻小及内阻增长速率慢,放电中值电压高等特性。在高倍率放电条件下正极添加CNTs的作用更为明显。0.5 wt.%是比较合适的添加比例,其在10 C放电条件下当循环次数达到120次时容量保持率仍有85%。添加过多的CNTs,对电池性能的提高无益。
     采用合适的反应温度和葡萄糖溶液浓度,通过水热反应实现了对球形β-Ni(OH)_2表面非晶态纳米碳修饰。电化学测试表明,在0.2 C和1 C的低中倍率下,虽然表面碳修饰的β-Ni(OH)_2电极电化学循环性能更稳定,但电极活性物质球形β-Ni(OH)_2的利用率约为87%,比普通Ni(OH)_2电极减少约10%。但在3 C倍率放电条件下,表面碳修饰的β-Ni(OH)_2电极在循环30周期后放电容量基本没有变化,且放电电压高出普通Ni(OH)_2电极约30 mV。此外,为了更好的实现碳修饰β-Ni(OH)_2电极的高倍率性能,应适当添加约6 wt.%CoO。
     采用湿化学沉淀法在醇-水体系中制备了结晶良好、粒度约20-30 nm、振实密度为1.7 g/ml的球形α-Ni(OH)_2,并研究讨论了络合剂与陈化时间对α-Ni(OH)_2组织结构的影响。含10 wt.%α-Ni(OH)_2的复相β/α-Ni(OH)_2粉体,振实密度高达2.41g/ml。对β/α-Ni(OH)_2复相电极材料电化学性能的研究发现,纳米α-Ni(OH)_2的电化学活性高于β-Ni(OH)_2。纳米球形α-Ni(OH)_2的添加提高了电极的放电比容量、放电电压和循环寿命。纳米α-Ni(OH)_2的最佳含量为10 wt.%,添加过多的纳米α-Ni(OH)_2会恶化电极的电化学性能。
As one of the most widely used rechargeable batteries, nickel-metal hydride (MH/Ni) batteries are required to improve the high power characteristics considering application for electric vehicles. The high power performance of MH/Ni battery is affected strongly by the positive electrode because of the poor conductivity of the active material β-Ni(OH)_2. In this work, nanosized additives such as nanoscale CoO, multiwalled carbon nanotubes (CNTs), nanoscale α-Ni(OH)_2 and surface-modified amorphous nanosized carbon were synthesized as additives for the Ni(OH)_2 electrodes. The morphologies and structures of the nanoscale additives were charactered by XRD, SEM and TEM. The influences of these nanosized additives on the overall performance of Ni/MH batteries, especially the high-rate capability, were evaluated by the means of electrochemical measurements, including electrochemical impedance spectrum, cyclic voltammetry and charge-discharge cycling.
    CoCO_3 nanorods as precursor were synthesized by precipitation method and short rod-like nanoscale CoO was prepared by decomposing CoCO_3 in vacuum. Compared with the electrodes with usual sub-micron CoO, the electrochemical measurements indicate that the electrodes with nanoscale CoO exhibit lower Ohm impedance and the lower electrochemical reaction impedance, narrower redox potential space and high reaction potential. The specific capacity of the electrodes with nanoscale CoO is up to 283 mAh/g, which is close to the theoretical specific capacity of β-Ni(OH)_2. The sealed MH/Ni batteries with nanoscale CoO present better high-rate performance. At 10 C discharge rate the capacity of the batteries with 8 wt.% CoO in the positive electrodes still remains 90% of original capacity, and the lifespan is 165 cycles, which is 43% longer than the usual batteries with 115 cycles.
    Well crystallized multi-walled carbon nanotubes (CNTs) with diameter about 10 nm were synthesized by chemical vapor decomposition (CVD) method. After purification and ball-milling, the as-prepared CNTs were added to the positive electrodes of MH/Ni batteries as additives. During the process of transformation from CoO to CoOOH, a complex conductive network was created with CNTs as the frame. Because of the high conductivity and intension characteristics of CNTs. the
    charge-transfer capability was improved and the integrality of the complex condutive network was enhanced. The electrochemical measurements show that the impedance of the electrodes was lessened and the exchange current density was increased by addition of CNTs. Further researches on sealed batteries show that the batteries with CNTs in the positive electrodes exhibit improved capacity, modified discharge stability, restrained internal resistance and prolonged lifespan. The advantages of CNTs are more obvious when discharged at high current rates. 0.5 wt.% was proved a desired amount for CNTs and the capacity of the batteries with 0.5 wt.% CNTs maintained 85% after discharging at 10 C rate even for 120 cycles.
    Surface modified β-Ni(OH)_2 by amorphous nanoscale carbon was prepared by the decomposition of glucose in hydrothermal condition. Electrochemical measurements show that though the carbon modification will enhance the discharging stability, the utility of β-Ni(OH)_2 dimished to 87%, which is 10% lower than the electrode without carbon modification at 0.2 C and 1 C. However, at a high discharge rate of 3 C, the carbon-modified β-Ni(OH)_2 electrodes can be discharged stably for 30 cycles without any specific capacity loss and the discharge voltage is 30 mV higher than the electrode without carbon modification. In addition, a proper mount of 6 wt.% CoO was nesessary to the carbon modified β-Ni(OH)_2 electrodes for the high-rate performance.
