溶胶—凝胶法制备钙钛矿型涂层的工艺及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究的目的是开发一种成本低、制备温度较低、对基材形状要求小(如大面积、复杂形状等)的涂层工艺。选择两种方法(复合溶胶-凝胶和传统溶胶-凝胶法)在不同基体上制备钙钛矿型陶瓷涂层,并用热重分析(TG)、差示扫描量热分析(DSC)、X射线衍射分析(XRD)、扫描电镜(SEM)等手段系统研究了涂层制备工艺和组织,另外,还对不同工艺制得涂层的硬度、结合强度和电性能进行了研究。
     研究结果表明:用复合溶胶-凝胶法在烧结氧化铝基底上制备La_(0.8)Sr_(0.2)MnO_3涂层是完全可行的。优化后涂层工艺为:将La_(0.8)Sr_(0.2)MnO_3粉体混入同组分溶胶中制得稳定的浆料;用丙酮和酒精对氧化铝基底进行超声清洗后将基底浸渍在浆料中用提拉法进行涂覆,提拉速度为1cm·min~(-1);涂覆后的试样在120℃恒温箱中干燥5min,再经600℃预烧10min。重复以上浸渍、干燥、预烧过程直到得到一定厚度的涂层。最后在800℃煅烧1-4h使剩余有机物分解,使钙钛矿相晶化完全。随炉冷却后用La_(0.8)Sr_(0.2)MnO_3溶胶进行封孔致密化,具体工艺为涂层在溶胶中浸渍、干燥后600℃预烧10min,再经800℃煅烧1h。
     XRD、SEM等表征结果证明,用复合溶胶-凝胶工艺在氧化铝基体上制备的涂层由La_(0.8)Sr_(0.2)MnO_3单相组成。粉体的加入显著改善了涂层表面质量,消除了由纯溶胶制得涂层中的裂纹。随粉体加入量和浸渍次数增加,涂层厚度增加;粉体加入量为0.6g时,涂层表面和截面连续、平整。另外,随粉体加入量和浸渍次数增加,涂层电阻减小;随Sr掺杂量增加,La_(1-x)SrxMnO_3电阻减小,当x=0.3时达最小值。
     用溶胶-凝胶工艺在碳钢基底制备La_(1-x)Ca_xCrO_3涂层的优化工艺为:将预处理后的碳钢基底(20G钢)浸渍到前驱体溶液中一定时间,以1cm·min~(-1)速度取出,经80℃充分干燥,先400℃预烧10min,重复浸渍,最后放入箱式炉中800℃煅烧1h。
     XRD、SEM等表征结果证明,20G钢的表面涂层由陶瓷层和氧化物层两部分组成,陶瓷层由La(0.7)Ca_(0.3)CrO_3单相组成,厚度为12.5~25μm;氧化物层厚度为25~50μm。氧化物层的存在影响了涂层与基体间的结合强度。随前驱体溶液浓度增大涂层微孔和粗糙度增加,均匀性变差,缺陷增多。随pH值增加涂层孔隙率显著增加,组织明显疏松。随浸渍次数增加涂层中的孔洞不断被填充,孔隙率大大减小,涂层更加致密均匀;另外,浸渍次数增加时涂层厚度和结合强度也相应增加,但浸渍次数太多会降低生产效率。当前驱体溶液浓度为0.3mol·L~(-1)浸渍次数为6时,可以得到致密均匀的涂层。
The purpose of this thesis is to develop a technique, which is simple, economical and applicable for preparing coatings on any surface (such as large surface, complex shapes) and can be synthesized at low temperature. Two kinds of technology were used, composite sol-gel route and conventional sol-gel method, to prepare perovskite-type ceramic coatings on different substrates. The fabrication process and microstructure were systematically investigated by means of thermogravimetric analysis (TG), differential scanning calorimetry (DSC), X-ray diffractometer (XRD) and scanning electronic microscopy (SEM). The hardness, bonding intensity and electrical properties of coatings prepared from different processes were also investigated.
