软化学合成工艺对La-Mg储氢合金前驱体微结构的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
70年代席卷全球的石油危机促使各国开始寻求新型的、来源充足的能源。氢能作为一种来源丰富、清洁、高能量密度的能源,引起了人们的关注。1970年荷兰菲利普实验室发现LaNi5材料具有可逆吸放氢的特性,储氢体积密度高于液氢,安全性能很高;他们还指出储氢材料具有广阔的发展前景,从而引起全球储氢材料的研究浪潮。软化学方法在合成储氢材料的应用取得了很大的发展。采用软化学合成的储氢材料具有成分均匀、纯度高、颗粒尺寸小、动力学性能好、催化性能好等优点。
     本文采用软化学方法合成了La-Mg储氢合金前驱体,并对其结构进行了表征。以硝酸镧和硝酸镁为原料,柠檬酸为络合剂,络合反应制得干凝胶,讨论了柠檬酸的用量对干凝胶的影响和焙烧温度对产物结构的影响,利用红外光谱、热重/差热分析、X射线衍射、扫描电镜和透射电镜对干凝胶和产物进行研究;结果表明,随着柠檬酸与金属离子的摩尔比由1:1上升到1.5:1,得到的干凝胶中羧酸盐的量随着增加。当比值为2:1时,干凝胶中羧酸盐的值增加到最大。分析表明:在溶液中柠檬酸的羧基易电离,脱氢后的羟基氧容易与金属离子形成稳定络合物(-O-M-),这些络合物之间连接起来构成三维聚合物框架,生成羧酸盐。随着柠檬酸含量的增加,络合金属离子的羧基的量也增加,从而使溶液中金属离子有更多机会被络合,导致干凝胶中羧酸盐的含量也随着增加。根据干凝胶的TG/DTA曲线制定出合适的热处理方式,在850℃以下焙烧产物有杂相,在950℃焙烧产物较纯;而且随着焙烧温度的升高,产物的结晶性能升高。XRD分析表明,产物为La_2O_3和MgO两相混合物。
     本文还系统的研究了溶液初始pH值对产物的影响。在pH值为0.5和1.48的酸性条件下,柠檬酸的多级电离受到抑制,柠檬酸中部分羧基没有电离;电离的羧基络合金属离子生成羧酸盐,红外光谱可以检测到未反应的羧基存在,络合效率低。在碱性条件,柠檬酸的电离加强,所有羧基全部电离,参与反应生成羧酸盐。pH值为0.5和1.48的酸性条件下,合成的干凝胶中没有形成作为燃烧助剂的NH_4NO_3,在焙烧时发生局部燃烧,燃烧时间长,使初期合成的颗粒有较长时间长大,产物粒径大小不均匀。而pH值为8.0和9.0的碱性条件下合成干凝胶由于在调节pH值时滴加了大量的氨水(NH_3·H_2O)使干凝胶中含有大量的NH_4NO_3作为燃烧助剂,干凝胶在焙烧时剧烈燃烧,燃烧时间短,形成的颗粒细小、粒径均匀。在pH值为8.0时,合成的产物粒径约30nm.