    Well-crystallized nanoscale α-Ni(OH)_2 with diameter of 20-30 nm and the tap density of 1.7 g/ml was synthesized through co-precipitation in alcohol-water system. Influnce of the complexing agent and the ageing procedure on the microscopic morphologies of α-Ni(OH)_2 were studied. The tap density of β/α-Ni(OH)_2 biphase powder with 10 wt.% nanoscale α-Ni(OH)_2 could get to 2.41 g/ml. Electrochemical investigation shows that the nanoscale α-Ni(OH)_2 exhibits better electrochemical activities than β-Ni(OH)_2. The discharge capacity increases and the cyclic stability is enhanced for the biphase electrodes with proper mount of α-Ni(OH)_2. The biphase electrode with 10 wt.% nanoscale α-Ni(OH)_2 has a best overall electrochemical performances. Excessive addition of nanoscale α-Ni(OH)_2 does no good to improve the performances of the biphase electrode material.
引文
[1] 镍氢电池网,http://www.ni-mh.cn/news/20070128.htm
    [2] D. Karner, J. Francfort, US Department of Energy Hybrid Electric Vehicle Battery and Fuel Economy Testing, J. Power Sources, 2006, 158 (2): 1173-1177.
    [3] M. Ahman, Government policy and the development of electric vehicles in Japan, Energy Policy, 2006, 34 (4): 433-443.
    [4] 张文保,王国庆,混合动力汽车用电化学能源系统,电池世界,2006,34(4):14-18.
    [5] J. Arai, T. Yamaki, S. Yamauchi, T. Yuasa, T. Maeshima, T. Sakai, M. Koseki and T. Horiba, Development of a high power lithium secondary battery for hybrid electric vehicles, J. Power Sources, 2005, 146 (1-2): 788-792.
    [6] 李兴虎,电动汽车概论,北京理工大学出版社,2005.
    [7] 胡骅,宋慧,电动汽车,人民交通出版社,2003.
    [8] 夏保佳,娄豫皖,朱玲,阎永恒,混合动力汽车(HEV)用镍氢电池组国内外研究进展,电池世界,2006,34(4):1-8.
    [9] K. Shinyama, Y. Magari, K. Kumagae, H. Nakamura, T. Nohma, M. Takee and K. Ishiwa, Deterioration mechanism of nickel metal-hydride batteries for hybrid electric vehicles, J. Power Sources, 2005, 141 (1): 193-197.
    [10] M. D. Eskra, P. Ralston, A. Salkind, R. F. Plivelich, Pulse power 350 V nickel-metal hydride battery power-D-005-00181, J. Power Sources, 2006, 162: 900-905.
    [11] A. Taniguchi, N. Fujioka, M. Ikoma, A. Ohta, Development of nickel/metal-hydride batteries for EVs and HEVs, J. Power Sources, 2001, 100:117-124.
    [12] S.K. Dhar, S. R. Ovshinsky, P. R. Gifford, D. A. Corrigan, M. A. Fetcenko, S. Venkatesan, Nickel/metal hydride technology for consumer and electric vehicle batteries-a review and up-date, J. Power Sources, 1997, 65: 1-7.
    [13] E. E. Havinga, J. H. N. van Vucht and K. H. J. Buschow. Effect of high pressure on the crustal structures of lanthanide trialumindes, Philips Res. Repts., 1970, 25: 255-256.
    [14] J. J. Reiily, R. H. Wiswall. Current topics in materials science, Inorg. Chem., 1974, 13: 218-222.
    [15] 大角泰章,金属氢化物的性质与应用,化学工业出版社,1990.
    [16] E. W. Justi, H. H, Ewe, A. W. Kalberlan, N. M.Saridakis, M. H. Schaefer, Electrochemical accumulation and oxiedation of hydrogen using the intermetallic compound lanthanum-nickel (LaNi_5), Energy Conversion, 1973, 10:109-113.
    [17] M. W. Earl, J. D. Dunlop, Electronics structure and surface oxidation of the haucke compounds LaNi_5, Proceedings of the 26th Power Sources Symposium, Atlantic City, NJ, 1974, 24.
    [18] J.J.g. Willems, Alloy optimizes the compromise between a high discharge, Philips J. Res, 1984, (suppl, 1), 39-40.
    [19] 雷永泉,李洲鹏,陈长聘,吴京,王启东,储氢电极材料与氢化物—镍电池的发展,材料科学与工程,1990,8(1):1-8.
    [20] R. S. Mcewen, Crystallographic studies on nickel hydroxide and the high nickel oxides, J. Phys Chem., 1971, 12: 1782-1789.
    [21] C. T.essier, P. H. Haumesser, P. Bernard, and C. Delmlas, The structure of Ni(OH)_2: form the ideral mlaterial to the electrochemically active one, J. Electrochem. Soc., 1999, 146(6), 2059-2067.
    [22] H. Bode, K. Dehmelt and J. WiRe, Zur kenntnis der nickel hydroxide elektrode-i.uber das nickel (ⅱ)-hydroxidhydrat, Electrochim. Acta, 1966, 11: 1079-1087.