     The results indicated that the preparation of La_(0.8)Sr_(0.2)MnO_3 coating by composite sol-gel route was feasible. The optimized process was as follows: La_(0.8)Sr_(0.2)MnO_3 powders were added to precursor sol with the same composition to form a stable slurry; After being cleaned ultrasonically in acetone and alcohol, alumina substrates were dipped into the composite slurry and pulled out at a linear speed of 1 cnvmin~(-1); The coated samples were then dried at 120℃for 5 min, and pre-fired at 600℃for 10 min. This dipped, dried and pre-fired step was repeated several times to achieve the desired thickness. And then, the coatings were calcined at 800℃for 1-4 h to decompose residual organic matter and crystallize the perovskite phase. Finally, the coatings were densified with La_(0.8)Sr_(0.2)MnO_3 precursor sol. The densification process was as follows: the deposited coatings were dipped into La_(0.8)Sr_(0.2)MnO_3 precursor sol, dried, pre-fired at 600℃for 10 min, and finally calcined at 800℃for 1 h.
     It was shown by XRD and SEM that a single La_(0.8)Sr_(0.2)MnO_3 perovskite phase was obtained on alumina substrate. The microstructure of coatings was significantly modified and cracks were eliminated by adding La_(0.8)Sr_(0.2)MnO_3 powders to the precursor sol. The thickness of coatings increased with increasing the amount of La_(0.8)Sr_(0.2)MnO_3 powders and the number of coating applications. The results also suggested that a smooth and continuous coating in both surface and cross-section can be obtained when the powder content increased to 0.6 g. Furthermore, the sheet resistance of coatings decreased as the amount of La_(0.8)Sr_(0.2)MnO_3 powders and the number of coating applications increased. The sheet resistance of coatings also decreased with the content of Sr-doping, and the minimial value was obtained when x=0.3.
    In the case of La_(1-x)Ca_xCrO_3 coating, the optimized process was as follows: 20G substrate was dipped into precursor sol for certain minutes, withdrawn at a constant rate of 1 cm·min~(-1), dried at 80 °C, pre-fired at 400 °C for 10 min, then this step was repeated several times, and finally calcined at 800 °C for 1 h in air.
    It was shown by XRD and SEM that coatings on 20G substrates consisted of two parts, i.e. ceramic layer which was composed of single La_(0.7)Ca_(0.3)CrO_3 perovskite phase, and oxide layer. The thickness of ceramic and oxide layer was approximately 12.5~25μm and 25~50μm respectively. It was also found that the bond strength of coatings to substrates was influenced by the oxide layer. The microporosity, roughness, inhomogeneity and defect of the coatings increased with the precursor concentration. The porosity increased and microstructure became porous as the pH value of precursor sol increased. Coatings showed denser and more homogeneous microstructure with reduced porosity as the number of coating applications increased, which was the result of the filling of pores. Moreover, the thickness and bond strength of coatings increased with increasing the number of coating application. However, the efficiency will be decreased. A dense and homogeneous coating could be obtained when the precursor concentration was 0.3 mol·L~(-1) and the dipped, dried and pre-fired step was repeated six times.
引文
[1] G C Xiong, Q Li, H L Ju, et al. Influence of preparation on resistivity behavior of epitaxial Nd_(0.7)Sr_(0.3)MnO_(3-d) and La_(0.67)Ba_(0.33)MnO_(3-d) thin films[J]. Appl Phys Lett, 1995, 66(13): 1689-1691.
    [2] C L Canedy, K B Ibsen, G Xiao, et al. Magnetotransport and hysteretic behavior in epitaxial La_(0.67)Ca_(0.33)MnO_(3-d) films[J]. J Appl Phys, 1996, 79(8): 4546-4548.
    [3] 张富祥,贺瑞威,张湘义,等.低掺杂La_(1-x)Sr_xMnO_3结构相变对其电磁性能的影响[J].物理学报,1998,47(1):112-116.
    [4] 孟影,金绍维.La_(0.7)Sr_(0.3)MnO_3外延膜厚度引起的电阻率变化[J].安徽大学学报,2006,30(3):58-61.
    [5] 江阔,李合非,宫声凯.应力对La_(0.83)Sr_(0.17)MnO_3薄膜输运性能的影响[J].物理学报,2006,55(3):1435-1440.
