光催化氧化结合液相吸收处理氮氧化物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕着烟气氮氧化物氧化这一湿法脱硝的关键技术问题,重点研究了NO的光催化氧化技术。系统研究了TiO_2光催化剂制备工艺(溶胶-凝胶法,水热法),考察了过渡金属离子、贵金属离子掺杂对TiO_2光催化氧化NO活性的影响。最后,提出了一种光催化氧化结合液相吸收的湿法脱硝新工艺。
     首先,采用模拟烟气,考察了氮氧化物在光催化氧化体系中的反应特性,讨论了水蒸气含量、氧气含量等主要因素的影响。研究结果表明,NO的光催化氧化符合Langmuir-Hinshelwood动力学模型。傅立叶红外光谱的分析结果表明,催化剂表面的硝酸、亚硝酸沉积是造成催化剂失效的主要原因,500℃下30 min的灼烧是一种比较简便、有效的催化剂再生方式。
     其次,以氮氧化物的光催化氧化活性为考察指标,结合XRD、TEM、TG-DSC、SEM、UV-Vis等表征手段,系统研究了纳米TiO_2的溶胶-凝胶法制备工艺,主要研究对象包括钛水比、钛醇比、钛酸比以及灼烧温度等。研究发现,溶胶制备的工艺条件对TiO_2催化剂的结构和催化活性存在较大的影响。同时本文提出了一种在溶胶中加入空间填充物(纳米TiO_2)的复合TiO_2膜制备工艺。
     同时,结合XRD、TEM、TG-DSC、SEM、UV-Vis等表征手段,本文也平行研究了纳米TiO_2的水热法制备工艺对光催化氧化NO活性的影响。研究结果表明,存在较佳的水热温度、水热时间以及灼烧温度。
     基于以上研究基础,制备了不同过渡金属离子Zn~(2+)、Fe~(3+)、Cr~(3+)、Mn~(2+)和Mo~(6+)掺杂的TiO_2光催化剂,考察了制备方法、不同金属离子以及掺杂浓度对改性TiO_2光催化氧化NOx的性能影响。研究发现,溶胶-凝胶法以及浸渍沉淀法制各的Zn离子掺杂TiO_2,其NO的氧化性能得到了较大提高。同时还制备了不同贵金属离子Ag~+、Au~(3+)和Pt~(4+)表面沉积的TiO_2光催化剂,分别考察了不同贵金属离子以及不同贵金属离子沉积浓度对改性TiO_2光催化氧化NOx的性能影响。研究表明,Pt的表面沉积对TiO_2光催化氧化NO具有良好的促进作用。
     最后,本文提出了一种光催化氧化结合液相Na_2SO_3吸收的湿法脱硝工艺,对接近实际烟气中NOx浓度的模拟烟气进行处理,考察了光催化氧化以及液相吸收的关键影响因素对该脱硝工艺的脱硝效率的影响。研究表明,相对湿度、氧含量对整体的脱硝效率有较大的影响;Na_2S_2O_3的加入对Na_2SO_3的过度氧化具有良好的抑制效果。同时根据上述研究结果,探讨了该湿法脱硝工艺的反应机理。
For the wet absorption of nitrogen oxides (NOx) from flue gases, the main obstacle is its rather low efficiency, since the solubility of NO is quite low. Thus, the oxidation of NO to increase the solubility of NOx is the key technology in this process. This dissertation presented the theoretic and experimental study on the photocatalytic oxidation (PCO) of NO on TiO_2-based photocatalyst, which was prepared by different methods including sol-gel method and hydrothermal method. The effects of transition metal ion doping and noble metal ion doping on the photocatalytic activity were also investigated in this dissertation. Furthermore, a novel combined process combining the photocatalytic oxidation with the aqueous absorption was developed and experimentally studied.
     Firstly, the PCO behavior of NO at high concentrations was discussed. And the relationship between the reaction rate and several key factors (relative humidity, space time, inlet concentration, oxygen percentage) was also investigated. The experimental results illustrated that the reaction kinetic of NO photocatalytic oxidation fitted well with the Langmuir-Hinshelhood model. The results from Fourier transform infrared spectrometry (FT-IR) showed that the possible explanation for the catalyst deactivation was the deposition of nitric acid and nitrous acid on the TiO_2 surface. Fortunately, the activity of the photocatalyst could be regenerated with a simple efficient heat treatment (500℃, 30 min).
     Secondly, with the attention to photoactivity for NO oxidation, the optimization of the preparation conditions by sol-gel method and hydrothermal method was carried out in the dissertation. The characterizations for the physicochemical properties of the catalysts prepared under different conditions were investigated by XRD, TEM, TG-DSC, SEM and UV-Vis methods. It was found that the preparing conditions have great effects on the PCO activities of the catalysts. And the optimal values of the two preparing methods were discussed, respectively. Furthermore, the composite TiO_2 films (using Degussa P25 as filler) coating on the woven glass fabric were prepared by a modified sol-gel process, and the experimental results show that the photoactivity of composite TiO_2 film could have an obvious improvement compared to the single films.
     Thirdly, a series of transition metal ion-doped (such as Zn~(2+)、Fe~(3+)、Cr~(3+)、Mn~(2+) and Mo~(6+)) TiO_2 catalysts with different ion content had been prepared by sol-gel method or wet impregnation method. These catalysts were examined with respect to their photocatalytic activity under different preparing methods, metal ion types and the doping contents. An enhancement of the photocatalytic activity was accomplished for the Zn~(2+) doped TiO_2 catalysts which synthesized by sol-gel method or wet impregnation method. Also, a series of nano-sized noble metal ion-doped (Ag~+、Au~(3+) and Pt~(4+)) TiO_2 catalysts with different ion contents was prepared by a wet impregnation method and examined with the respect to their behaviors for the photocatalytic oxidation of NO. It was found that the Pt~(4+) doped TiO_2 catalyst had the highest photoactivity for NO, which was attributed to the lengthened lifetime of electron-hole pairs.
     Finally, a novel process combining photocatalytic oxidation with aqueous absorption was developed in this study for the treatment of nitrogen oxides from the simulated flue gases. In this process, sodium sulfite (Na_2SO_3) was employed as the absorbent. The effects of the operation parameters of this combined process (relative humidity, space time, inlet concentration, and so on) were investigated and the reaction mechanism was proposed. The results indicated that the relative humidity and oxygen percentage were the key factors of the combined process. And Na_2S_2O_3 was an excellent oxidation inhibitor to prevent the excessive oxidation of sulfite.
引文
[1] 郝吉明,马广大.大气环境与污染控制基础(第二版)[M],北京:高等教育出版社,2002.
    [2] Z.M. Liu, J. M. Hao, L. X. Fu, T. L. Zhu, J. H. Li, X. Y. Cui. Activity enhancement of bimetallic Co-In/Al_2O_3 catalyst for the selective reduction of NO by propenem[J]. Applied Catalysis B: Environmental, 2004, 48: 37-48.