Sweeping through the world in the1970s oil crisis prompted countries beganto seek new and sufficient energy. Hydrogen as a rich source of high energydensity,clean energy,would have to cause the attention. Phillips Laboratory of theNetherlands found that the LaNi5materials with reversible characteristics ofabsorption and release hydrogen in1970, and have high safety performance. Theyalso noted that the hydrogen storage materials have broad prospects fordevelopment,which cause lots of people to research on them. Soft chemicalsynthesis method has achieved great develop in prepareding hydrogen storagematerials.Soft chemical routes have been reported to prepare alloys with goodhomogeneity, high purity and sub-micron size particles, which are importantfactors for high hydrogen storgen capacity
     In this article, soft chemical is adopted to synthesis La-Mg hydrogen storagealloys precursor and its structures were characterized.Nano precursor powders wereprepared by the sol-gel method using lanthanum nitrate (La(NO_3)3·6H_2O) analyticalgrade) and magnesium nitrate (Mg(NO_3)_2·6H_2O analytical grade) as startingmaterials, distilled water as solvent and citric acid (C6H8O7·H_2O) as chelatingagent.The effect of amount of citric acid and calcination temperature onmicrostructure of the nano precursors of La-Mg hydrogen storage alloy had beenstudied by Infrared Radiation (IR),thermogravimetric and differential thermalanalysis (TG/DTA), X-ray diffraction analyzer (XRD) and Transmission electronmicroscopy (TEM);The results shows the molar ratio of citric acid to metal cationsincreases from1to1.5, the amount of citrate increases correspondingly, when themolar ration increases to2.0, the amount of citrate goes up to maximum. Hydrogenof hydroxyl in carboxyl is easy to run away, the COO-can form stable chelates(-O-M-)with metal cations. The chelates can easily form citrate which is of threedimensional skeleton structure.With the increase the quantity of carboxyl groups,much more carboxyl groups are used to complex metal cations and then form citrate,so the quality of citrate is increase.TG/DTA results show that with increase ofcalcination temperature the amount of impurity phase, La(OH)_3, decreasesmarkedly. There is the presence of impurity phase, La(OH)3, calcinated at750℃and850℃. When calcinate at950℃, impurity phase disappear and only La2O3andMgO two-phase mixture present and the nano powders with good crystallization.
     The effect of pH value on microstructure of the nano precursors of La-Mghydrogen storage alloy had also been studied. At the pH value of0.5and1.48, themulti-stage ionization of citric acid are restrained, which result that carboxyl groups complex metal cations insufficiently. In basic solution, the ionization ofcitric acid will be accelerated and the ability of citric acid complexing metalcations will be improved. At the pH value of0.5and1.48,the gel is preparedwithout the addition of ammonia or NH_4NO_3as fuel for self propagating, whichresult in local burning and longer combustion, the combustion takes place with lowrate of the flame propagation, which caused the longer combustion time and thegrain initial synthesized have long time to grow up then the non-uniform particlesize are formed. At the pH value of8.0and9.0,the grain synthesised instantly andhad no time to grow up because of the gel combustion rapidly. The average particlesize of powders is about30nm at the pH of8.0.
引文
[1]蓝亭.储氢合金的种类及制取方法[J].现代机械,2004,4,63-65
    [2]严少平.贮氢材料及其纳米化[J].现代物理知识,2007,13(6)15-17
    [3]孙俊才,季世军.储氢合金及其在交通运输上的应用[J].大连海事大学学报,2001,27(4):78-82
    [4]郑青榕,顾安忠,储氢技术的新进展[J].新能源,2000,32(12):120-127
