可见光型复合催化剂的合成及其光催化性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文通过对复合型光催化剂的研究,成功合成了四种可见光型复合催化剂。以亚甲基蓝溶液的脱色研究了复合催化剂的催化性能,探讨了掺杂量、热处理条件以及光源对催化性能的影响,并运用TEM、XRD、UV-Vis等测试技术对复合催化剂的结构进行了表征。
     本论文主要由以下三个方面组成:
     1.用沉淀法制备了一系列不同Sn4+掺杂量的纳米ZnO光催化剂。结果表明:采用沉淀法制备的Sn4+/ZnO纳米材料为无定型结构,平均粒径在30 nm左右;当Sn4+∶ZnO的摩尔比为1∶200,煅烧温度为600℃时,Sn4+/ZnO的光催化活性最强,在3 h内,太阳光条件下,亚甲基蓝(MB)溶液的降解率达96.37 %。
     2.以氯化镉和硫化钠为原料,采用固体研磨法制备了尺寸为70 nm的CdS,进而用溶胶-凝胶法制备了一系列不同配比的Fe3+-CdS/TiO2光催化材料。结果表明:当Fe3+∶CdS∶TiO2的摩尔比为0.005∶1∶1、煅烧温度为300℃、煅烧时间为30 min、光源为太阳光时,Fe3+-CdS/TiO2的光催化活性最高,在60 min内可以使亚甲基蓝(MB)溶液的降解率达98.62 %。
     3.采用尿素络合燃烧法(凝胶-燃烧合成法)合成尖晶石型铁酸锌以及铁酸镉。结果表明:
     (1)尿素络合燃烧法制备的纳米ZnFe2O4近似呈球形,平均粒径为30 nm左右,煅烧温度为600℃、煅烧时间为1 h、尿素与金属离子的摩尔比为4∶1时铁酸锌的光催化活性最高,在太阳光的条件下4 h可以使亚甲基蓝(MB)溶液的降解率达67 %。
     (2)尿素络合燃烧法制备的铁酸镉纳米材料呈棒状,直径为80 nm,长度为1400 nm,在太阳光条件下3 h可以使亚甲基蓝(MB)溶液的降解率达54 %。
In this thesis, four novel composites of sunlight photocatalyst were successfully designed and prepared. Their catalytic activities were evaluated by measuring the decolorization efficiency of MB in aqueous solution. In addition, the effects of the content of the nanocomposite photocatalysts and calcination temperature and light source on photocatalytic activity were investigated. These composites were also characterized using TEM、XRD and UV-Vis techniques.
     This thesis mainly consists of three major aspects.
     1. A series of Sn4+/ZnO nano-photocatalysts were successfully synthesized by a co-precipitation production method. The results indicated while the molar ratio of Sn4+ and ZnO was about 1∶200 and calcinations temperature was 600℃, the nanocomposite semiconductor showed the highest photocatalytic activity and the decolorization efficiency of MB (10 mg.L-1) reached 94.70 % when the reaction time was 3 h under the sunlight illumination.
     2. The size of 70 nm cadmium sulfide was prepared from cadmium chloride and sodium sulfide as raw materials by solid grinding method and a series of Fe3+-CdS/TiO2 photocatalysts were successfully synthesized by a sol-gel method. The results indicated that while the molar ratio of CdS∶Fe3+∶TiO2 was 0.005∶1∶1, calcination temperature and time were respectively 300℃and 30 min, the coupled semiconductor had the highest photocatalytic activity, and the degradation rate of MB (10 mg.L-1) irradiated for 60 minutes was 98.62 % under the sunlight illumination.
     3. Two spinel-type ZnFe2O4 and CdFe2O4 nanosized photocatalysts were synthesized by the combustion of urea. The results were shown in the following.
     (1) The size of the sphere-like ZnFe2O4 particles was about 30 nm. when the calcination temperature and time were respectively 600℃and 1 h and the molar ratio of urea∶metal iron was 4∶1, the catalyst reached the highest activity, the degradation efficiency of MB reached 67 % under the sunlight illumination and the reaction time 4 h.
     (2) CdFe2O4 nanorods with average diameters 80 nm and length of up to 1.4μm were synthesized via the combustion of urea. The degradation efficiency of MB reached 54 % under the sunlight illumination and the reaction time 3 h.
引文
[1]史素姣,钟江帆,姜志宏.高效率聚合物薄膜太阳能电池[J].光电子·激光, 1999, 8(3): 166-169.
    [2]樊美公等著.光化学基本原理与光子学材料科学[M].北京:科学出版社, 2001.