    [6] San-Ping Jiang, Jin-Ping Zhang, Liliana Apateanu, et al. Deposition of chromium species on Sr-doped LaMnO3 cathodes in solid oxide fuel cells[J]. Electrochemistry Communications, 1999, 1: 394-397.
    [7] S. Charojrochkul, R.M. Lothian, K.L. Choy, et al. Flame assisted vapour deposition of cathode for solid oxide fuel cells. 2. Modelling of processing parameters[J]. Journal of the European Ceramic Society, 2004, 24: 2527-2535.
    [8] S. Cimino, R. Pirone, L. Lisi. Zirconia Supported LaMnO_3 Monoliths for the Catalytic Combustion of Methane[J]. Applied Catalysis B: Environmental, 2002, 35: 243-254.
    [9] S. Cimino, L. Lisi, R. Pirone, et al. Methane combustion on perovskites-based structured catalysts[J]. Catalysis Today, 2000, 59: 19-31.
    [10] 黄海凤,唐伟,陈银飞,等.LaMO_3(M=Co,Mn)钙钛矿型催化剂上VOCS催化燃烧的研究[J].中国稀土学报,2004,22:85-88.
    [11] G. Sinquin, C. Petit, J. P. Hindermann, et al. Study of the formation of LaMO_3 (M=Co,Mn) perovskites by propionates precursors: application to the catalytic destruction of chlorinated VOCs [J]. Catalysis Today, 2001, 70: 183-196.
    [12] 张长斌,徐文青,石晓燕,等.富氧条件下Ag/LaMn_(1.x)Pd_xO_3催化剂直接分解NO研究[J].中国稀土学报,2004,22:76-80.
    [13] 付贵福,李胜利,孙良成,等.钙含量和烧结时间对材料的显微组织及导电性的影响[J].金属热处理,2003,28(12):8.12.
    [14] J.H.Zhu, Y.Zhang, A.Basu, et al. LaCrO_3-based coatings on ferritic stainless steel for solid oxide fuel cell interconnect applications[J]. Surface and Coatings Technology, 2004, 177-178: 65-72.
    [15] Christopher Johnsona, Randall Gemmena, Nina Orlovskayab. Nano-structured self-assembled LaCrO_3 thin film deposited by RF-magnetron sputtering on a stainless steel interconnect material[J]. Composites: Part B, 2004, 35: 167-172.
    [16] Atkinson A, Ramos T. Chemically-induced stresses in ceramic oxygen ion-conducting membranes[J]. Solid State Ionics, 2000, 129(1-4): 259-269.
    [17] Atkinson A, Seluck A. Mechanical behavior of ceramic oxygen ion-conducting membranes [J]. Solid State Ionics, 2000, 134(1-2): 59-66.
    [18] D.A. Barrow, T.E. Petroff, M. Sayer. Thick ceramic coatings using a sol gel based ceramic-ceramic 0-3 composite[J]. Surface and Coatings Technology, 1995, 76-77: 113-118.
    [19] 曾庆冰,李效东,陆逸.溶胶-凝胶法基本原理及其在陶瓷材料中的应用[J].高分子材料科学与工程,1998,14(2):138-143.
    [20] Mackenzie J D. Applications of the sol-gel process[J]. J Non-Cryst. Solids, 1999, 100: 162-168.
    [21] 陈庆华,曹自平,孙俊赛,等.溶胶.凝胶法在材料复合制备技术中的应用[J].有色金属,2001,53(2):71-76.
    [22] 马正青,黎文献,谭敦强.溶胶.凝胶法制备Al_2O_3-ZrO_2复合陶瓷涂层研究[J].表面技术,2001,30(4):33-36.
    [23] 周宏.不锈钢表面SiO_2-TiO_2-ZnO-CaO四元耐酸涂层[D].上海:华东理工大学,2004.
    [24] Sonalee Chopra, Seema Sharma, T.C.Goel, R.G.Mendiratta. Phase stabilization and microstructural studies of lead lanthanum titanate thin films [J]. Materials Research Bulletin, 2005, 40: 115-124.