    [3] Z. B. Wu, B. Q. Jiang, Y. Liu, H. Q. Wang, R. B. Jin. DRIFT study of manganese/titania-based catalysts for low-temperature selective catalytic reduction of NO with NH_3 [J]. Environmental Sciences & Technology, 2007, 41 (16): 5812-5817.
    [4] J.M. Bee'r. Combustion technology developments in power generation in response to environmental challenges[J]. Progress in Energy and Combustion Science, 2000, 26: 301-327.
    [5] M.T. Javed, N. Irfan, B. M. Gibbs. Control of combustion-generated nitrogen oxides by selective non-catalytic reduction[J]. Journal of Environmental Management, 2007, 83(3): 251-289.
    [6] C.L. Yang. Aqueous absorption of nitrogen oxides induced by oxychlorine compounds: a process development study for flue gas treatment[D]. New Jersey Institute of technology, USA, 1994.
    [7] Y.S. Mok. Absorption-reduction technique assisted by ozone injection and sodium sulfide for NOx removal from exhaust gas[J]. Chemical Engineering Journal, 2006, 118: 63-67.
    [8] D.S. Jin, B. R. Deshwal, Y. S. Park, H. K. Lee. Simultaneous removal of SO_2 and NO by wet scrubbing using aqueous chlorine dioxide solution[J]. Journal of Hazardous Materials, 2006, B135: 412-417.
    [9] T.W. Chien, H. Chu. Removal of SO_2 and NO from flue gas by wet scrubbing using an aqueous NaClO_2 solution[J]. Journal of Hazardous Materials, 2000, B80: 43-57.
    [10] H. Chu, T. W. Chien, S. Y. Li. Simultaneous absorption of SO_2 and NO from flue gas with KMnO_4/NaOH solutions[J]. The Science of the Total Environment, 2001,275:127-135.
    [11] M. M. Collins, C. D. Cooper, J. D. Dietz, C. A. Clausen Ⅲ, L. M. Tazi. Pilot-scale evaluation of H_2O_2 injection to control NOx emissions[J]. Journal of Environmental Engineering, 2001, 127: 329-336.
    [12] H. Tada, T. Mitsui, T. Kiyonaga, T. Akita, K. Tanaka. All-solid-state Z-scheme in CdS-Au-TiO_2 three-component nanojunction system[J]. Nature Materials, 2006, 5(10): 782-786.
    [13] X. Chen, S. S. Mao. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications[J]. Chemical Reviews, 2007, 107, 2891-2959.
    [14] H.Y. Zhu, Y. Lan, X. P. Gao, S. P. Ringer, Z. F. Zheng, D. Y. Song, J. C. Zhao. Phase Transition between Nanostructures of Titanate and Titanium Dioxides via Simple Wet-Chemical Reactions[J]. Journal of the American Chemical Society, 2005, 127: 6730-6736.
    [15] S. Devahasdin, C. Fan, K. Li, D. H. Chen. TiO_2 photocatalytic oxidation of nitric oxide: transient behavior and reaction kinetics[J]. Journal of Photochemistry and Photobiology A: chemistry. 2003.156:161-170.
    [16] 黄浪欢,曾令可,罗民华.TiO_2光催化脱除NOx的研究进展[J].环境污染治理技术与设备,2001,2(4):60-64。
    [17] 童志权,陈焕钦.工业废气污染控制与利用[M].北京:化学工业出版社,1989.
    [18] X.L. Tang, J. M. Hao, H. H. Yi, J. H. Li. Low-temperature SCR of NO with NH_3 over AC/C supported manganese-based monolithic catalysts[J]. Catalysis Today, 2007, 126: 406-411.
    [19] X.L. Zhang, Y. B. Yu, H. He. Effect of hydrogen on reaction intermediates in the selective catalytic reduction of NOx by C_3H_6[J]. Applied Catalysis B: Environmental, 2007, 76: 241-247.
    [20] Y.B. Yu, H. He, Q. C. Feng. Novel enolic surface species formed during partial oxidation of CH_3CHO, C_2H_5OH, and C_3H_6 on Ag/Al_2O_3: an in situ DRIFTS study[J]. Journal of Physical Chemistry B, 2003, 107:13090-13092.
    [21] P. Forzatti. Present status and perspectives in de-NOx SCR catalysis[J]. Applied Catalysis A: General, 2001,222: 221-236.
    [22] J.H. Li, J. M. Hao, L. X. Fu, T. L. Zhu, Z. M. Liu, X. Y. Cui. Cooperation of Pt/Al_2O_3 and In/Al_2O_3 catalysts for NO reduction by propene in lean burn condition[J]. Applied Catalysis A: General, 2004, 265: 43-52.
    [23] Y.B. Yu, X. L. Zhang, H. He. Evidence for the formation, isomerization and decomposition of organo-nitrite and -nitro species during the NOx reduction by C-3H_6 on Ag/Al_2O_3[J]. Applied Catalysis B: Environmental, 2007, 75: 298-302.
    [24] M. Oliva, M. U. Alzueta, A. Millera, R. Bilbao. Theoretical study of the influence of mixing in the SNCR process: Comparison with pilot scale data[J]. Chemical Engineering Science, 2000, 55: 5321-5332.
    [25] W.B. Sang, A. R. Seon, D. K. Sang. NO removal by reducing agents and additives in the selective non-catalytic reduction (SNCR) process[J]. Chemosphere, 2006, 65: 170-175.
    [26] M.T. Javed, N. Irfan, B. M. Gibbs. Control of combustion-generated nitrogen oxides by selective non-catalytic reduction[J]. Journal of Environmental Management, 2007, 83: 251-289.
    [27] V.R.Kotler.日本火电厂降低氮氧化物排放量的措施[J].国际电力,1999,3:57-61.
    [28] 滕加伟,宋庆英,于岚,卢文奎,陈庆龄.催化法脱除NOx的研究进展[J].环境污染治理技术与设备.2000.1(1):38-45.
    [29] A. Amirnazmi, J. E. Benson, M. Boudart, Oxygen inhibition in the decomposition of NO on metal oxides and platinum[J]. Journal of Catalysis, 1973, 30: 55-65.
    [30] Y. Teraoka, H. Fukuda, S. Kagawa. Catalytic activity of perovskite-type oxides for the direct decomposition of nitrogen monoxide[J]. Chemistry Letters, 1990, 19: 1-4.
    [31] M. Iwamoto, H. Yahiro. Novel catalytic decomposition and reduction of NO[J]. Catalysis Today, 1994, 22: 5-18.
    [32] S. Kagawa, H. Ogawa, H. Furukawa, Y. Teraoka. Cocation effect in catalytic property of copper ion-exchanged ZSM-5 zeolites for the direct decomposition of nitrogen monoxide[J]. Chemistry Letters, 1991, 20: 407-409.