    [3]张力德,牟季美.纳米材料和纳米结构[M].北京:科学出版社, 2001.
    [4] Hayashi S, Kon R, Ichiyama Y, et al. Evidence for surface-enhanced Raman scattering on nonmetallic surfaces: Copper phthalocyanine molecules on GaP small particles [J]. Phys Rev Lett, 1988, 60:1085-1088.
    [5] Rossetti R, Gibson J M. Excited electronic states and optical spectra of ZnS and CdS crystallites in the 15 to 50°A size range: Evolution from molecular to bluk semiconducting properties [J]. J Chem Phys, 1985, 82(1): 552-559.
    [6]野坂芳雄.光触媒としての半導体超微罻覽J].触媒, 1994, 36(7): 507-514.
    [7]王晓萍.纳米氧化钛薄膜的制备及其结构与性能研究[D].博士学位论文, 2000.
    [8] Harada H, Ueda T. Photocatalytic activity of ultra-fine rutile in methanol-water solution and dependence of activity on particle size [J]. Chem Phy Lett, 1984, 106(3): 229-231.
    [9] Anpo M, Shima T, Kodama S, et al. Photocatalytic hydrogenation of propyne with water on small particle TiO2 size quantization effects and reaction intermediates [J]. J Phys Chem, 1987, 91(16): 4305-4310.
    [10] Pruden A L, Ollis D F. Photoassisted heterogeneous catalysis: The degradation of trichloroethylene in water [J]. Catalysis, 1983, 82(2): 404-417.
    [11]郑伟. Ag/TiO2超细颗粒的表面性质及其应用研究[D].硕士论文, 2003.
    [12] Lu M D, Yang S M. Syntheses of polythiophene and titania nanotube composites [J]. Syn Met, 2005, 154(1-3): 73-76.
    [13] Hebestreit N, Hofmann J, Rammelt U, et al. Physical and electrochemical characterization of nanocomposites formed from polythiophene and titaniumdioxide Eletrochim [J]. Acta, 2003, 48(13): 1779-1788.
    [14] Kwak G, Kim, S Y, Fujiki M, et al. Versatile and Facile Preparation of Chiral。Polyacetylene-Based Gel Film and Organic-Inorganic Composites [J]. Chem Mater, 2004, 16(10): 1864-1868.
    [15] Cho S, Choi W. Solid-phase photocatalytic degradation of PVC–TiO2 polymer composites [J]. J Photochem Photoboiol: A, 2001, 143(2-3): 221-228.
    [16] Sufi R. Ahmed, Peter Kofinas. Magnetic properties and morphology of block copolymer-cobalt oxide nanocomposites [J]. J Magn Magn Mater, 2005, 288: 219-223.
    [17] Singh R N, Lal B, Malviya M. Electrocatalytic activity of electrodepositedcomposite films of polypyrrole and CoFe2O4 nanoparticles towards oxygen reduction reaction [J]. Eletrochim. Acta, 2004, 49(26): 4605-4612.
    [18] Chipara M, Huib D, Sankar J, et al. On styrene–butadiene–styrene–barium ferrite nanocomposites [J]. Composites: Part B, 2004, 35(3): 235-243.
    [19] Huang X H, Chen Z H. A study of nanocrystalline NiFe2O4 in a silica matrix [J]. Materials Research Bulletin, 2005, 40(1):105-113.
    [20] Kodama R H. Magnetic nanoparticles [J]. J Magn Magn Mater 1999, 200(1-3): 359-372.
    [21] Deng J G, He C L, Peng Y X, et al. Magnetic and conductive Fe3O4–polyaniline nanoparticles with core–shell structure [J]. Syn Met, 2003, 139(2): 295-301.
    [22] Juan C A, Silvia E J. Composite of polyaniline containing iron oxides [J]. Physica B, 2004, 354(1-4): 224-227.
    [23] Huang J X, Kaner R B.. A General Chemical Route to Polyaniline Nanofibers [J]. J Am Chem Soc, 2004, 126(3): 851-855.
    [24] Chen A H, Wang H Q, Zhao B, et al. The preparation of polypyrrole-Fe3O4 nanocomposites by the use of common ion effect [J]. Syn Met, 2003, 139(2): 411-415.
    [25] Wisanrakkit G, Gillham J K. The glass transition temperature (Tg) as an index of chemical conversion for a high-Tg amine/epoxy system: chemical and diffusional-controlled reaction kinetics [J]. J Appl Polym Sci, 1990, 41: 2885–2929.
    [26]. Liu Z H. The Instruction of Thermal Analysis [M] Chemistry Industry Press. Beijing. 1991.