    [5] R.Balasubramaniam, M.N.Mungole, K.N.Rai, Hydriding properties of MmNi5system with aluminium, manganese and tin substitutions[J]. Journal of Alloysand Compounds,1993,196:63-70
    [6] S.Marcel, T.Manabu, K.Yoshiyuki, Theoretical study of phase stability in LaNi5,LaCo5alloys[J]. Journal of Alloys and Compounds,1997,248:90-97
    [7]冯治库,杨宏秀,焦玉琏等,稀土储氢材料研究的进展[J].稀有金属材料与工程,1990(1):59-70
    [8] R.Balasubramaniam, M.N.Mungole, K.N.Rai, Solution thermodynamics ofhydrogen in the mischmetal-Niδsystem with aluminium, manganese and tinsubstitutions[J]. Journal of Alloys and Compounds,1993,196:259-271
    [9] K.C. Hoffman, J.J. Reilly, F.J. Salzano et al. Metal hydride storage for mobileand stationary applications [J]. International Journal of Hydrogen Energy,1976,1(2):133-151
    [10] Tang Weizhong, Sun Guangfei, Electrode stability of La Ni Mnhydride-forming materials prepared by conventional and rapid quenchingtechniques[J]. Journal of Alloys and Compounds,1994,203:195-198
    [11] D.M.Kim, S.W.Jeon, J.Y.Lee, A study of the development of a high capacityand high performance Zr–Ti–Mn–V–Ni hydrogen storage alloy for Ni–MHrechargeable batteries[J]. Journal of Alloys and Compounds,1998,279:209-214
    [12] S.M.Lee, H.Lee, J.H.Kim, et al, A study on the development ofhypo-stoichiometric Zr-based hydrogen storage alloys with ultra-high capacityfor anode material of Ni/MH secondary battery[J]. Journal of Alloys andCompounds,2000,308:259-268
    [13] S.K.Zhang, Q.D.Wang, Y.Q.Lei, et al The phase structure and electrochemicalproperties of the melt-spun alloy Zr0.7Ti0.3Mn0.4V0.4Ni1.2[J]. Journal of Alloysand Compounds,2001,330-332:855-860
    [14] Q.M.Yang, M.Ciureanu, D.H.Ryan, et al. Composite hydride electrodematerials[J]. Journal of Alloys and Compounds,1998,274:266-273
    [15] Yi Yang, Cindy Tran, Valerie Leppert, et al. From Ga(NO3)3tonanocrystalline GaN: confined nanocrystal synthesis in silica xerogels[J].Materials Letters,2000,43:240-243
    [16] E.Jankowska, M.Makowieck, M.Jurczyka Nickel–metal hydride battery usingnanocrystalline TiFe-type hydrogen storage alloys[J]. Journal of Alloys andCompounds,2005,404-406:691-693
    [17] C. Rongeat, L. Rouéi, On the cycle life improvement of amorphousMgNi-based alloy for Ni–MH batteries[J]. Journal of Alloys and Compounds,2005,404-406:679-681
    [18] K.Kadir, T.Sakai, L.Uahara, Synthesis and structure determination of a newseries of hydrogen storage alloys; RMg2Ni9(R=La, Ce, Pr, Nd, Sm and Gd)built from MgNi2Laves-type layers alternating with AB5layers[J]. Journal ofAlloys and Compounds,1997,257:115-127
    [19] K.Kadir, N.Nuriyama, T.Sakai, et al, Structural investigation and hydrogencapacity of CaMg2Ni9: a new phase in the AB2C9system isostructural withLaMg2Ni9[J]. Journal of Alloys and Compounds.1999,284:145-154
    [20] K.Kadir, T.Sakai, I.Uehara, Structural investigation and hydrogen capacity ofYMg2Ni9and (Y0.5Ca0.5)(MgCa)Ni9: new phases in the AB2C9systemisostructural with LaMg2Ni9[J]. Journal of Alloys and Compounds.1999,287:264-270
    [21] K.Kadir, T.Sakai, I.Uehara. Structural investigation and hydrogen storagecapacity of LaMg2Ni9and (La0.65Ca0.35)(Mg1.32Ca0.68)Ni9of the AB2C9typestructure[J]. Journal of Alloys and Compounds.2000,302:112-117
    [22]朱云峰,李锐,高明霞等.超化学计量比Ti-Zr-V-Mn-Cr-Ni储氢电极合金相结构及电化学性能研究[J].金属学报2003,39:666
    [23] H.G.Pan, Y.F.Liu, M.X.Gao, et al, Function of cobalt in the new typerare-earth Mg-based hydrogen storage electrode alloys[J]. Intermetallics.2005,13:770-777
    [24] Kohno T, Yoshida H, Kawashima F, et al, Hydrogen storage properties of newternary system alloys: La2MgNi9, La5Mg2Ni23, La3MgNi14[J]. Journal ofAlloys and Compounds.2000,311: L5-L7