    [23] P. Oliva, J. Leonardi and J. F. Laurent, M. Figlarz and F. Fievet, A. de Guibert, Review of the structure and the electrochemistry of nickel hydroxide and oxy-hydroxide, J. Power Sources, 1982, 8: 229-235.
    [24] M. S. Kim, T. S. Hwang, K. B. Kim, A study of the electrochemical redox behavior of electrochemically precipitated nickel hydroxides using electrochemical quartz crystal microbalance, J. Electrochem. Soc., 1997, 144 (5): 1537-1542.
    [25] B. E. Conway, The role of solvation, complementary to electronic effects, in specific adsorption of ions at electrodes, Solid State Ionics, 1997, 94 (1-4): 165-170.
    [26] R. Barnard, C. F. Randell, F. L. Tye, Studies concerning charged nickel hydroxide electrodes I. measurement of reversible potentias, J. Appl. Electrochem., 1980, 10: 109-125
    [27] Z. Takehara, M. Kato, S. Yoshizawa, Electrode kinetics of nickel hydroxide in alkaline solution, Electrochim. Acta, 1971, 16 (6): 833-843.
    [28] D. Tuiomi, G. J. B. Crawrord, The seeback effect in the nickel hydroxide electrode in alkaline solution, J. Electrochem. Soc., 1968, 115 (5): 450-451.
    [29] A. H. Zimmerman, P. K. Effa, Discharge kinetics of the nickel electrode, J. Eelectrochem. Soc., 1984, 131 (4): 709-711.
    [30] A. Audemer, A. Delahaye, R. Farhi, N. Sac-Epee, and J-M. Tarascon, Electrochemical and ralman studies of beta-type nickel hydroxides Ni_(1-x)Co_x(OH)_2 electrode materials, J. Electrochem. Sot., 1997, 144: 2614-2620.
    [31] J.·巴扎克,A.·艾特尔,元素镍制备氢氧化镍的方法,专利 CN95114810.9.
    [32] 孙杨,邵忠才,翟玉春,田彦文,翟秀静,氧化法制备正极材料Ni(OH)_2的试验研究,无机材料学报,1997,12(6):867-870.
    [33] D. M. Macarthur, The proten diffusion coefficient for the nickel hydroxide electrode, J. Electrochem. Soc, 1970, 117(6): 729-732.
    [34] N. R. S. Farley, S. J. Gurman, A. R. Hillman, Dynamic EXAFS study of discharging nickel hydroxide electrode with non-integer Ni valency Electrochim. Acta, 2001, 46: 3119-3127.
    [35] 陈惠,稳态α型氢氧化镍的制备、结构和电化学性能,浙江大学博士学位论文,2004.
    [36] 杨长春,李祥杰,陈鹏磊,李大平,电解法制备球形氢氧化镍工艺研究,电源技术,2000,24(5):288-291.
    [37] 敖鸣,王启东,储氢材料的研究与应用,材料导报,1992,63-67.
    [38] Y. Q. Lei, Y. Zhou, Y. C. Luo, X. G. Yang, Q, D. Wang, Preparation and electrochemical properties of unidirectionally solidified Ml(NiCoMnTi)_5 alloys, J. Alloys Comp., 1997, 253 (3): 590-593.
    [39] S.K. Dhar, M. A. Fetcenko, S. R. Ovshinsky, Advanced materials for next generation high energy and power nickel-metal hydride portable batteries, J. Power Sources, 2001, 96 (2): 325-336.
    [40] J. J. G. Willems, K. H. J. Buschow, From permanent magnets to rechargeable hydride electrodes, J. Less-Common Met., 1987, 13: 129-133.
    [41] Y. Q. Lei, S. K. Zhang, G. L. Lu, L. X. Chen, Q. D. Wang, F. Wu, Influence of the material processing on the electrochemical properties of cobalt-free Ml(NiMnAlFe)_5 alloy, J. Alloys Comp., 2002, 174: 861-865.
    [42] C. Iwakura, K. Ohkawa, H. Senoh, H. Inoue, A Co-free AB5-type hydrogen storage alloy for nickel-metal hydride batteries: LmNi_(4.0)Al_(0.3)Si_(0.1)Fe_(0.6), J. Electrochem. Soc., 2002, 28: A462-465.
    [43] F. J. Liu, S. Suda, F-treatment efect on the hydriding properties of the La-substituted AB_2 compound (Ti,Zr)(Mn,Cr,Ni)_2, J. Alloys Comp,, 1995, 231:666-669.
    [44] B. H. Liu, J. H. Jung, H. H. Lee, K. Y Lee, J. Y Lee., Improved electrochemical performance of AB_2-type metal hydride electrodes activated by the hot-charging process, J. Alloys Comp., 1996, 245: 132-141.
    [45] Q. A. Zhang, Y. Q. Lei, C. S. Wang, F. S. Wang, Q. D. Wang., Structure of the secondary phase and its efects on hydrogen-storage properties in a Ti_(0.7)Zr_(0.2)V_(0.1)Ni alloy, J. Power Sources, 1998, 11: 288-291.