    [27]胡书春,周柞万.磁性高分子微球研究进展[J].材料科学与工程学报, 2003, 21(4): 616-619.
    [28] Munko P A, Dunill P, Lilly M D. For use in magnetically stabilized fluid bed chrometograph [J]. Biotech Bioeng, 1997, 19: 101-105.
    [29] Iman M, Celebbis S, Ozdural A R. Preparation of photooxidized magnetic polystyrene beads for enzyme immobilization [J]. Reactive Polym, 1992, 17(3): 325-330.
    [30]邱广亮,邱广明,李咏兰等.磁性淀粉微球固定化乙酰乳酸脱羧酶及应用[J].广州化工, 2000, 28(4): 24-27.
    [31]于永丽,翟秀静,符岩等.纳米TiO2的燃烧合成及其光催化性能[J].中国有色金属学报, 2004, 14(5): 831-835.
    [32] Yue Z X, Guo W Y. Synthesis of nanocrystilline ferrites by sol-gel combution process: the influnce of pH value of solution [J]. Journal of Magnetism and Magnetic Materials, 2004, 270: 216-223.
    [33]张仲燕,邢建南,施利毅等.纳米二氧化钛颗粒的制备[J].上海大学学报(自然科学版), 2002, 8(1): 87-90.
    [34]杨儒,李敏,李友芬等.锐钛矿型纳米TiO2介孔粉体表面织构的研究[J].高等学校化学学报, 2003, 24(1): 146-150.
    [35]高桂兰,段学臣.纳米金红石型二氧化钛粉末的研制[J].中南工业大学学报, 2002, 33(4): 397-400.
    [36]苏文悦,付贤智,魏可镁. SO42-表面修饰对TiO2结构及其光催化性能的影响[J].物理化学学报, 2001, 17(1): 28-31.
    [37] Bamwenda G R, Uesigi T, Abe Y , et al. The photocatalytic oxidation of water to O2 over pure CeO2, WO3 and TiO2 using Fe3+and Ce4+as electron acceptors [J]. Appl Catal A: Environmental, 2001, 205: 117-128.
    [38] Chatterjee D, Mahata A. Demineralization of organic pollutants on the dye modified TiO2 semiconductor particulate system using visible light Appl [J]. Catal B: Environmental, 2001, 33(2): 119-125.
    [39] Wilke K, Breuer H D. The Influence of Transition Metal Doping on the Physical and Photocatalytic Properties of Titania [J]. Photochem Photobiol A: Chem, 1999, 121: 49-53.
    [40] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238(5358): 37-38.
    [41] Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis [J]. Chemical Review, 1995, 95 (1): 69-96.
    [42]钟颢等.废水中有机污染物高级氧化过程的降解[J].化工进展, 1998, 4: 51-53.
    [43] Turchi C S, Ollis D F. Photocatahytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack [J]. J Catal, 1990, 122: 178-192.
    [44] Matthews R. Photooxidation of Organic Impurities in Water Using Thin Films of Titanium Dioxide [J]. Phys Chem, 1987, 91: 3328-3333.
    [45] Jaffrezic-Renault N, Pichat P, Foissy A, et al. Study of the effect of deposited platinum particles on the surface charge of titania aqueous suspensions by potentiometry, electrophoresis, and labeled-ion adsorption [J]. J Phys Chem, 1986, 90(12): 2733-2738.
    [46] Vorontsov A V, Stoyanova I V, Kozlov D V, et al. Kinetics of the photocatalytic oxidation of gaseous acetone over platinized titanium dioxide [M]. J Catal, 2000, 189: 360-369.
    [47] Sauer M L, Ollis D F. Acetone oxidation in a photocatalytic monolith reactor [J]. J Catal, 1994, 149(1): 81-91.
    [48] Brezova V, Stasko. Spin trap study of hydroxyl radicals formed in the photocatalytic system TiO2-water-p-cresol-oxygen [J]. A J Catal, 1994, 147(1): 156-162.
    [49] Onishi H, Aruga T, Iwasawa Y. Switchover of reaction paths in the catalytic decomposition of formic acid on TiO2 (110) surface [J]. J Catal, 1994, 146(2): 557-567.
    [50] Cant N W, Cole J R. Photocatalysis of the reaction between ammonia and nitric oxide on TiO2 surfaces [J]. J Catal, 1992, 134: 317-330.
    [51] Miyauchi M, Nakajima A, Fujishima A, et al. Photoinduced surface reaction on TiO2 and SrTiO3 films: Photocatalytic oxidation and photoinduced hydrophilicity [J]. Chem Mater, 2000, 12(1): 3-5.