    [25] B.Liao, Y.Q.Lei, L.X.Chen et al, Effect of Co substitution for Ni on thestructural and electrochemical properties of La2Mg(Ni1xCox)9(x=0.1–0.5)hydrogen storage electrode alloys[J]. Electrochimica Acta,2004,50(4):1057-1063
    [26] B.Liao, Y.Q.Lei, L.X.Chen, et al, The effect of Al substitution for Ni on thestructure and electrochemical properties of AB3-typeLa2Mg(Ni1xAlx)9(x=0–0.05) alloys[J]. Journal of Alloys and Compounds.2005,404-406:665-668
    [27] B.Liao, Y.Q.Lei, L.X.Chen, et al, The structural and electrochemicalproperties of La2Mg(Ni0.8xCo0.2Alx)9(x=0–0.03) hydrogen storage electrodealloys[J]. Journal of Alloys and Compounds.2006,415:239-243
    [28] B.Liao, Y.Q.Lei, L.X.Chen, et al, A study on the structure and electrochemicalproperties of La2Mg(Ni0.95M0.05)9(M=Co, Mn, Fe, Al, Cu, Sn) hydrogenstorage electrode alloys[J].Journal of Alloys and Compounds,2004,376:186-195
    [29] C.Y.Seo, J.H.Kim, P.S.Lee, et al. Hydrogen storage properties ofvanadium-based b.c.c. solid solution metal hydrides [J]. Journal of Alloys andCompounds.2003,348:252-257
    [30] V.E.Antonov, T.E,Antonova, M.Baier,et al, On the isomorphous phasetransformation in the solid f.c.c. solutions Co H at high pressures[J]. Journalof Alloys and Compounds.1996,239:198-202
    [31] M.Mitov, A.Popov, I.Dragieva, Possibilities for battery application ofCoxByHz colloid particles[J]. Colloids and Surfaces,1999,149(1-3):413-419
    [32] Y.Liu, Y.J.Wang, L.L.Xiao, et al, Structure and electrochemical hydrogenstorage behaviors of alloy Co2B[J]. Electrochemistry Communications,2007,9(5):925-929
    [33] K.Sapru, B.Reichman, A.Reger, SR.Ovshinsky, US Patent4623597,1986
    [34] N.Cui, P.He, J.L.LuO, Synthesis and characterization of nanocrystallinemagnesium-based hydrogen storage alloy electrode materials[J].Electrochimica Acta,1999,44(20):3549-3558
    [35] H.T.Yuan, R.Cao, L.B.Wang, et al, Characteristic of a new Mg–Ni hydrogenstorage system: Mg2xNi1yTixMny(0    [36] J.V. Florio, W.D. Robertson. Chlorine reactions on the Si (111) surface[J].Surface Science.1969,18(2):398-427
    [37] B.Darriet, M.Pezat, A.Hbika, et al. Application of magnesium rich rare-earthalloys to hydrogen storage[J]. International Journal of Hydrogen energy.1980,5:173-178
    [38] M.Y. Song, B. Darriet, M. Pezat, et al. Dehydriding kinetics of amechanically alloyed mixture with a composition Mg2Ni[J]. InternationalJournal of Hydrogen Energy.1987,12(1):27-30
    [39] M. Pezat, B. Darriet, P. Hagenmuller. A comparative study of magnesium-richrare-earth-based alloys for hydrogen storage[J]. Journal of the Less CommonMetals.1980,74(2):427-434
    [40] Kuhu.Pal. Synthesis characterization and dehydriding behavior of theintermetallic compound LaMg12[J]. International Journal of Hydrogen energy.1997,22(8):799-804
    [41] D.L.Sun, F.Gingl, Y.Nakamura et al, In situ X-ray diffraction study ofhydrogen-induced phase decomposition in LaMg12and La2Mg17[J]. Journal ofAlloys and Compounds,2002,333(1-2):103-108
    [42] J-L Bobeta, B Chevaliera, M.Y Songb et al, Hydrogen sorption of Mg-basedmixtures elaborated by reactive mechanical grinding[J]. Journal of Alloys andCompounds,2002,336(1-2):292-296
    [43] Kuhu Pal. A note on the synthesis, characterization and dehydriding behaviorofLa2xCaxMg17[J]. International Journal of Hydrogen Energy,1999,24(6):537-541
    [44] M.Y. Song, E.I. Ivanov, B. Darriet et al, Hydriding properties of amechanically alloyed mixture with a composition Mg2Ni[J]. InternationalJournal of Hydrogen Energy,1985,10(3):169-178.
    [45] Pezat M, Darriet B, Hagenmuller P.A comparative study of magnesium-richrare-earth-base alloys for hydrogen storage[J]. Journal of the Less CommonMetals,1980,74(2):427-434.