    [46] M. Tsukahara, K. Takahashi, T. Mishima, T. Sakai, H. Miyamura, N. Kuriyama, I. Uehara., Metal hydride electrodes based on solid solution type alloy TiV_3Ni_x (0≤ x≤ 0.75), J. Alloys Comp., 1995, 226: 203-207.
    [47] M. Tsukahara, K. Takahashi, T. Mishima, A. Isomura, T. Sakai. Vanadium-based solid solution alloys with three-dimensional network structure for high capacity metal hydride electrodes, J. Alloys Comp., 1997, 253: 583-586.
    [48] M. Tsukahara, T. Kamiya, K. Takahashi, A. Kawabata, S. Sakurai, J. Shi, H. T. Takeshita, N. Kuriyama, T. Sakai, Hydrogen storage and electrode properties of V-Based solid solution type alloys prepared by a thermic process, J. Electrochem. Soc, 2000, 147: 2941-2944.
    [49] K. Kadir, N. Kuriyama, T. Sakai, I. Uehara, L. Eriksson, Structural investigation and hydrogen capacity of CaMg_2Ni_9: a new phase in the AB_2C_9 system isostructural with LaMg_2Ni_9, J. Alloys Comp., 1999, 287: 145-154.
    [50] J. Chen, N. Kuriyama, H. T. Takeshita, H. Tanaka, T. Sakai, M. Haruta, Hydrogen storage alloys with PuNi_3-type structure as metal hydride electrodes, Electrochem. Solid-State Lett., 2000, 307: 249-252
    [51] T. Kohno, H. Yoshida, F. Kawashima, T. Inaba, I. Sakai, M. Yamamoto, M. Kanda, Hydrogen storage properties of new ternary system alloys: La_2MgNi_9, La_5Mg_2Ni_(23), La_3MgNi_(14), J. Alloys Comp., 2000, 311: L5- L7.
    [52] R. Sjovall, The effect of Co addition on the positive active material in Ni-Cd pocket-plate batteries, J. Power Sources, 2000, 90: 153-155.
    [53] M. Oshitani, H. Yufu, K. Takashima, S. Tsuji, and Y, Matsumaru, Development of a Pasted Nickel Electrode with High Active Material Utilization. J. Electrochem. Soc, 1989, 136 (6): 1590-1593.
    [54] P. G. Russell, J. Kuklinski, Stress test evaluation of cobalt-enhanced nickel plaque electrodes, J. Power Sources, 1998, 75 (2): 261-270.
    [55] Z. R. Chang, Y. J. Zhao, Y. C. Ding, Effects of different methods of cobalt addition on the performance of nickel electrodes, J. Power Sources, 1999, 77 (1): 69-73.
    [56] Z. R. Chang, H. W. Tang, J. G. Chen, Surface modification of spherical nickel hydroxide for nickel electrodes, Electrochemistry Comm., 1999, 1 (11): 513-516.
    [57] X. Y. Wang, J. Yan, H. T. Yuan, Z. Zhou, D. Y. Song, Y. S. Zhang, L. Gg. Zhu, Surface modification and electrochemical studies of spherical nickel hydroxide, J. Power Sources, 1998,72:221-225.
    [58] X. Y Wang, J. Yan, H. T. Yuan, Y. S. Zhang, D. Y. Song, Impedance studies of nickel hydroxide microencapsulated by colbat, Inter. J. Hydrogen Energy, 1999, 24: 973-980.
    [59] D.Y. Yan, J. G. Wang, Preparation of an improved positive electrode and its application in Ni/MH batteries, J. Alloys Comp., 1999, 293: 775-779.
    [60] D. A. Corrigan, R. M. Bendert, Effect of coprecipitated metal ions on the electrochemistry of nickel hydroxide thin film: cyclic voltammetry in 1 M KOH, J. Electrochem. Soc., 1989, 136 (3): 723-727.
    [61] A. B. Yuan, S. A. Cheng, J. Q. Zhang, C. N. Cao, Effects of metallic cobalt addition on the performance of pasted nickel electrodes, J. Power Sources, 1999, 77:178-182.
    [62] M. E. Unates, M. E. Folquer, J. R. Vilche, A. J. Atria, The influence of foreign cations on the electrochemical behavior of the nickel hydroxide electrode, J. Electrochem. Soc., 1992, 139 (10): 2697-2704.
    [63] J. Chen, D. H. Bradhusst, S. X. Dou, H. K. Liu, Nickel hydroxide as an active material for the positive electrode in rechargeable alkaline batteries, J. Electrochem. Soc., 1999, 146(10):3606-3612.
    [64] C. Tessier, C. Faure, L. G. Demourgues, C. Denage, G. Nabias, C, Delmas, Electrochemical study of zinc-substituted nickel hydroxide, J. Electrochem. Soc., 2002, 149 (9): A1136-A1145.
    [65] 邹建梅,单昕,邹全忠,泡沫镍电极添加剂研究,电源技术,1998,22(4):144-147
    [66] S. I. Cordoba DE Torresi, The effect of Manganese Addition on nickel hydroxide electrode with emphasis on its electrochromic properties, Electrochim. Acta, 1995, 40 (9): 1101-1107.