    [52]牛新书,许亚杰.二氧化钛纳米材料的合成及其在环保领域的应用研究进展[J].化工环保, 2002, 22(4): 205-207.
    [53]王晓萍.博士学位论文[D].中国科学院上海硅酸盐研究所. 2000.
    [54] Wang Q, Liu H, Weller H. Immobilization of polymer-stabilized nobel metal colloids and their catalytic properties for hydrogenation of olefins [J]. J Colloid Interface Sci, 1997, 190(2), 380-386.
    [55] Lewis L N, Wengrovins J H, Burnell T B, et al. Powdered MQ Resin-Platinum Complexes and Their Use as Silicone-Soluble Hydrosilylation Cure Catalysts [J] Chem Mater, 1997, 9(3), 761-765.
    [56] Choi W. The role of metal ion dopants in quantum-size TiO2: correlation between photoreactivity and charge carrier recombination dynamics [J]. J Phys Chem, 1994, 98(51): 13669-13679.
    [57] Sasaki T, Koshizaki N, Yoon J W, et al. Preparation of Pt/TiO2 nanocomposite thin films by pulsed laser deposition and their photoelectrochemical behaviors [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 145(1-2): 11-16.
    [58] Sung-Suh H M, Choi J R, Hah H J, et al. Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163(1-2): 37-44.
    [59] Kohtani S. Spectral sensitization of a TiO2 semiconductor electrode by CdS microcrystals and its photo-electrochemical properties [J]. Chem Phys Lett, 1993, 206: 166-174.
    [60] Liu D, Kamat P V. Electrochemical rectification in CdSe-TiO2 coupled semiconductor films [J]. J Electroanal Chem, 1993, 347: 451-460.
    [61] Bedja I, Kamat P V. Cappes semiconductor colloids synthesis and photoelectrochemical behavior of TiO2-capped SnO2 nanocrystallines [J]. J Phys Chem Phys, 1995, 99(22): 9182-9188.
    [62] Do Y R, Lee W, Dwight K, et al. The effect of WO3 on the photocatalytic activity of TiO2 [J]. J Solid State Chem, 1994, 108(1): 198-201.
    [63]唐振宁.钛白粉的生产与管理[M].北京:化学工业出版社, 2000, 42-45.
    [64] Ohtani B, Ogawa Y, Nishimoto S. Photocatalytic activity of amorphous anatase mixure of titanium oxide particles suspended in aqueous solutions [J].J Phys Chem, 1999, 101: 3746-3748.
    [65] Taai S J, Cheng S F. Effect of TiO2 crystalline structure in photocatalytic degradation of phenolic contaminants. Caalsis Today, 1997, 33(1): 227-237.
    [66] Karakitous K E, Verykios X E. Effects of altervalent caton doping of TiO2 on its performance as photocatalyst for water Cleavage [J]. J Phys Chem, 1993, 97: 1184-1189.
    [67] River A P, Tanaka K, Hisanaga T. Photocatalytic degradation of pollutants over TiO2 in different crystal structure [J]. Applied Catalysis, 1993, 3: 37-44.
    [68]何建波,张鑫,魏凤玉等. TiO2薄膜晶相组成对苯胺光催化降解的影响[J].应用化学, 1999, 16(5): 57-60.
    [69]苻春林,魏锡文.二氧化钛晶型转变研究进展[J].涂料工业, 1999, 2: 28-30.
    [70]孙奉玉,吴鸣,李文钊等.二氧化钛的尺寸与光催化活性的关系[J].催化学报, 1998, 19(3): 229-233.
    [71]于向阳,梁文,程继健.提高二氧化钛光催化性能的途径[J].硅酸盐通报, 2000, (1): 53-57.
    [72]张梅,杨绪杰,陆路德等.纳米TiO2一种性能优良的光催化剂[J].化工新型材料, 2000, 28(4): 11-13.
    [73]陈士夫,陶跃武.热处理对TiO2光催化活性的影响[J].南开大学学报, 1998, 31(4): 79-82.
    [74]戴智铭,陈爱平,杨阳等. TiSO4热水解法制备超细TiO2粉末光催化剂[J].中国粉体技术, 2001, 7(2): 14-17.
    [75]李晓平,徐宝馄,刘国范等.纳米TiO2光催化降解水中有机污染物的研究与发展[J].功能材料, 1999, 30(3): 242-245.
    [76]李桂云,马江权,粟洪道等.在薄膜TiO2/γ-Al2O3和粉末TiO2上光催化降解苯酚[J].高校化学工程学报, 2001, 15(2): 187-190.