    [46] Dutta K, Srivastava O N, Investigation on synthesis, characterization andhydrogenation behavior of the La2Mg17intermetallic[J]. Journal of HydrogenEnergy,1990,15(9):341-344
    [47] Dalin Sun, H. Enoki, M. Bououdina et al, Phase components and hydridingproperties of the sintered Mg–xwt.%LaNi5(x=20–50) composites[J]. Journalof Alloys and Compounds,1999,282(1-2):252-257
    [48] Nohara S, Fujita N, Zhang S G, et al. Electrochemical characteristics of ahomogeneous amorphous alloy prepared by ball-milling Mg2Ni with Ni[J].Journal of Alloys and Compounds,1998,267(1-2):76-78.
    [49] Lee H Y, Goo N H, Jeong W T, et al.The surface state of nanocrystalline andamorphous Mg2Ni alloys prepared by mechanical alloying[J]. Journal ofAlloys and Compounds,2002,313(1-2):258-262
    [50]刘玉萍,柴志刚,吴耀明等. TiFe储氢合金的电化学性能研究[J].稀有金属,2001,25(6):444-447.
    [51] S.Orimo, H.Fujii, Appl Phys A,2001;72:167
    [52] L.Z.Ouyang, C.Y.Chung, H.Wang and M.Zhu, Microstructure of Mg-Ni thinfilm prepared by direct current magnetronsputtering and its properties as anegative electrode[J].Vac.Sci.Technol.A,2003,21(6):1905-1908
    [53] H.YLee, N.H.Goo, W.T.Jeong, et al,The surface state of nanocrystalline andamorphous Mg2Ni alloys prepared by mechanical alloying[J]. Journal ofAlloys and Compounds.2003,313:258-262
    [54] C.Iwakura, S.Nohara, S.G.Zhang, et al. Hydriding and dehydridingcharacteristics of an amorphous Mg2Ni-Ni composite[J]. Journal of Alloys andCompunds.1999,285:246-249
    [55] Y.Q.Lei, Y.Zhou, Y.C.Luo, et al, Preparation and electrochemical propertiesof unidirectionally solidified Ml(NiCoMnTi)5alloys[J]. Journal of Alloys andCompunds.1997,253-254:590
    [56]张静娴,唐晓鸣,刘应亮,陈文新. LaNi5系储氢合金的软化学合成及其电化学性能研究[J].无机化学学报,2002,2(2):181-184
    [57]刘胜峰,吕俊芳,林建华等. LaNi5类合金的软化学合金[J].化学通报,2000(10):34-35
    [58]樊星,韩选利,齐白羽.化学法制备LaMg2Ni9-x-y-zCoxMnyCuz系列储氢合金及电化学性能研究[J].化学工程与装备,2010,1:18-21
    [59]贡长生,张克立.绿色化学化工实用技术[M].北京:化学工业出版社,2001.
    [60]齐西伟,周济.纳米晶材料的软化学制备技术[J].电子元件与材料,2002,21(7):27-31
    [61]干福熹.无机非金属材料的发展[J].硅酸盐通报,1995,14(4):1-17
    [62]宋秀芹,马建峰.无机非金属材料的软化学合成[J].硅酸盐通报,1996,15(6):57-60
    [63]郭琳琳.无机合成化学中的硬化学和软化学[J].沧州师范专科学校学报,2010.26(3):91-94
    [64]翟彦青,刘源,王丽.柠檬酸络合法制备铈锆氧化物固溶体及其表征[J].内蒙古工业大学学报,2001,20(3):161-165
    [65]李景新,温兆银,许晓熊等.柠檬酸络合法制备La0.56Li0.33TiO3锂离子导电材料[J].无机材料学报。,2007,22(3):432-436
    [66]邓一兰,廖运文,王怀平等.溶胶-凝胶法制备0.94(K0.5Na0.5)NbO3-0.06LiNbO3陶瓷粉体[J].西华师范大学学报.2008,29:356-359
    [67]冯旺军,张爽,锅庆江等. pH值对YBCO纳米粉末制备工艺及性能的影响[J].低温与超导,2009,37:28-30
    [68]许前丰,严有为.前驱体溶液配比及pH值对凝胶燃烧合成纳米MgO颗粒的影响[J].功能材料.2006,37:392-394
    [69]栾伟玲,高濂,郭景坤. pH值对BaTiO3纳米粉体性能的影响[J].无机材料学报,1999,14(2):287-290

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700