    [33] 严艳丽,魏玺群.NOx的脱除及回收技术[J].低温与特气,2000,18(4):24-30。
    [34] W. Klose,S.Rincon.Adsorption and reaction of NO on activated carbon in the presence of oxygen and water vapor[J].Fuel:2007,86:203-209.
    [35] J.Muslehiddinoglu,M.A.Vannice.Adsorption ofNO on promoted Ag/α-Al_2O_3 catalysts[J]. Journal of Catalysis,2003,217:442-456.
    [36] 何志桥,王家德,陈建孟.生物法处理NOx废气的研究进展[J].环境污染防治与设备,2002,3(9):59-62.
    [37] W. R Flanagana, W. A. Apelb, J.M. Barnesb, B. D. Lee. Development of gas phase bioreactors for the removal of nitrogen oxides from synthetic flue gas streams[J]. Fuel, 2002, 81: 1953-1961.
    [38] G. Samdam. Microbes nosh on NOx in flue gas[J]. Chemical Engineering, 1993,100: 25-26.
    [39] 王兰新.烟气脱硫脱硝的进展[J].化学研究与应用,1997,9(4):413-419.
    [40] S. Masuda. Control of NOx by positive and negative pulsed corona discharge[J]. IEEE/IAS Annual Conference, 1986, 1173-1182.
    [41] 魏恩宗,林赫,高翔,骆仲泱,倪明江,岑可法.燃煤锅炉烟气NOx污染等离子体治理技术[J].环境污染治理技术与设备,2003,4(1):58-62.
    [42] 马双忱,赵毅,陈颖敏.液相催化氧化脱除烟气中SO_2和NOx的机理讨论[J].华北电力大学学报,2001,28(4):75-79.
    [43] R. M. Counce, D. B. Crawford. Proformance models for NOx absorbers/strippers[J]. Environmental Progress, 1990, 9(2): 87-92.
    [44] 王琼,胡将军,邹鹏.NaClO_2湿法烟气脱硫脱硝技术研究[J].电力环境保护,2005,21(2):4-6.
    [45] 魏林生,周俊虎,王智化,岑可法.臭氧氧化结合化学吸收同时脱硫脱硝的研究[J].动力工程,2006,26(4):563-567.
    [46] 王智化,周俊虎,温正城,张彦威,岑可法.利用臭氧同时脱硫脱硝过程中NO的氧化机理研究[J].浙江大学学报(工学版),2007,41(5):765-769.
    [47] 王智化,周俊虎,魏林生,温正城,岑可法.用臭氧氧化技术同时脱除锅炉烟气中NOx及SO_2的试验研究[J].中国电机工程学报,2007,27(11):1-5.
    [48] Y. S. Mok, H. J. Lee. Removal of sulfur dioxide and nitrogen oxides by using ozone injection and absorption-reduction technique[J]. Fuel Processing Technology, 2006, 87: 591-597.
    [49] BOC Gas Solution, Final report for low temperature oxidation system demonstration, California Airsources board Innovative Clean Air Technology Grant ICAT99-2, 2001.
    [50] T. Ibusuki, K. Takeuchi. Removal of low concentration of nitrogen oxides through photoassisted heterogeneous catalysis[J]. Journal of Molecular catalyst, 1994, 88: 93-102.
    [51] K. Hashimoto, K. Wasada, M. Osaki, E. Shono, K. Adachi, N. Toukai, H. Kominami, Y. Kera. Photocatalytic oxidation of nitrogen oxide over titania-zeolite composite catalyst to remove nitrogen oxides in the atmosphere[J]. Applied Catalysis B: Environmental, 2001, 30: 429-436.
    [52] I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, K.Takeuchi. Role of oxygen vacancy in the plasma-treated TiO_2 photocatalyst with visible light activity for NO removal[J]. Journal of Molecular Catalysis A: chemical, 2000, 161: 205-212.
    [53] H. Ichiura, T. Kitaoka, H. Tanaka. Photocatalytic oxidation of NOx using composite sheets containing TiO_2 and a metal compound[J]. Chemosphere, 2003, 51: 855-860.
    [54] J. S. Dalton, P. A. Janes, N. G. Jones, J. A. Nicholson, K. R. Hallam, G. C. Allen. Photocatalytic oxidation of NOx gases using TiO_2: a surface spectroscopic approach[J]. Environmental Pollution, 2002, 120:415-422.
    [55] F.B. Li, X. Z. Li, C. H. Ao, M. F. Hou, S. C. Lee. Photocatalytic conversion of NO using TiO_2-NH_3 catalysts in ambient air environment[J]. Applied Catalysis B: Environmental, 2004, 54: 275-283.
    [56] S. Matsuda, H. Hatano. Photocatalytic removal of NOx in a circulating fluidized bed system[J]. Powder Technology, 2005, 151: 61-67.
    [57] S. Matsuda, H. Hatano, A. Tsutsumi. Ultrafine particle fluidization and its application to photocatalytic NOx treatment[J]. Chemical Engineering Journal, 2001, 82: 183-188.
    [58] 徐安武,刘汉钦,李玉光.NOX气相光催化氧化降解研究[J].高等学校化学学报,2000,21(8):1252-1256.
    [59] S. Devahasdin, TiO_2 photocatalytic oxidation of nitric oxide: reaction parameters and kinetics[D]. Lamar University, USA, 2000.
    [60] S. Barman, L. Philip. Integrated System for the treatment of oxides of nitrogen from flue gases[J]. Environmental Sciences & Technology, 2006, 40: 1035-1041.
    [61] N. Suzuki, K. Nishimura, O. Tokunaga. Radiation treatment of waste gases: Part Ⅻ, Nitric oxide removal in moist nitric oxide-sulfur dioxide-oxygen-nitrogen[J]. Journal of Nuclear Science and Technology, 1980, 17: 822-827.
    [62] 赵海红,谢国勇.燃煤烟气SOx/NOx污染控制技术[J].化学工业与工程技术,2004,25(1):26-29.
    [63] 沈迪新.用含碱黄磷乳浊液同时净化烟气中NOx和SO_2[J].中国环保产业,2002,8:30-31.
    [64] S.G. Chang, G. C. Lee. LBL PhoSNOx process for combined removal of SO_2 and NOx from flue gas[J]. Environmental Progress, 1992, 11: 66-73.
    [65] H. Chu, T. W. Chien, B. W. Twu. The absorption kinetics of NO in NaClO_2/NaOH solutions[J]. Journal of Hazardous Materials, 2001, 84: 241-252.
    [66] 童志权,尹华,陈伟路.液相连续催化氧化碱吸收氮氧化物[J].湘潭大学自然科学学报,1992,14(4):126-131.
    [67] 马双忱,赵毅,郑福玲,王淑勤.液相催化氧化脱除烟道气中SO_2和NOx的研究[J].中国环境科学,2001,21(1):33-37.