    [77]李学萍,张敬波,伊峰等.活性炭载体对TiO2光催化降解Cl2CHCOOH性能的影响[J].感光科学与光化学, 2001, 19(3): 165-168.
    [78]王怡中,苻雁,汤鸿宵.在TiO2催化剂上苯酚光催化氧化反应研究[J].环境科学学报. 1998, 18(3): 260-263.
    [79] Dionysiou D D, Khodadoust A P, Kem A M, et al. Continuos-mode photocatalytic degradation of chlorinated phenols and pesticides in water using a bench-scale TiO2 rotating disk reactor [J]. Applied Cataly B: Environmental, 2000, 24: 139-142.
    [80]张至成,包志军,王克欧等.二氧化钛催化下氯代二苯并-对-二恶英光解反应[J].环境化学, 1996, 15(1): 47-51.
    [81]王怡中.二氧化钛悬浮体系中八种染料的太阳光催化氧化降解[J].催化学报, 2000, 21(4): 327-331.
    [82]孙平,陈竟文,杨凤林等.部分水溶性偶氮染料的光催化降解研究[J].环境化学, 1999, 18(3): 254-255.
    [83]江立文,周岳溪,李耀中等.偶氮染料4BS光催化降解的特性研究[J].环境工程, 2001, 19(1): 59-61.
    [84]张彭义,余刚,蒋展鹏.半导体光催化剂及其改性技术进展[J].环境科学进展, 1997, 5(3): 1-10.
    [85]余家国,赵修建,陈文梅等.太阳光TiO2多孔纳米薄膜光催化降解有机磷农药的研究[J].太阳能学报, 2000, 21(2): 165-168.
    [86] Litter M I. Heterogenous photocatalysis: Tansition metal ions in photocatalytic systems [J]. Applied Catalysis B: Environmental, 1999, 23: 89-114.
    [87]付宏祥.有机物存在下Cr6+离子的光催化还原[J].物理化学学报, 1997, 13(2): 1415-1417.
    [88] Goswami D Y. A review of engineering developments of aqueous phase solar photocatalytic detoxification and disinfection processes [J]. J of Solar Engineering, 1997, 119(3): 101-107.
    [89] Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB’s in the presence of titanium dioxide in aqueous suspension [J]. Bull Environ Contam Toxicol, 1976, 16: 697-701.
    [90]薛向东,金奇庭. TiO2-活性炭组合光催化降解苯酚废水.中国给水排水, 2002, 18(6): 42-45.
    [91]王娅娟.纳米TiO2/玻璃薄膜光催化降解亚甲基蓝的研究[J].山东师范大学学报(自然科学版), 2003, 18(1): 39-42.
    [92]魏宏斌,徐迪民,徐建伟.水溶液中腐植酸的二氧化钛膜光催化氧化研究[J].环境科学学报, 1998, 18(2): 161-166.
    [93]李田,严煦世,张杰.城市自来水中有机污染物的光催化氧化处理[J].中国给水排水, 1993, 9(6): 12-15.
    [94]李晓红,颜秀茹,张月萍等. TiO2/SnO2复合光催化剂的制备及光催化降解敌敌畏[J].应用化学, 2001, 18(1): 32-35.
    [95]颜秀茹,李晓红,宋宽秀等. TiO2/SiO2的制备及其对DDVP光催化性能的研究[J].水处理技术, 2000, 26(1): 42-46.
    [96]陈士夫,赵梦月,陶跃武等.玻璃纤维附载TiO2光催化降解有机磷农药[J].环境科学, 1996, 17(4): 33-35.
    [97]赵文宽,方佑龄.光催化降解水面石油污染的研究[J].宁夏大学学报(自然科学版), 2001, 22(2): 219-220.
    [98]张海燕,王宝辉,陈颖.光催化氧化处理含油污水的研究[J].化工进展, 2003, 22(1): 67-70.
    [99]戴遐明.半导体氧化物超细粉末对Cr(Ⅵ)的光催化还原作用研究[J].环境科学, 1996, 17(6), 34-36.
    [100] Hung M, Tso E, Datye A K. Removal of silver in photographic processing waste by TiO2-based photocatalysis [J]. Environ Sci Technol, 1996, 30(10): 3084-3088.
    [101] Bamwenda G R, Tsubota S, Kobayashi, et al. Photoinduced hydrogen production from an aqueous solution of ethylene glycol over ultrafine gold supported on TiO2 [J]. J. Photochem. Photo Biol A: Chem, 994, 77, 59-67.