    [25] Lu Xu-chen, Xu Ting-xian, Dong Xiang-hong. Processing and microstructure of LaCrO_3 thin film derived from chelating precursors[J]. Journal of Rare Earths, 2000, 18(3): 196-200.
    [26] 侯峰,徐廷献,阴育新,ISG法制备钙钛矿纳米陶瓷薄膜[J].天津大学学报,2000,33(3):397-400.
    [27] Hae Jin Hwang, Masanobu Awano. Preparation of LaCoO_3 catalytic thin film by the sol-gel process and its NO decomposition characteristics[J]. Journal of the European Ceramic Society, 2001, 21: 2103-2107.
    [28] Teruhisa Horita, Tatsuro Tsunoda, Katsuhiko Yamaji, et al. Microstructures and oxygen diffusion at the LaMnO_3 film/yttria-stabilized zirconia interface [J]. Solid State Ionics, 2002, 152-153: 439-446.
    [29] 程正勇,程正翠,李江苏,等.热喷涂技术及陶瓷涂层[J].热处理,2003,18(1):5-8.
    [30] J.Q.Li,P. Xiao. Fabrication and characterisation of La_(0.8)Sr_(0.2)MnO_3/metal interfaces for application in SOFCs[J]. Journal of the European Ceramic Society, 2001, 21: 659-668.
    [31] 杜心康,叶明惠,周珑,等.自蔓延反应喷涂表面涂层技术进展[J].军械工程学院学报,2003,15(4):6-10.
    [32] 曾爱香,唐绍裘.Sol-Gel法制备金属基铝硅酸盐陶瓷涂层的研究[J].表面技术,2000,29(6):9-11.
    [33] S W Jin, X Y Zhou, W B Wu, et al. Vacancy defects in epitaxial La_(0.7)Sr_(0.30MnO_3 thin films probed by a slow positron beam[J]. J. Phys. D: Appl. Phys., 2004, 37: 1841-1844.
    [34] 余火根,余家国,郭瑞,等.溶胶.凝胶薄膜的制备和应用[J].材料导报,2003,17(6):31-33.
    [35] 卢旭晨,李佑楚,韩铠,等.陶瓷薄膜的Sol-Gel法制备[J].中国陶瓷,1999,35(1):1-4.
    [36] 朱冬生,赵朝晖,吴会军,等.溶胶.凝胶法制备纳米薄膜的研究进展[J].材料导报,2003(19):53-55.
    [37] 韩得强,李勇.薄膜制备技术中溶胶.凝胶工艺研究[J].四川化工,2005,8(5):45-47.
    [38] M. Sayer.Can. Ceram. Q., 1990, 59: 21.
    [39] D.A. Barrow, T.E. Petroff, R.P. Tandon, et al. Characterization of thick lead zirconate titanate films fabricated using a new sol gel based process[J]. J. Appl. Phys, 1997, 81(2): 876-881.
    [40] Aiying Wu, I. M. Miranda Salvado, P. M. Vilarinho, et al. Processing and Seeding Effects on Crystallisation of PZT Thin Films from Sol-Gel Method [J]. Journal of the European Ceramic Society, 1997, 17: 1443-1452.
    [41] Aiying Wu, Paula M. Vilarinho, Isabel M. Miranda Salvado, et al. Characterization of Seeded Sol-Gel Lead Zirconate Titanate Thin Films[J]. Journal of the European Ceramic Society, 1999, 19: 1403-1407.
    [42] A.L. Kholkin, A. Gruverman, A. Wu, et al. Seeding effect on micro- and domain structure of sol-gel-derived PZT thin films[J]. Materials Letters, 2001, 50: 219-224.
    [43] Aiying Wu, Li Yang, P.M. Vilarinho, et al. Structural and electrical properties of seeded lead zirconate titanate thin films[J]. Thin Solid Films, 2000, 365: 24-28.
    [44] Ohno T., Kunieda M., Suzuki H., et al. Low-temperature processing of Pb(Zr_(0.53)Ti_(0.47))O_3 thin films by sol-gel casting[J]. Jpn. J. Appl. Phys., 2000, 39: 5429-5433.