    [68] 赵毅,马双忱,李燕中,赵建海,付延春.利用粉煤灰吸收剂对烟气脱硫脱氮的实验研究[J].中国电机工程学报,2002,22(3):108-112.
    [69] J. Hofele, D. V. Velzen, H. Langenkamp, K. Schaber. Absorption of NO in aqueous solutions of FeIINTA: determination of the equilibrium constant[J]. Chemical Engineering and Processing, 1996, 35: 295-300.
    [70] 童志权.工业废气净化与利用[M].北京:化学工业出版社,2001.
    [71] 钟秦,吕喆,陈迁乔.可再生半胱氨酸亚铁溶液同时脱除SO_2和NOx[J].南京理工大学学报,2000,24(5):441-444.
    [72] X. Long, W. Xiao, W. Yuan. Removal of Nitric Oxide and Sulfur Dioxide from Flue Gas Using a Hexamminecobalt(Ⅱ)/Iodide Solution[J]. Industrial and Engineering Chemistry Research, 2004, 43: 4048-4053.
    [73] X. Long, Z. Xin, H. Wang, W. Xiao, W. Yuan. Simultaneous removal of NO and SO_2 with hexaminecobalt (Ⅱ) solution coupled with the hexamminecobalt(Ⅱ) regeneration catalyzed by activated carbon[J]. Applied Catalysis B: Environmental, 2004, 54: 25-32.
    [74] H. Takeuchi, Y. Yamanaka. Simultaneous absorption of SO_2 and NO_2 in aqueous solutions of NaOH and Na_2SO_3[J]. Industrial & Engineering Chemistry Product Design and Development, 1978, 17: 389-393.
    [75] T. L. Nunes, R. E. Powell. Kinetics of the Reaction of Nitric Oxide with Sulfite[J]. Inorganic Chemistry, 1970, 9: 1916-1917.
    [76] 赵建荣.湿法吸收法处理氮氧化物废气[J].江苏环境科技,1999,12(4):9-11.
    [77] 曹忠宇.氮氧化物危害及其防治措施初探[J].云南环境科学,1996,15(2):38-40.
    [78] 赵由才,徐迪民.钼硅酸化学吸收同时去除气流中的SO_2和NOx[J].同济大学学报:自然科学版,1995,23(4):403-407.
    [79] R. Belanger, J. B. Moffat. The sorption and reduction of nitrogen oxides by 12-tungstophosphoric acid and its ammonium salt[J]. Catalysis Today, 1998, 40: 297-306.
    [80] A. Fujishima, K. Honda. Electrochemical photolysis of water at a semiconducting n-type TiO_2 electrode[J]. Nature, 1972, 238: 37-38.
    [81] S.N. Frank, A. J. Bard. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solution at TiO_2 powder[J]. Journal of the American Chemical Society, 1977, 99: 303-304.
    [82] S.N. Frank, A. J. Bard. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders[J]. Journal of Physical Chemistry, 1977, 81: 1484-1488.
    [83] A. Mills, S. L. Hunte. An overview of semiconductor photocatalysis[J]. Journal of photochemistry and photobiology A: chemistry, 1997, 108: 1-35.
    [84] M. Kitano, M. Matsuoka, M. Ueshima, M. Anpo. Recent developments in titanium oxide -based photocatalysts[J]. Applied Catalysis A: General, 2007, 325: 1-14.
    [85] H.Y. Zhu, X. P. Gao, Y. Lan, D. Y. Song, Y. X. Xi, J. C. Zhao. Hydrogen titanate nanofibers covered with anatase nanocrystals: a delicate structure achieved by the wet chemistry reaction of the titanate nanofibers[J]. Journal of the American Chemical Society, 2004, 126: 8380-8381.
    [86] J.G. Yu, J. C. Yu, M. K. P. Leung, W. K. Ho, B. Cheng, X. J. Zhao, J. C. Zhao. Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania[J]. Journal of Catalysis, 2003, 217: 69-78.
    [87] H. M. Zhang, X. Quan, S. Chen, H. M. Zhao. Fabrication and characterization of silica/titania nanotubes composite membrane with photocatalytic capability[J]. Environmental Sciences & Technology, 2006, 40: 6104-6109.
    [88] X. Quan, S. G. Yang, X. L. Ruan, H. M. Zhao. Preparation of Titania Nanotubes and Their Environmental Applications as Electrode[J]. Environmental Sciences & Technology, 2005, 39: 3770-3775.
    [89] M. Gratzel. Heterogeneous Photochemical Electron Transfer[M]. CRC Press, Inc., Boca Raton, Florida, 1989.
    [90] A. Fujishima, T. N. Rao, D. A. Tryk. Titanium dioxide photocatalysis[J]. Journal of Photochemistrv and Photobinlogy C: Photochemistry Reviews, 2001,1: 1-21.
    [91] 孙德智,于秀娟,冯玉杰.环境工程中的高级氧化技术[M].北京:化学工业出版社,2002.
    [92] U. Diebold. The surface science of titanium dioxide[J]. Surface Science Reports, 2003, 48: 53-229.
    [93] R.F. Howe, M. Gratzel. EPR observation of trapped electrons in colloidal TiO_2[J]. Journal of Physical Chemistry, 1985, 89: 4495-4499.
    [94] R. Rothenberger, J. Moser, M. Gratzel, N. Serpone, D. K. Sharma. Charge carrier trapping and recombination dynamics in small semiconductor particles[J]. Journal of the American Chemical Society. 1985. 107: 8054-8059.
    [95] 吴迪,王鼎聪,赵德智.纳米二氧化钛的制备工艺与应用进展[J].河北化工,2005,2:8-12.
    [96] M. Burgos, M. Langlet. Condensation and densification mechanism of sol-gel TiO_2 layers at low temperature[J]. Journal of Sol-Gel Science and Technology, 1999, 16: 267-276.
    [97] C. Legrand-Buscema, C. Malibert, S. Bach. Elaboration and characterization of thin films of TiO_2 prepared by sol-gel process[J]. Thin Solid Films, 2002, 418: 79-84.
    [98] Y. Djaoued, S. Badilescu, P. V. Ashrit. Low temperature sol-gel preparation of nanocrystalline TiO_2 thin films[J]. Journal of Sol-Gel Science and Technology, 2002, 24: 247-254.
    [99] M. Keshmiri. Composite sol-gel process for photocatalytic titanium dioxide[D]. University of British Columbia, Canada, 2004.
    [100] S. Music, M. Gotic, M. Ivanda, S. Popovic, A. Turkovic, R. Trojko, A. Sekulic, K. Furic. Chemical and microstructural properties of TiO_2 synthesized by sol-gel procedure[J]. Materials Science & Engineering, 1997, B47: 33-40.