    [67] T. N. Ramesh, R. S. Jayashree, P. V. Kamath, S. Rodrigues, S. K. Shukla, Effect of lightweight supports on specific discharge capacity of β-nickel hydroxide, J. Power Sources, 2002, 104: 295-298.
    [68] W. H. Zhu, J. J. Ke, H. M. Yu, A study of the electrochemistry of nickel hydroxide electrodes with various additives, J. Power Sources, 1995, 56: 75-79.
    [69] Y. C. Ding, H. Li, J. L. Yuan, Effect of dopants on electrochemical performance of nickel cathodes, J. Power Sources, 1995, 56:115-119.
    [70] O. Zhang., Y. H. Xu, X. L. Wang, G. R. He, Effect of Preparation conditions on properties of Al-substituted α-Ni(OH)_2 prepared by homogeneous precipitation, Trans. Nonferrous Met. Soc. China, 2005, 15 (3): 653-660.
    [71] Y. L. Zhao, J. M. Wang, H. Chen, T. Pan, J. Q. Zhang, C. N. Cao, Different additives-substituted α-Ni(OH)_2 hydroxide prepared by urea decomposition, Electrochim. Acta, 2004, 50: 91-98.
    [72] R. D. Armstrong, H. Wang, Behavior of nickel hydroxide electrodes after prolonged potential float, Electrochim. Acta, 1991, 36: 759-762.
    [73] R. S. Jayashree, P. V. Kamath, Factors governing th electrochemical synthesis of α-nickel (Ⅱ) hydroxide, J. Appl. Electrochem., 1999, 29: 449-454.
    [74] P. Haring, R. Kotz, Nanoscale thickness changes of nickel hydroxide films during electrochemical oxidation/duction monitored by in situatomic force microscopy, J Electroanal. Chem., 1995, 385: 273-277.
    [75] M. Dixit, P. V. Kamath, J. Gopalakrishnan, Zinc-substituted α-nickel hydroxide as an electrode material for alkaliine secondary cells, J. Electrochem. Soc., 1999, 146 (1): 79-82.
    [76] A. K. Shukla, V. G. Kumar, N. Munichandraiah, Stabilized α-ni(oh)_2 as electrode material for alkaline secondary cells, J. Electrochem. Soc., 1994, 141(11): 2956-2959.
    [77] M. Dixit, R. S. Jayashree, P. V. Kamath, A. K. Shukla, V. G. Kumaar, N. Munichandraiah, Electrochemically impregnated aluminum-stabilized α-nickel hydroxide electrodes, Electrochem. Solid-State Lett., 1999, 2 (4): 170-171.
    [78] 姜长印,万荣春,张泉荣,章金基,高密度高活性球形氢氧化镍的制备与性能控制,电源技术,1997,21(6):243-247.
    [79] 方晓,杨云霞,高密度氢氧化镍的制备研究,无机盐工业,1995,(4):6-7.
    [80] 王再殿,高活性高密度氢氧化镍的生产技术,电池,1998,28(2):70-72.
    [81] 冷拥军,张鉴清,成少安,曹楚南,高堆积密度球形氢氧化镍的制备及其理论分析,化学学报,1998,56:557-563.
    [82] D. A. Glew, A. D. Staines, A. J. Cannon, R. N. Dunlop, Electrochemical machining, European Patent, EP19920903808.
    [83] 姜长印,万荣春,张泉荣,章金基,高密度高活性球形氢氧化镍的制备与性能控制,电源技术,1997,21(6):243-247,266.
    [84] 杨长春,郭彩峰,石秋芝,张雪盈,王冠,氢氧化镍化成产物的XRD研究,郑州大学学报(理学版),2005,37(2):77-80.
    [85] 王再殿,高活性高密度氢氧化镍的生产技术,电池,1998,28(2):70-72.
    [86] Z. R. Chang, G. G. Li, J. Yu, J. G. Chen, Y. C. Ding, Influence of preparation conditions of spherical nickel hydroxide on its electrochemical properties, J. Power Sources, 1998, 74: 252-254.
    [87] D. E. Reisner, T. D. Xiao, P R. Strutt, A. J. Salkind, Nanostructured materials for energy storage and energy conversion devices, Energy Conversion Engineering Conference, Proceedings of the 32nd Intersociety, 1997, 2:1311-1316.
    [88] 赵力,周德瑞,张翠芬,纳米氢氧化镍的研制及其电化学性能,化学通报,2001,(8):513-515.
    [89] X. H. Liu, L. Yu, Synthesia of nanosized nickel hydroxide by solid-state reaction at room temperature, Mater. Lett., 2004, 58: 1327-1330.
    [90] X. J, Han, P. Xu, C. Q. Xu, L. Zhao, Z. B. Mo, T. Liu, Study of the effects of nanometer β-Ni(OH)_2 in nickel hydroxide electrodes, Electrochim. Acta, 2005, 50: 2763-2769.
    [91] F. Feng, D. O. Northwood, Effect of surface modification on the performance of negative electrodes in Ni/MH batteries, Inter. J. Hydrogen Energy, 2004, 29: 955-960.