    [102]韩兆慧,赵化侨.半导体多相光催化应用研究进展[J].化学进展, 1999, 11(1): 1-10.
    [103] Tada H, Hyodo M, Kawahara H. An improved photocatalyst of TiO2/SnO2 prepared by a sol-gel synthesis [J]. J Phys Chem, 1991, 95(24): 10185-10188.
    [104]邵昌平,潘力,杨秀芝. TiO2粉末上氮的光催化还原反应和TiO2晶型的影响[J].催化学报, 1990, 11(1): 66-69.
    [1]王怡中,胡春,汤鸿霄.在TiO2催化剂上苯酚光催化氧化反应研究.环境科学学报[J], 1995, 15(4): 472-479.
    [2]仲维卓,华素坤编著.晶体生长形态学[M].第一版.北京:科学出版社, 1999,44-165.
    [3]余锡宾,王桂华,罗衍庆等. TiO2超微粒子的量子尺寸效应与光吸收特性[J].催化学报, 1999, 20(6): 613-618.
    [4] Choi W, Termit A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics [J]. Phys Chem, 1994, 98(51): 13669-13679.
    [5] Sclafani A, Herrmann J M. Influence of metallic silver and of platinum-silver bimetallic deposits on the photocatalytic activity of titania (anatase and rutile) in organic and aqueous media [J]. Photochem Photobiol A: Chem, 1998, 113(2): 181-188.
    [6] Bessekhouad Y, Robert D, Weber J V. Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant [J]. Photochem Photobiol A: Chem, 2004, 163(3): 569-580.
    [7] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science, 2001, 293(5528): 269-271.
    [8]闫鹏飞,王建强,江欣等.掺铁TiO2纳米品的制备及光催化性能研究[J].材料科学与工艺, 2002, 10(1): 28-31.
    [9]夏星辉,许嘉琳,陆维德.利用日光能催化降解水体中有机污染物[J].环境科学, 1999, 20(3): 107-111.
    [10] Navio J A, Colon G, Marias M, et al. Iron-doped titantia semiconductor powders prepared by a sol-gel method. Part I: Synthesis and Characterization [J]. Appl Catal A, 1999, 177(1): 111-120.
    [11] Linsebigler A L, Lu G Q, Yates J T. Photocatalysis on TiO2 surface: principles mechanisms and selected results [J]. Chem Rev, 1995, 95(3): 735-758.
    [12]金华峰,李文戈,向纪明等.复合纳米微粒的合成及广催化降解NO2-[J].应用化学, 2001, 18(8): 636-639.
    [13] Chen H, Jin X L, Su B T, et al. Preparation of Fe3+-Doped TiO2 nanoparticles and their Photocatalytic Activities [J]. Indian J Chem, 2000, 39A(7): 685-689.
    [14]马占营,佘世雄,敏世雄等. Cr3+掺杂的TiO2纳米复合微粒的合成及表征[J].兰州大学学报, 2005, 41(2): 65-68.
    [15] Graetzel M, Howe R F. Electron paramagnetic resonance studies of doped titanium dioxide colloids [J]. Phys Chem, 1990, 94(6): 2566-2572.
    [1] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductorelectrode [J]. Nature, 1972, 238(5358): 37-38.
    [2] Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis [J]. Chem Rev, 1995, 95(1): 69-96.
    [3] Stylidi M, Kondarides D I, Verykios X E. Visible light-induced photocatalytic degradation of Acid Orange 7 in aqueous TiO2 suspensions [J]. Applied Catalysis B: Environmental, 2004, 47(3): 189-201.
    [4] Sasaki T, Koshizaki N, Yoon J W, et al. Preparation of Pt/TiO2 nanocomposite thin films by pulsed laser deposition and their photoelectrochemical behaviors [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 145(1-2): 11-16.
    [5] Sung-Suh H M, Choi J R, Hah H J, et al. Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163(1-2): 37-44.
    [6] Li X Z, Li F B, Yang C L, et al. Photocatalytic activity of WOx-TiO2 under visible light irradiation [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 141(2-3): 209-217.
    [7] Bessekhouad Y, Robert D, Weber J V. Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163(3): 569-580.
    [8]尹晓红,辛峰,张风宝等.含磁性γ-Fe2O3核的TiO2/Al2O3催化剂的制备及光催化性能[J].精细化工, 2006, 23(1): 58-61.
    [9]苏碧桃,敏世雄,白洁等.共轭高分子PF/TiO2纳米复合材料的合成与催化性能[J].精细化工, 2006, 23(9): 837-840.