    [101] W. W. So, S. B. Park, S. J. Moon. The crystalline phase of titania particles prepared at room temperature by a sol-gel method[J]. Journal of Materials Science Letters, 1998, 17: 1219-1222.
    [102] D. Vorkapic, T. Matsoukas. Effect of temperature and alcohols in the preparation of titania nanoparticles fromalkoxides[J]. Journal of American Ceramic Society,1998, 81: 2815-2820.
    [103] 施尔畏.水热法的应用与发展[J].无机材料学报,1996,11(2):193-206.
    [104] 郑燕青,施尔畏,元如林,李汶军,王步国,仲维卓,胡行方.二氧化钛晶粒的水热制备及其形成机理研究[J].中国科学,1999,29(3):206-213.
    [105] J. Ovenstone, K. Yanagisawa. Effect of hydrothermal treatmant of amorphous titania on the phase change from anatase to rutile during calcination[J]. Chemistry of Materials, 1999, 11: 2770-2774.
    [106] K. Yanagisawa, J. Ovenstone. Crystallization of anatase from amorphous titania using the hydrothermal technique: effects of starting material and temperature[J]. Journal of Physical Chemistry B, 1999, 103: 7781-7787.
    [107] X. Deng, Y. Yue, Z. Gao. Gas-phase photo-oxidation of organic compounds over nanosized TiO_2 photocatalysts by various preparations[J]. Applied Catalysis B: Environmental, 2002, 39: 135-147.
    [108] Y. Zheng, E. Shi, Z. Chen, W. Li, X. Hu. Influence of solution concentration on the hydrothermal preparation of titania crystallites[J]. Journal of Material Chemistry, 2001, 11: 1547-1551.
    [109] 方晓明,瞿金清,陈焕钦.液相沉淀法制备纳米TiO_2粉体[J].中国陶瓷,2001,37(5):39-41.
    [110] S. Nad, E Sharma, I. Roy, A. Maitra. Anomalous nanostructured titanium dioxide[J]. Journal of Colloid and Interface Science, 2003, 264: 89-94.
    [111] E. Stathatos, D. Tsiourvas, R Llanos. Titanium dioxide films made from reverse micelles and their use for the photocatalytic degradation of adsorbed dyes[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 149: 49-56.
    [112] D. Liu, J. Zhang, B. Han, J. Chen, Z. Li, D. Shen, G. Yang. Recovery of TiO_2 nanoparticles synthesized in reverse micelles by antisolvent CO_2[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 227: 45-48.
    [113] 唐剑文,吴平霄,曾少雁,刘云.二氧化钛可见光光催化刑研究进展[J].现代化工,2005,25(2):25-28.
    [114] 孙晓君,蔡伟民,井立强,周德瑞,沈雄飞,王志平.二氧化钛半导体光催化技术研究进展[J].哈尔滨工业大学学报,2001,33(4):534-541.
    [115] R Salvador, M. L. G. Gonzaiez. Catalytic role of lattice defect in the photoassisted oxidation of water at (001) n-TiO_2 futile[J]. Journal of Physical Chemistry, 1992, 96:10349-10353.
    [116] M. R. Dhananjeyan, V. Kandavelu, R. Renganathan. A study on the photocatalytic reactions of TiO_2 with certain pynmldlne bases: effects of dopant (Fe~(3+)) and calcinations[J]. Journal of Molecular Catalysis A: Chemical, 2000, 151: 217-223.
    [117] K. Wilke, H. D. Breuer. The influence of transition metal doping on the physical and photocatalytic properties of titania[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1999, 121: 49-53.
    [118] 刘畅,暴宁钟,杨祝红,陆小华.过渡金属离子掺杂改性TiO_2的光催化性能研究进展[J].催化学报,2001,22.215-218.
    [119] W. Choi. The role of metal ion dopants in quantum-size TiO_2: correlation between photoreactivity and charge carrier recombinnation dynamics[J]. Journal of Physical Chemistry, 1994, 98: 13669-13679.
    [120] M, Gratzel, H. Russellf. Electron paramagnetic resonance studies of doped TiO_2 colloids[J]. Journal of Physical Chemistry,1990, 94: 2566-2572.
    [121] Z. B. Zhang, C. C. Wang, R. Zakpia. Role of particle size in nanocrystalline TiO_2-based photocatalvsts[J]. Journal of Physical Chemistry B, 1998 102:10871-10878.
    [122] 沈伟韧,赵文宽,贺飞,方佑龄.TiO_2光催化反应及其在废水处理中的应用[J].化学进展,1998,10(4):349-361.
    [123] A. Sclapani. Influence of silver deposits on the photocatalytic activity of titania[J]. Journal of Catalyst, 1997, 168: 117-120.
    [124] 程沧沧,李太友.载银TiO_2光催化降解2,4-二氯苯酚水溶液的研究[J].环境科学研究,1998,11(6):27-29.
    [125] A. Linsebigler, C. Rusu. Absence of platinum enhancement of a photoreaction on TiO_2-CO photooxidation on Pt/TiO_2 (110)[J]. Journal of American Chemistry Society, 1996, 118: 5284-5289.
    [126] E. Sanches, T. Lopex. Synthesis and characterization of sol-gel Pt/TiO_2 catalyst[J]. Journal of Solid State Chemistry, 1996, 122:309-314.
    [127] 姚晓斌.Ag和Pd及其离子对TiO_2光催化分解CH_3CHO的影响[J].感光科学与光学,1999,17(1):12-15.
    [128] T. Sasaki, N. Koshizaki, J. W. Yoon, K.M. Beck. Preparation ot Pt/TiO_2 nanocomposite thin films by pulsed laser deposition and their photoelectrochemical behaviors[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2001,145: 11-16.
    [129] H. M. Sung-Suh, J.R. Choi, H. J. Hah, S.M. Koo, Y. C. Bae. Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO_2 under visible and UV light irradiation[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004,163: 37-44.
    [130] R. Vogel. Quantum-sized PbS, CdS, Ag_2S, Sb_2S_3 and Bi_2S_3 particles as sensitizers for various nanoporous wide-bandgap semiconductors[J]. Journal of Physical Chemistry,1994, 98: 3183-3191.
    [131] W. Zhao, W. H. Ma, C. C. Chen, J. C. Zhao, Z. G. Shuai. Efficient degradation of toxic organic pollutants with Ni_2O_3/TiO_2-xBx under visible irradiation[J]. Journal of the American Chemical Society, 2004, 126: 4782-4783.
    [132] D. Liu, P.V. Kamat. Electrochemical rectification in CdSe+TiO_2 coupled semiconductor films[J]. Journal of Electroanal Chemistry, 1993, 347: 451-460.
    [133] I. Bedja, R V. Kamat. Capped semiconductor colloids synthesis and photoelectrochemical behavior of TiO_2-capped SnO_2 nanocrystallines[J]. Journal of Physical Chemistry, 1995, 99: 9182-9188.