    [92] M. A. Fetcenko, S. R. Ovshinsky, B. Reichman, K. Young, C. Fierro, J. Koch, A. Zallen, W. Mays, T. Ouchi, Recent advances in NiMH battery technology, J. Power Sources, 2007, 165: 544-551.
    [93] R. Markolf, D. Ohms, G. Muller, C. Schulz, J. Harmel and K. Wiesener, Investigations into a battery management for high power nickel metal hydride batteries, J. Power Sources, 2006, 154 (2): 539-544.
    [94] A. Ciszewski, B. Rydzyfiska, Studies on self-assembly phenomena of hydrophilization of microporous polypropylene membrane by acetone aldol condensation products New separator for high-power alkaline batteries, J. Power Sources, 2007, 166 (2): 526-530.
    [95] R. F. Nelson, High-power batteries for the new 36/42 V automotive systems, J. Power Sources, 2002, 107: 226-239.
    [96] L. L. Guenne, P. Bernard, Life duration of Ni/MH cells for high power application, J. Power Sources, 2002, 105: 134-138.
    [97] D. Ohms, M. Kohlhase, G. Benczur-Urmossy, G. schadlich, New development on high power on alkaline batteries for industrial applications, J. Power Sources, 2002, 105: 127-133.
    [98] M. L. Soria, J. Chacon, J. C. Hernandez, D. Moreno, A. Ojeda, Nickel metal hydride batteries for high power applications, J. Power Sources, 2001, 96: 68-75.
    [99] X. M. He, J. J. Li, H. W. Cheng, C. Y. Jiang, C. R. Wan, Controlled crystallization and granulation of nano-scale β-Ni(OH)_2 cathode materials for high power Ni-MH batteries, J. Power Sources, 2005, 152: 285-290.
    [100] X. M. He, W. H. Pu, H. W Cheng, C. Y. Jiang, C. R Wan, Granulation of nano-scale Ni(OH)_2 cathode materials for high power Ni-MH batteries, Energy Conversion and Management, 2006, 47:1879-1883.
    [101] T. Sakai, I. Uehara, H. Ishikawa, R&D on metal hydride materials and Ni-MH batteries in Japan, J. Alloys Comp., 1999, 293-295: 762-769.
    [102] H. Karami, M. F. Mousavi, M. Shamsipur, A novel dry bipolar rechargeable battery based on polyaniline, J. Power Sources, 2003, 124: 303-308.
    [103] K. Wiesener, D. Ohms, G. Benczur-Urmossy, M. Berthold, F. Haschka, High power metal hydride bipolar battery, J. Power Sources, 1999, 84: 248-258.
    [104] D. Ohms, M. Kohlhase, G. Benczur-Urmossy,, G. Schaedich, K. Wiesener, J. Harmel, Alkaline high power batteries in a bipolar stack desigh, J. Power Sources, 2001, 96: 76-84.
    [105] D. Ohms, M. Kohlhase, G. Benczur-Urmossy, K. Wiesener, J. Harmel, High performance nickel-metal hydride battery in bipolar design, J. Power Sources, 2002, 105:120-126.
    [106] M. Klein, M. Eskra R. Plivelich, A. J. Salkind, J. Ockerman, Performance and electrochemical characterization studies of advanced high-power bipolar nickel/metal hydride batteries, J. Power Sources, 2004, 136:317-321.
    [107] 邓超,史鹏飞,密封双极性MH/Ni电池结构改进与研制,化工学报,2005,56(2):342-345.
    [108] 邓超,史鹏飞,双极性MH/Ni电池结构改进研究进展,电池,2004,34(6):451-452.
    [109] 邓超,史鹏飞,程新群,黄兵,新型双极性MH/Ni电池的研制,电池,2004,34(1):16-18.
    [110] C. Fierro, A. Zallen, J. Koch, M. A. Fetcenko, he influence of nickel-hydroxide composition and microstructure on the high-temperature performance of nickel metal hydride batteries, J. Electrochem. Soc., 2006, 153 (3): A492-A496.
    [111] X. M. He, J. G. Ren, W. Li, C. Y. Jiang, C. R. Wan, Ca_3(PO_4)_2 coating of spherical Ni(OH)_2 cathode materials for Ni-MH batteries at elevated temperature, Electrochim. Acta, 2006, 51 (21): 4533-4536.
    [112] X. M. He, L. Wang, W. Li, C. Y. Jiang, C. R. Wan, Ytterbium coating of spherical Ni(OH)_2 cathode materials for Ni-MH batteries at elevated temperature J. Power Sources, 2006, 158 (2): 1480-1483.
    [113] X. Mi, X. P. Gao, C. Y. Jiang, M. M. Geng, J. Yan, C. R. Wan, High temperature performances of yttrium-doped spherical nickel hydroxide, Electrochim. Acta, 2004, 49: 3361-3366.
    [114] M. Oshitani, M. Watada, K. Shodai, M. Kodama, Effect of lanthanide oxide additives on the high-temperature charge acceptance characteristics of pasted nickel electrodes, J. Electrochem. Soc., 2001, 148(1): A67-A73.
    [115] K. Shinyama, Y. Magari, A. Funahashi, Improvement of high-temperature characteristics of the sintered nickel positive electrode for an alkaline storage battery, Electrochemistry, 2003, 71 (8): 686-690.