    [10] Choi W Y, Termin A, Hoffmann M R, et al. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics [J]. J Phys Chem, 1994, 98(51): 13669-13679.
    [11] Madhusudan R K, Baruwati B, Jayalakshmi M, et al. S-, N- and C-doped titanium dioxide nanoparticles: Synthesis, characterization and redox charge transfer study [J]. Journal of Solid State Chemistry, 2005, 178(11): 3352-3358.
    [12] Roy R. Geramics by the Solution-Sol-Gel Route [J]. Science, 1987, 238(12): 1644-1669.
    [13] Glotov O G, Zarko V E, Karasev V V, et al. Problems and prospe cts of investigating the formation and evolution of agglomerates by the sampling method [J]. Combust Explos Shoch Waves, 2000, 36(1): 146-156.
    [14]曹茂盛等编著.纳米材料导论,哈尔滨工业大学出版社, 2001.
    [15]李凤生,杨毅等编著.纳米/微米复合技术及应用[M].国防工业出版社, 2002.
    [16] Klansek U, Kravanja S. Cost estimation, optimization and competitiveness of different composite floor systems—Part 1: Self-manufacturing cost estimation of composite and steel structures. [J]. Construt Steel Research, 2006, 62(5): 434-448.
    [17] Zhang M, Heuer A H. Spatially varying microhardness in a platinum-modified nickel aluminide bond coat in a thermal barrier coating system [J]. Scripta Materialia, 2006, 54(7): 1265-1269.
    [18] Moraghan J T, Etchevers J D, Padilla J. Contrasting accumulations of calcium and magnesium in seed coats and embryos of common bean and soybean [J]. Food Chemistry, 2006, 95(4): 554-561.
    [19] Dagmar Hobson, Olke C. Uhlenbech. Alanine Scanning of MS2 Coat Protein Reveals Protein–Phosphate Contacts Involved in Thermodynamic Hot Spots [J]. Journal of Molecular Biology, 2006, 356(3): 613-624.
    [20] Rahman S U, Abul-Hamayel M A, Abdul Aleem B. J. Electrochemically synthesized polypyrrole films as primer for protective coatings on carbon steel [J]. Surface and Coatings Technology, 2006, 200: 2948-2954.
    [21] Song W, Grassian V H, Larsen S C. Fiber and film formation by self-assembly of colloidal silicalite-1 and copper coated silicalite-1 nanocrystals [J]. Microporous and Mesoporous Materials, 2006, 88(1-3): 77-83.
    [22] Frank Caruso. Nanoengineering of article surfaces [J]. Adv Mater, 2001, 13(1): 11-16.
    [23] Rui Zhang, Lian Gao, Jingkun Guo. Preparation and characterization of coated nanoscale Cu/SiCp composite particles [J]. Ceramics International, 2004, 30(3):401-404.
    [24] Chuang F Y, Yang S M. Titanium oxide and polyaniline core-shell nanocomposites [J]. Synthetic Metals, 2005, 152(1-3): 361-364.
    [25] Deng J G, He C L, Yuxing Peng, et al. Magnetic and conductive Fe3O4–polyaniline nanoparticles with core–shell structure [J]. Synthetic Metals, 2003, 139(2): 295-301.
    [26] Onihara T, Mizutanl N, Kato M. Attenuated total reflectance Fourier transform infrared spectra of a hydrated sodium silicate glass [J]. Journal of the American Ceramic Society, 1989, 72(11): 421-428.
    [27] Kim H T, Kim K D, Bae H J. Synthesis and growth mechanism of TiO2-coated SiO2 fine particles [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects 2003, 221(1): 163-173.
    [1] Karkmaz M, Puzenat E, Guillard C, et al. Photocatalytic degradation of the alimentary azo dye amaranth Mineralization of the azo group to nitrogen. Appl Catal B: Envir, 2004, 51(3): 183–194.
    [2]戴遐明,陈永华,李庆丰等.半导体氧化物超细粉末对Cr(Ⅵ)的光催化还原作用研究.环境科学, 1996, 17(6):34-36.
    [3] Borgarello E, Kiwi J Gr?tzel M, et al. Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles. J Am Chem Soc, 1982, 104(11): 2996-3002.
    [4] Yanaida S, Senadeera G K R, Nakamura K, et al. Polythiophene-sensitized TiO2 solar cells. J. Photochem. Photobiol. A: Chem, 2004, 166(1-3): 75-80.
    [5]王传义,刘春艳,沈涛.半导体光催化剂的表面修饰.高等学校化学学报1998, 19(12): 2013~2019.