    [134] Y. R. Do, W. Lee, K. Dwight, A. Wold. The effect of WO_3 on the photocatalytic activity of TiO_2[J]. Journal of Solid State Chemistry, 1994,108:198-201.
    [135] M. Holgado, A. Cintas, M. Ibisate, C. J. Serna, C. Lopez, F. Meseguer. Three-dimensional arrays formed by monodisperse TiO_2 coated on SiO_2 spheres[J]. Journal of Colloid Interface Sciences, 2000, 229: 6-11.
    [136] Z. Ding, G. Q. Lu, F. Greenfield. A kinetic study on photocatalytic oxidation of phenol in water by sillica-dispersed titania nanoparticles[J]. Journal of Colloid Interface Sciences, 2002, 232: 1-9.
    [137] 彭晓春,陈新庚,黄鹄,李明光.n-TiO_2光催化机理及其在环境保护中的应用研究进展[J].环境污染治理技术与设备,2002,3(3):1-6.
    [138] A. Fernandez, G. Lassaletta, V. M. Jimenez, A. Justo, A. R. Gonzalez-Elipe, J. M. Herrmann, H. Tahiti, Y. Ait-Ichou. Preparation and characterization of TiO_2 photocatalysts supported on various rigid supports[J]. Applied Catalysis B: Environmental, 1995, 7: 49-53.
    [139] 徐明霞,徐延献,刘宁.由TiOSO_4水解-沉淀制备TiO_2薄膜[J].硅酸盐学报,1997,25(2):209-213.
    [140] K. Yuichi, S. Hiroki, T. Shigeru. A new measurement methods for nitrogen oxides in the air using an annular diffusion scrubber coated with titanium dioxide[J]. Atmosphere environment,1999, 33: 4363-4371.
    [141] J. Zhao, X. D. Yang. Photocatalytic oxidation for indoor air purification: a literature review[J]. Buinding and environment, 2003, 38: 645-654.
    [142] J. Shang, Y. G. Du, Z. L. Xu. Photocatalytic oxidation of heptane in the gas-phase over TiO_2[J]. Chemosphere, 2002, 46: 93-99.
    [143] H. L.Tak, M. J. Sang, D. K. Sang, G. Janos. Photocatalytic decomposition of NO by TiO_2 particles[J]. Journal of photochemistry and photobiology A: chemistry, 2000, 134:209-217.
    [144] H. Keiji, W. Kazuhiko, T. Naoji, K. Hiroshi, K. Yoshiya. Photocatalytic oxidation of nitrogen monoxide over titanium (IV) oxide nanocrystals large size areas[J]. Journal of photochemistry and photobiology A: chemistry, 2000, 136:103-109.
    [145] 胡娟,邓建刚,何水样,畅柱国,赵建社,刘建宁.纳米级二氧化钛制备方法的比较研究[J].材料科学与工程,19:71-74.
    [146] 廖东亮,肖新颜,张会平,万彩霞,陈焕钦.溶胶-凝胶法制备纳米二氧化钛的工艺研究[J].化学工业与工程,2003,20(5):256-260.
    [147] D. Robert, J. V. Weber. Titanium dioxide synthesis by sol gel methods and evaluation of their photocatalytic activity[J]. Journal of Materials Sciences Letters, 1999, 18: 97-98.
    [148] R. S. Sonawane, S. G. Hegde, M. K. Dongare. Preparation of titanium(IV) oxide thin film photocatalyst by sol-gel dip coating[J]. Materials Chemistry and Physics, 2002, 77: 744-750.
    [149] C. Su, B. Y. Hong, C. M. Tseng. Sol-gel preparation and photocatalysis of titanium dioxide[J]. Catalysis Today, 2004, 96:119-126.
    [150] M. Hirano, C. Nakahara, K. Ota, O. Tanaike, M. Inagaki. Photoactivity and phase stability of ZrO_2-doped anatase-type TiO_2 directly formed as nanometer-sized particles by hydrolysis under hydrothermal conditions[J]. Journal of Solid State Chemistry, 2003, 170: 39-47.
    [151] S. Doeuff, M. Henry, C. Sanchez, J. Livage. Hydrolysis of titanium alkoxides: modification of the molecular precursor by acetic acid[J]. Journal of Non-Crystalline Solids, 1987, 89: 206-216.
    [152] 陈奇,崔景巍,宋鹏,陈玮,周梅芳,张燕娟.Ti(OC_4H_9)4水解制备TiO_2纤维的凝胶化和热处理研究[J].无机材料学报,1991,6(2):249-256.
    [153] 高基伟.宽光谱激发的锐钛矿溶胶的低温制备及结构、性能表征[D].浙江大学,浙江,2006.
    [154] 尹荔松,周歧发,唐新桂,林光明,张进修.溶胶-凝胶法制备纳米TiO_2的胶凝过程机理研究[J].功能材料,1999,30(4):407-409.
    [155] 程小苏,曾令可,黄浪欢,王慧.TiO_2光催化剂的制备过程与配方优化[J].华南理工大学学报(自然科学版),2003,31(2):14-18.
    [156] S. Doeuff, M. Henry, C. Sanchez. Sol-gel synthesis and characterization of titanium oxo-acetate polymers[J]. Materials Research Bulletin, 1990, 25:1519-1529.
    [157] J. C. Yu, J. Yu, W. Ho, Z. Jiang, L. Zhang. Effects of F~- doping on the photocatalytic activity and microstructures of nanocrystalline TiO_2 powders[J]. Chemistry of Materials, 2002, 14:3808 -3816.
    [158] J. Yu, X. Zhao, Q. Zhao. Effect of surface structure on photocatalytic activity of TiO_2 thin films prepared by sol-gel method[J]. Thin Solid Films, 2000, 379: 7-14.
    [159] D. Ulrike. The surface science of titanium dioxide[J]. Surface Science Reports, 2003, 48: 53-229.
    [160] G. Colon, M. C. Hidalgo, G. Munuera, I. Ferino, M. G. Cutrufello, J. A. Navio. Structural and surface approach to the enhanced photocatalytic activity of sulfated TiO_2 photocatalyst[J]. Applied Catalysis B: Environmental, 2006, 63: 45-59.
    [161] T. Wen, J. Gao, J. Shen. Preparation and characterization of TiO_2 thin films by the sol-gel process[J]. Journal of Materials Science, 2001, 36: 5923-5926.
    [162] S. Horikoshi, N. Watanabe, H. Onishi, H. Hidaka, N. Serpone. Photodecomposition of a nonylphenol polyethoxylate surfactant in a cylindrical photoreactor with TiO_2 immobilized fiberglass cloth[J]. Applied Catalysis B: Environmental, 2002, 37:117-129.
    [163] D. C. Hurum, A. G. Agrios, K. A. Gray, T. Rajh, M. Thumauer. Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO_2 using EPR[J]. Journal of Physical Chemistry B, 2003, 107: 4545-4549.