    [45] Kholin A. L., Yarmarkin V. K., Wu A., et al. PZT-based piezoelectric composites via a modified sol-gel route[J]. J. Eur. Ceram. Soc., 2001, 21: 1535-1538.
    [46] R.A. DOREY, R. W. WHATMORE, S. P. BEEBY, et al. Screen Printed PZT Thick Films Using Composite Film Technology[J]. Integrated Ferroelectrics, 2003, 54: 651-658.
    [47] R.W. Whatmore, Q. Zhang, Z. Huang, R.A. Dorey. Ferroelectric thin and thick films for Microsystems[J]. Materials Science in Semiconductor Processing, 2003, 5: 65-76.
    [48] R.A. Dorey, R.W. Whatmore. Electrical properties of high density PZT and PMN-PT/PZT thick films produced using ComFi technology[J]. Journal of the European Ceramic Society, 2004, 24: 1091-1094.
    [49] Corker D. L., Whatmore R. W., Ringgaard E., et al. Liquid-phase sintering of PZT ceramics [J]. J. Eur. Ceram.Soc., 2000, 20: 2039-2045.
    [50] Corker D. L., Zhang Q., Whatmore R. W., et al. PZT 'composite' ferroelectric thick films [J]. J. Eur. Ceram. Soc., 2002, 22: 383-390.
    [51] R.A. Dorey, S.B. Stringfellow, R.W. Whatmore. Effect of sintering aid and repeated sol infiltrations on the dielectric and piezoelectric properties of a PZT composite thick film[J]. Journal of the European Ceramic Society, 2002, 22: 2921-2926.
    [52] J. TARTAJ, C. MOURE, J. F. FERNAA NDEZ, et al. Seeding effects on crystallization of air-calcined Y-TZP amorphous precursors[J]. Journal of Materials Science Letters, 1997, 16: 1512-1515.
    [53] Y.F. CHEN, R. NASS. Seeding Effects in the Sol-Gel Preparation of Lead Zirconate Titanate (PZT) Powders[J]. Journal of Sol-Gel Science and Technology, 1997, 8: 385-389.
    [54] 郭瑞,余家国,余火根,等.溶胶凝胶涂层技术的现状与展望[J].中国陶瓷,2003,39(1):25-28.
    [55] Yingxia Zhang, Yongfa Zhu, Ruiqin Tan, et al. Influence of PEG additive and precursor concentration on the preparation of LaCoO_3 film with perovskite structure[J]. Thin Solid Films, 2001, 388: 160-164.
    [56] Zhai Jiwei, Yao Xi, Zhang Liangying, et al. Orientation control and dielectric properties of sol-gel deposited Ba (Ti, Zr)O_3 thin films[J]. Journal of Crystal Growth, 2004, 262: 341-347.
    [57] Sung-Soon Park, J.D. Mackenzie. Sol-gel-derived tin oxide thin films[J]. Thin Solid Films, 1995, 258: 268-273.
    [58] 张法碧.不锈钢表面复合溶胶.凝胶法制备Al_2O_3-ZrO_2陶瓷涂层[D].哈尔滨:哈尔滨王业大学,2003.
    [59] Yi Hu, S.-H. Hou. Preparation and characterization of Sb-doped SnO_2 thin films from colloidal precursors[J]. Materials Chemistry and Physics, 2004, 86: 21-25.
    [60] Sutapa Roy Ramanan. Dip coated ITO thin-films through sol-gel process using metal salts[J]. Thin Solid Films, 2001, 389: 207-212.
    [61] 王龙海,罗英军,王世敏,等.Sol-gel法制备KTN薄膜厚度及均匀性控制[J].电子元件与材料,2000,19(2):5-6.
    [62] 马文蔚等.物理学原理在工程技术中的应用[M].北京:高等教育出版社,2001:132-135.
    [63] RAO A P, PAIK D S, KOMARNENI S. Sol-gel synthesis of lithium niobate powder and thin films using lithium 2,4-pentanedionate as lithium source[J]. J Electroceram, 1998, 2(3): 157-162.