    [116] J. K. Erbacher, An environmental aircraft battery (EAB), J. Power Sources, 1999, 80: 265-271.
    [117] A. Ayeb, W. M. Otten, A. J. G. Mank, P. H. L Notten, The hydrogen evolution and oxidation kinetics during overdischarging of sealed nickel-metal hydride batteries, J. Electrochem. Soc, 2006,153 (11): A2055-2065.
    [118] J. S. Ye, F. S. Sheu, Functionalization of CNTs: New routes towards the development of novel electrochemical sensors, Current Nanoscience, 2006, 2 (4): 319-327.
    [119]Y. H. Lin, W. Yantasee, J. Wang, Carbon nanotubes (CNTs) for the development of electrochemical biosensors, Frontiers in Bioscience, 2005, 10: 492-505.
    [120] P. Calvert, Nanotube composites: a recipe for strength, Nature, 1999, 399: 210-321.
    [121] M. M. J. Treacy, T. W. Obbesen, J. M. Gibson, Exceptionality high Young's modulus observed for individual carbon nanotubes, Nature, 1996,381: 678-680.
    [122] A. Krishna, E. Dujardin, T. E. Ebbesen, P. N.Yianilos, M. M. Jtreacy, Young's modulus of single-walled nanotubes, Phy. Rev. Lett., 1998, 58: 14013-14019.
    [123] J. P. Salvetat, J. M.Bonard, N. H. Thomson, A. J. KuliK, L. Forro, W. Benoit, L Zuppiroli, Mechanical properties of carbon nanotubes, Appl. Phys. A, 1999, 69: 255 -260.
    [124] J. P Salvetat, G Andrew, D. Briggs, J. M. Bonard, R. R. Bacsa, A. J. Kulik, T. Stockli, N. A. Burnham, L. Forro, Elastic and shear modulus of single-walled carbon nanotube ropes, Phys. Rev. Lett., 1999, 82: 944-947.
    [125] M. Nardelli, B. I. Yakobson, J. Bernhotc, Mechanism of strain release in carbon nanotubes, Phys. Rev. Lett., 1998, 57: 4277-4279.
    [126] T. Kim, Y. H. Mo, K. S. Nahm, Carbon nanotubes (CNTs) as a buffer layer in silicon/CNTs composite electrodes for lithium secondary batteries, J. Power Sources, 2006, 162(2): 1275-1281.
    [127] Q. Wang, H. Li, L. Q. Chen, Investigation of lithium storage in bamboo-like CNTs by HRTEM, J. Electrochem. Soc, 2003, 150 (9): A1281-A1286.
    [128] Y. Y. Shao, G. P. Yin, Y. Z. Gao, Durability study of Pt/C and Pt/CNTs catalysts under simulated PEM fuel cell conditions, J. Electrochem. Soc, 2006,153 (6): A1093-A1097.
    [129]Y. Y. Shao, G P. Yin, Y. Z. Gao, Study of the electrochemical stability of Pt/C and Pt/CNTs electrodes, Acta Chimica Sinica, 2006, 64 (16): 1752-1756.
    [130]E. Raymundo-Pinero, V. Khomenko, E. Frackowiak, Performance of manganese oxide/CNTs composites as electrode materials for electrochemical capacitors, J. Electrochem. Soc, 2005, 152(1): A229-A235.
    [131]X. F. Wang, D. B. Ruan, Z. You, Application of spherical Ni(OH)_2/CNTs composite electrode in FP asymmetric supercapacitor, Trans. Nonferrous Metals Soc. China, 2006, 16 (5): 1129-1134.
    [132] X. M. Sun, Y. D. Li, Colloidal carbon spheres and their core/shell structures with noble-metal anoparticles, Angewandte Chemie, 2004, 43: 597-601.
    [133] Q. Wang, H. Li, L. Q. Chen, X. J. Huang, Monodispersed hard carbon spherules with uniform nanopores, Carbon, 2001, 39:2211-2214.
    [134] Q. Wang, H. Li, L. Q. Chen, X. J. Huang, Novel spherical microporous carbon as anode material for Li-ion batteries, Solid State Ionics, 2002, 152-153: 43-50.
    [135] 董成勇,湛菁,张传福,邬建辉,纳米CoO粉的制备方法及其应用,硬质合金,2005,22(2):117-120.
    [136] A. H. Hermann, P. A. Ramakrishnan, V. Badri, P. Mardilovich, W. Landuyt, Metal hydride batteries research using nanostructured additives, Inter. J. Hydrogen Energy, 2001, 26: 295-1299.
    [137] W. K. Hu, X. P. Gao, M. M. Geng, Z. X. Gong, D. Noreus, Synthesis of CoOOH Nanorods and application as coating materials of nickel hydroxide for high temperature Ni-MH cells, J. Phys. Chem. B, 2005, 109: 5392-5394.
    [138] 关荐伊,赵元,侯士法,CoO纳米粒子的制备及催化性能初探,河北师范大学学报(自然科学版),1999,23(1):90-93.
    [139] 李荻,电化学原理,北京航空航天大学出版社,1999.