    [164] G. Balasubramanian, D. D. Dionysiou, M. T. Suidan, I. Baudin, J. M. Laine. Evaluating the activities of immobilized TiO_2 powder films for the photocatalytic degradation of organic contaminants in water[J]. Applied Catalysis B: Environmental, 2004, 47: 73-84.
    [165] H. Kozuka, Y. Takahashi, G. Zhao, T. Yoko. Preparation and photoelectrochemical properties of porous thin films composed of submicron TiO_2 particles[J]. Thin Solid Films, 2000,358:172-179.
    [166] S. Y. Chae, M. K. Park, S. K. Lee, T. Y. Kim, S. K. Kim, W. I. Lee. Preparation of size-controlled TiO_2 nanoparticles and derivation of optically transparent photocatalytic film[J]. Chemistry of Materials, 2003,15: 3326-3331.
    [167] M. Lazzeri, A. Vittadini, A. Sellonil. Structure and energetics of stoichiometric TiO_2 anatase surfaces[J]. Physical Review B, 2001, 63: 155409-1-155409-9.
    [168] J. G. Yu, G H. Wang, B. Cheng, M. H. Zhou. Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO_2 powders[J]. Applied Catalysis B: Environmental, 2006, 69: 171-180.
    [169] M. Toyoda, Y. Nanbu, Y. Nakazawa, M. Hirano, M. Inagaki. Effect of crystallinity of anatase on photoactivity for methyleneblue decomposition in water[J]. Applied Catalysis B: Environmental, 2004,49: 227-232.
    [170] J. Ovenstone. Preparation of novel titania photocatalysts with high activity[J]. Journal of Materials Science, 2001, 36: 1325-1329.
    [171] J. D. Robert, Z. Liu. Titania-silica: a model binary oxide catalyst system[J]. Chemistry of Materials, 1997,9:2311-2324.
    [172] C. Beck, T. Mallat, T. Burgi, A. Baiker. Nature of active sites in Sol-Gel TiO_2-SiO_2 epoxidation catalysts[J]. Journal of Catalysis, 2001, 204: 428- 439.
    [173] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga. Visible-Light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293: 269-271.
    [174] K. Hiroshi, M. Takeshi, I. Kunihiro, O. Bunsho, N. Sei-ichi, K. Yoshiya. Ultra-highly active titanium(IV) oxide photocatalyst prepared by hydrothermal crystallization from titanium(IV) alkoxide in organic solvents[J]. Chemistry letters, 1995, 24: 693-694.
    [175] A. D. Paola, G. Marci, L. Palmisano, M. Schiavello, K. Uosaki, S. Ikeda, B. Ohtani. Preparation of polycrystalline TiO_2 photocatalysts impregnated with various transition metal ions: characterization and photocatalytic activity for the degradation of 4-Nitrophenol[J]. Journal of Physical Chemistry B, 2002, 106: 637-645.
    [176] X. Z. Ding, X. H. Liu, Y. Z. He. Stouctural evolation of gel-derived nanocrystalline titania powder doped with ferric oxide[J]. Journal of Materials Science Letters, 1996, 15: 1392-1394.
    [177] C. C. Hsu, N. L. Wu. Synthesis and photocatalytic activity of ZnO/ZnO_2 composite[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 172: 269-274.
    [178] R. H. Michael, T. M. Scot, C. Wonyong, W. B. Detlef. Environmental applications of semiconductor photocatalysis[J]. Chemical Reviews, 1995, 95: 69-96.
    [179] C. Wonyong, T. Andreas, R. H. Michael. The role of metal ion dopants in quantum-sized TiO_2: correlation between photoreactivity and charge carrier recombination dynamics[J]. Journal of Physical Chemistry, 1994,98: 13669-13679.
    [180] X. Z. Li, F. B. Li, C. L. Yang, W. K. Ge. Photocatalytic activity of WOx-TiO_2 under visible light irradiation[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 141: 209-217.
    [181] O. Teruhisa, T. Fumihiro, F. Kan, 1. Shinobu, M. Michio. Photocatalytic oxidation of water by visible light using ruthenium-doped titanium dioxide powder[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1999, 127: 107-110.
    [182] A. W. Xu, Y. Gao, H. Q. Liu. The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO_2 nanoparticles[J]. Journal of Catalysis, 2002, 207: 151-157.
    [183] C. He, Y. Yu, X. Hu, L. Andre. Influence of silver doping on the photocatalytic activity of titania films[J]. Applied Surface Science, 2002, 200: 239-247.
    [184] S. Yamazaki, N. Fujinaga, F. Araki. Effect of sulfate ions for sol-gel synthesis of titania photocatalyst[J]. Applied Catalysis A: General, 2001, 210: 97-102.
    [185] L. Q. Jing, X. J. Sun, B. F. Xin, B. Q. Wang, W. M. Cai, H. G. Fu. The preparation and characterization of La doped TiO_2 nanoparticles and their photocatalytic activity[J]. Journal of Solid State Chemistry, 2004, 177: 3375-3382.
    [186] L. Q. Jing, Z. L. Xu, X. J. Sun, J. Shang, W. M. Cai. The surface properties and photocatalytic activities of ZnO ultrafine particles[J]. Applied Surface Science, 2001, 180: 308-314.
    [187] J. G. Yu, X. J. Zhao, Q. N. Zhao. Effect of surface structure on photocatalytic activity of TiO_2 thin films prepared by sol-gel method[J]. Thin Solid Films, 2000, 379: 7-14.
    [188] J. C. Yu, H. Y. Tang, J. G. Yu, H. C. Chan, L. Z. Zhang, Y. D. Xie, H. Wang, S. P. Wong. Bactericidal and photocatalytic activities of TiO_2 thin films prepared by sol-gel and reverse micelle methods[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 153: 211-219.
    [189] L. Wu, J. C. Yu, X. C. Wang, L. Z. Zhang, J. G. Yu. Characterization of mesoporous nanocrystalline TiO_2 photocatalysts synthesized via a sol-solvothermal process at a low temperature[J]. Journal of Solid State Chemistry, 2005, 178: 321-328.
    [190] S. J. Liao, H. Donggen, D. H. Yu, Y. L. Su, G. Q. Yuan. Preparation and characterization of ZnO/TiO_2, SO_4~(2-)/ZnO/TiO_2 photocatalyst and their photocatalysis[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004,168: 7-13.
    [191] J. C. S. Wu, Y. T. Cheng. In situ FTIR study of photocatalytic NO reaction on photocatalysts under UV irradiation[J]. Journal of Catalysis, 2006, 237: 393-404.
    [192] L. Q. Jing, B. F. Xin, F. L. Yuan, L. P. Xue, B. Q. Wang, H. G Fu. Effects of surface oxygen vacancies on photophysical and photochemical processes of Zn-doped TiO_2 nanoparticles and their relationships[J]. Journal of Physical Chemistry B, 2006,110: 17860-17865.