    [6] Stylidi M, Kondarides D I, Verykios X E. Visible light-induced photocatalyticdegradation of Acid Orange 7 in aqueous TiO2 suspensions. Applied Catalysis B: Environmental, 2004, 47(3): 189-201.
    [7] Sasaki T, Koshizaki N, Yoon J W, et al. Preparation of Pt/TiO2 nanocomposite thin films by pulsed laser deposition and their photoelectrochemical behaviors. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 145(1-2): 11-16.
    [8] Sung-Suh H M, Choi J R, Hah H J, et al. Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163(1-2): 37-44.
    [9] Li X Z, Li F B, Yang C L, et al. Photocatalytic activity of WOx-TiO2 under visible light irradiation [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 141(2-3): 209-217.
    [10] Bessekhouad Y, Robert D, Weber J V. Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163(3): 569-580.
    [11]尹晓红,辛峰,张风宝等.含磁性γ-Fe2O3核的TiO2/Al2O3催化剂的制备及光催化性能.精细化工, 2006, 23(1): 58-61.
    [12]苏碧桃,敏世雄,白洁等.共轭高分子PF/TiO2纳米复合材料的合成与催化性能.精细化工, 2006, 23(9): 837-840.
    [13] Choi W Y, Termin A, Hoffmann M R, et al. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem, 1994, 98(51): 13669-13679.
    [14] Madhusudan R K, Baruwati B, Jayalakshmi M, et al. S-, N- and C-doped titanium dioxide nanoparticles: Synthesis, characterization and redox charge transfer study. Journal of Solid State Chemistry, 2005, 178(11): 3352-3358.
    [15] Yin J, Zou Z G, Oshikili M, et al. A novel series of visible light driven ABO3 perovskite photocatalysts with special 3D electronic configuration. Dalian: Dalian Institute of Chemical Physics Press, 2003, 34:584-585.
    [16] Jinhua Y, Zhigang Z, Oshikiri M. et al. A novel hydrogen-evolving photocatalyst InVO4 active under visible light irradiation. Chem Phys Lett, 2002, 356: 221–226.
    [17]姜妍彦,李景刚,宁桂玲,王承遇.尖晶石型CuAl2O4纳米粉体的制备及其可见光催化性能.硅酸盐学报, 2006, 34(9): 1084-1087.
    [18]张文丽,侯桂芹,李中秋.溶胶-凝胶法制备ZnFe2O4纳米薄膜及其光电催化性能研究.化工新型材料, 2006, 34(5): 25-27.
    [19]曹锋,李新勇,曲振平,陈国华.铁酸锌纳米晶的合成及其催化脱色性能研究.环境污染与防治, 2006, 28(12): 891-894.
    [20]杨晓娟,刘尔生,陈耐生,黄金陵.几种尖晶石型复合氧化物纳米粉体的制备及气敏性.应用化学, 1998, 15(5): 14-17.
    [21]王银海,莫茂松,邵名望等.纳米晶CdFe2O4的制备与湿敏性能研究.功能材料, 2002, 33(2): 198–199.
    [22]张显,成来飞,张立同等.含脲柠檬酸钇燃烧法制备纳米氧化钇粉.硅酸盐学报, 2003, 31(2), 209-212.
    [23] Mali A, Ataie A. Influence of the metal nitrates to citric acid molar ratio on the combustion process and phase constitution of barium hexaferrite particles prepared by sol-gel combustion method. Ceramics International, 2004, (30): 1979-1983.
    [24]张洁尧,祝丽华,何国新等.无机铝盐sol-gel法制备超细氧化铝粉末.中国陶瓷, 1996, 32(4): 10-14.
    [25] Yang J, Li D, Wang X, Yang X J. Rapid synthesis of nanocrystalline TiO2/SnO2 binary oxides and their photoinduced decomposition of methyl orange. Journal of Solid State Chemistry, 2002, 165: 193-198.
    [26] Ye T, Zhao G W. Combustion synthesis and photoluminescence of nanocrystalline Y2O3: Eu phosphors. Materials Research Bulletin, 1997, 32: 501-506.
    [27] Qi X W, Zhou J, Yue Z X, Gui Z L, Li L T. Auto-combustion synthesis of nanocrystalline LaFeO3 [J]. Materials Chemistry and Physics, 2002, (78): 25-29.
    [28]许前丰.凝胶-燃烧合成法制备纳米MgO颗粒的研究.硕士学位论文, 2006.
    [29] Beata Z Antoni W M. TiO2 photocatalysts promoted by alkalimetals. Appl Catal B: Environ, 2005, 55(3): 221-226.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700