    [64] Haruhiko Ohya, Russell Paterson, Takako Nomura, et al. Properties of new inorganic membranes prepared by metal alkoxide methods Part Ⅰ A new permselective cation exchange membrane based on oxides[J]. Journal of Membrane Science, 1995, 105: 103-112.
    [65] Hideki Taguchil, Shin-ichiro Matsu-ura, Mahiko Nagao. Synthesis of LaMnO_(3+d) by Firing Gels Using Citric Acid[J]. Journal of solid state chemistry, 1997, 129: 60-65.
    [66] Ljubica Nikolic, Ljiljana Radonjic. Alumina strengthening by silica sol-gel coating[J]. Tlun Sohd Films, 1997, 295: 101-103.
    [67] 杨遇春.燃料电池及其相关材料新进展(三)[J].稀有金属,1999,23(6).
    [68] Xing L, Eckert J, Loser W. Local ordering upon crystallization of bulk amorphous alloys[J]. Ann Chiem Sci Mater, 2002, 27(5): 69-75.
    [69] 董相廷,郭弈柱,洪广言,等.超微LaMO_3(M=Fe,Cr,Mn,Co)的导电性与粒度的关系[J].科技通报,1994,10(5):277-280.
    [70] 朱新德.掺钙铬酸镧的烧结行为及导电性研究[D].济南:山东大学,2005.
    [71] 宋慎泰,刘开琪.特种陶瓷与耐火材料[M].北京:冶金工业出版社,2004,11:15-20.
    [72] Tsurumi, T., Ozawa, S., Abe, G., et al. Preparation of Pb(Zr_(0.53)Ti_(0.47))O_3 thick films by an interfacial polymerisation method on silicon substrates and their electric and piezoelectric properties[J]. Jpn. J. Appl. Phys., 2000, 39, 5604-5608.
    [73] Lukacs, M., Sayer, M., Foster, S.. High frequency ultrasonics using PZT sol-gel composites[J]. Intergrated Ferroelectrics, 1999, 24, 95-106.
    [74] J.M. Wimmer, I. Bransky, in: N. M. Tallan (Ed.), Electrical Conductivity in Ceramics and Glass, Pergamon Press, New York, 1971, Chap. 4.
    [75] 高文元,孙俊才.稀土复合掺杂钙钛矿型阴极材料制备工艺的研究[J].稀土,2005,26(3):30-34.
    [76] 刘晓梅,李坤,刘江,等.La_(1-x)Sr_xMnO_3阴极材料的制备及性能[J].吉林大学自然科学学报,1999,4:44-46.
    [77] 江金国,刘晓芳,石汝军.固体氧化物燃料电池材料的研究进展[J].现代技术陶瓷,2003(1):14-18.
    [78] 徐志弘,温廷琏,吕之弈.高温燃料电池阴极材料La(Sr)MnO_3的电导性能研究[J].无机材料学报,1994,9(4):489-492.
    [79] Katayama K, Ishihara T, Ohta H, et al. J. Ceram. Soc. Jpn. 1989, 97: 1324.
    [80] Lauret H, Caignol E, Hammou A. In: Gross, Zegers P, Singhal S C, et al, ed. Proceeding of the second Interational Symposium on Solid Oxide Fuel Cell. Luxembourg, 1991.479.
    [81] Ries A, Simoes A.Z, Cilense M, et al. Barium strontium titanate powder obtained by polymeric precursor method [J]. Materials Characterization, 2003, 50: 217.
    [82] 杨国平,李胜利,杨国明,等.掺锂对铬酸镧粉合成的影响[J].金属热处理,2005,30(11):16-18.
    [83] 张邦强.掺杂铬酸镧超细粉体的制备及低温烧结[D].济南:山东大学,2005.
    [84] 许前丰,严有为.前驱体溶液配比及pH值对溶胶-燃烧合成纳米MgO颗粒的影响[J].功能材料,2006,3(37):392-394.
    [85] A.J. Perry. Adhesion Studies of Ion-Plated TiN On Steel[J]. Thin Solid Films, 1981, 81(4): 357-366.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700