    [140] E. Jankowska, M. Jurczyk, Electrochemical properties of sealed Ni-MH batteries using nanocrystalline TiFe-type anodes, J. Alloys Comp., 2004, 372 (1-2): L9-L12.
    [141] L. Li, F. Wu, K. Yang, Degradation behavior of electrochemical performance of sealed-type nickel/metal hydride batteries, J. Rare Earth, 2003, 21 (3): 341-346.
    [142] K. Yuasa, M. Ikoma, Improvement of basic performances of a nickel-metal hydride battery, Research on Chemical Intermediates, 2006, 32 (5-6): 461-471.
    [143] S. M. Lee, J. G. Park, S. C. Han, P.S. Lee, J. Y. Lee, Ni/MH rechargeable battery with Zr-based hydrogen storage alloy electrode modified by high surface area of Ni powder-Inner cell pressure characteristics, J. Electrochem. Soc., 149 (10): A1278-A1281.
    [144] H. J. Chuang, S. Y. Chen, S. L. I. Chan, Corrosion and hydrogen damage resistance of stainless steel in Ni/MH batteries, Corrosion Science, 1999, 41: 1347-1358.
    [145] K. Shinyama, Y. Harada, R. Maeda, H. Nakamura, S. Matsuta, T. Nohma, I. Yonezu, Suppression mechanism of the self-discharge reaction in nickel-metal hydride batteries using a sulfonated polyolefin separator, Research on Chemical Intermediates, 2006, 32 (5-6): 453-459.
    [146] P. Elumalai, H. N. Vasan, N. Munichandraiah, Electrochemical studies of cobalt hydroxide- an additive for nickel electrodes, J. Power Sources, 2001,93: 201-208.
    [147] F. Lichtenberg, K. Kleinsorgen, Stability enhancement of the CoOOH conductive network of nickel hydroxide electrodes, J. Power Sources, 1996, 62(2):207-211.
    [148] L. C. Mao, Z. Q. Shan, S. H. Yin, B. Liu, F. Wu, Effect of cobalt powder on the inner pressure of Ni/MH batteries, J. Alloy Comp., 1999, 293-295: 825-828.
    [149] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, R. E. Smalley, C60: Buckminister- fullerene, Nature, 1985, 318:162-163.
    
    [150] S. Iijima, Helical micro-tubules of graphitic carbon, Nature, 1991, 354: 56-58.
    [151] S. Iijima,T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature, 1993, 363: 603-605.
    [152] A. Thess, R. Lee, P. Nikolaev, H. Dal, P. Petit, J. Robert, C. Xu, Y. H. Lee, S G Kim, A. G Rinzler, D. T. Collbert, G Scuseria, D. Tomanek, J.E. Fischer, R. E. Smalley, Crystalline ropes of metallic carbon nanotubes, Science, 1996, 273: 483-487.
    [153]C. Joumet, W. K. Master, P. Bernier, A. Loiseau, M. Lamy, D. L. Chapelle, S. Lefrant, P. Deniard, R. Lee, J. Fischer, Large scale production of single wall carbon fnanotube by the electric arc technique, Nature, 1997, 388: 756-758.
    [154] H. M Cheng, F. Li, G. Su, H. Y Pan, L .L. He, X. Sun, M. S. Dresselhaus, Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons, Appl. Phys. Lett., 1998, 72: 3282-3284.
    [155] X. Y. Tao, X. B. Zhang, J.P. Cheng, Morphology-controllable CVD synthesis of carbon nanomaterials on an alkali-element-doped Cu catalyst, Chem. Vapor Depos., 2006, 12 (6): 353-356
    [156] X. Y. Tao, X. B. Zhang, F. Y. Sun, Large-scale CVD synthesis of nitrogen-doped multi-walled carbon nanotubes with controllable nitrogen content on a Co_xMg_(1-x)MoO_4 catalyst, Diamond and Related Materials, 2007, 16 (3): 425-430.
    [157]曹楚南,张鉴清,电化学阻抗谱导论, 北京科学出版社. 2002.
    [158]C. Z. Yu, G J. Yan, W. H. Lai, Q. H. Dong, A study of the main factors affecting Ni-MH battery activation, J. Alloys Comp., 1999, 293-295: 799-803.
    [159]M. Dixit, P. V. Kamath, J. Gopalakrishnan, Zinc-substituted α-nickel hydroxide as an electrode material for alkaline secondary cells, J. Electrochem. Soc. 1999, 146 (1): 79-82.
    [160] A. K. Shukla, V. G. Kumar, N. Munichandraiah, Stabilized α-Ni(OH)-2 as electrode material for alkaline secondary cells, J. Electrochem. Soc, 1994, 141(11): 2956-2959.
    [161]M. Dixit, R. S. Jayashree, P. V. Kamath, A. K. Shukla, V. G. Kumaar, N. Munichandraiah, Electrochemically impregnated aluminum-stabilized α-nickel hydroxide electrodes, Electrochem. Solid-State Lett, 1999, 2 (4): 170-171.
    [162] H. B. Liu, T. L. Yuan, Y. S. Zhang, Z. X. Zhou, D. Y. Song, Cyclic voltammetric of stabilized α-nickel hydroxide electrode, J. Power. Sources, 1999, 79: 277-280.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700