    [193] M. Jakob, H. Levanon, P. V. Kamat. Charge distribution between UV-irradiation TiO_2 and gold nanoparticles: determination of shift in the Fermi level[J]. Nano Letters, 2003, 3: 353-358.
    [194] V. Subramanian, E. Wolf, P. V. Kamat. Semiconductor-metal composite nanostructures: To what extent do metal nanoparticles improve the photocatalytic activity of TiO_2 films[J]. Journal of Physical Chemistry B, 2001,105:11439-11446.
    [195] I. M. Arabatzis, T. Stergiopoulos, D. Andreeva, S. Kitova, S. G. Neophytides, P. Falaras. Characterization and photocatalytic activity of Au/TiO_2 thin films for azo-dye degradation[J]. Journal of Catalysis, 2003, 220: 127-135.
    [196] M. S. Hyung, R. C. Jae, J. H. Hoe, M. K. Sang, C. B. Young. Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO_2 under visible and UV light irradiation[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163: 37- 44.
    [197] S. Taizo, N. Nobuaki, M. Denis, T. Koji. Photocatalytic decomposition of N_2O on highly dispersed Ag~+ ions on TiO_2 prepared by photodeposition[J]. Journal of Catalysis, 2000, 194: 71-79.
    [198] P. C. Davide, F. Elisabetta, C. Roberto, M. C. Lucia, A. Angela. Role of Metal nanoparticles in TiO_2/Ag nanocomposite-based microheterogeneous photocatalysis[J]. Journal of Physical Chemistry B, 2004, 108: 9623-9630.
    [199] A. E. Carina, I. L. Marta, K. Marinus, B. Michel, C. J. Christophe. Phenol photodegradation on platinized-TiO_2 photocatalysts related to charge-carrier dynamics[J]. Langmuir, 2006, 22: 3606-3613.
    [200] C. Hu, Y. T. Tang, Z. Jiang, Z. P. Hao, H. X. Tang, P. K. Wong. Characterization and photocatalytic activity of noble-metal-supported surface TiO_2/SiO_2[J]. Applied Catalysis A: General, 2003, 253: 389-396.
    [201] S. X. Liu, Z. P. Qu, X. W. Han, C. L. Sun. A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide[J]. Catalysis Today, 2004, 93-95: 877-884.
    [202] S. J. Liao, H. Donggen, D. H. Yu, Y. L. Su, G Q. Yuan. Preparation and characterization of ZnO/TiO_2, SO_4~(2-)/ZnO/TiO_2 photocatalyst and their photocatalysis[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 168: 7-13.
    [203] V. Pitchonl, A. Fritz. The relation between surface state and reactivity in the DeNO_x mechanism on platinum-based catalysts[J]. Journal of Catalysis, 1999, 186: 64-74.
    [204] S. H. Chien, M. C. Kuo, C. H. Lu, K. N. Lu. Spectroscopic studies of NO reduction on Pt/TiO_2 catalysts[J]. Catalysis Today, 2004, 97: 121-127.
    [205] Y. Ishibai, J. Sato, S. Akita, T. Nishikawa, S. Miyagishi. Photocatalytic oxidation of NOx by Pt-modified TiO_2 under visible light irradiation[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2007, doi: 10.1016/j.jphotochem.2006.11.026.
    [206] E. Hisahiro, O. Atsushi, F. Shigeru, I. Takashi. The stabilization of active oxygen species by Pt supported on TiO_2[J]. Chemical Physics Letters, 2000, 338: 303-307.
    [207] T. Hiroshi, A. Makoto, K. Nobuo. Absorption of nitrogen oxides in aqueous sodium sulfite and bisulfite solutions[J]. Industrial & Engineering Chemistry Process Design and Development, 1977, 16: 303-308.
    [208] L. Chen, J. W. Lin, C. L. Yang. Absorption of NO_2 in a packed tower with Na_2SO_3 aqueous solution[J]. Environmental Progress, 2002, 21: 225-230.
    [209] H. S. Chen, T. R. Gary. Nitrogen dioxide absorption and sulfite oxidation in aqueous sulfite[J]. Environmental Science & Technology, 1998, 32: 1994-2003.
    [210] H. Q. Wang, Z. B. Wu, W. R. Zhao, B. H. Guan. Photocatalytic oxidation of nitrogen oxides using TiO_2 loading on woven glass fabric[J]. Chemosphere, 2007, 66: 185-190.
    [211] S. P. S. Andrew, D. Hanson. The dynamics of nitrous gas absorption[J].Chemical Engineering Sciences, 1961, 14: 105-113.
    [212] C. R. Wilke, P. Chang. Correlation of diffusion coefficients in dilute solutions[J]. AICHE Journal, 1955, 1:264-270.
    [213] L. C. Carol, A. Nisan, E. H. Robert. Rate constant for the reaction of NO_2 with sulfur(1V) over the pH range 5.3-13[J]. Environmental Science & Technology, 1988, 22: 586-589.
    [214] H. Takeuchi, K. Takahashi, N. Kizawa. Absorption of nitrogen dioxide in sodium sulfite solution from air as a diluent[J]. Industrial & Engineering Chemistry Process Design and Development, 1977, 16: 486-490.
    [215] J. C. Evans, J. H. Bernstein. The vibrational. spectrum of the sulphite ion in sodium sulphite[J]. Canadian Journal of Chemistry, 1955, 33: 1270-1272.
    [216] E. Antony, I. H. Joe. FT-IR, Raman, and SERS spectra of arcaine sulfate[J]. Journal of Solid State Chemistry, 1997, 133:423-429.
    
    [217] S. D. Ross. Inorganic Infrared and Raman Spectra[M]. McGraw-Hill, Great Britain, 1972.
    [218] R. A. Nyquist, R. O. Kagel. Infrared of inorganic compounds[M]. Academic Press, New York, 1971.
    [219] D. Littlejohn, S. G. Chang. Identification of species in a wet flue gas desulfurization and denitrification system by laser raman spectroscopy[J]. Environmental Science & Technology, 1994,18: 305-310.
    [220] D. Littlejohn, S. G. Chang. Oxidative decomposition of nitrogen-sulfur oxides[J]. Industrial & Engineering Chemistry Research, 1994, 33: 515-518.
    [221] A. Pinter, G. Bercic, J. Levec. Catalytic liquid-phase nitrite reduction: kinetics and catalytic deactivation[J]. AICHE Journal, 1998,44: 2280-2292.
    [222] Y. G. Adewuyi, S. O. Owusu. Aqueous absorption and oxidation of nitric oxide with oxone for the treatment of tail gases: process feasibility, stoichiometry, reaction pathways, and absorption rate[J]. Industrial & Engineering Chemistry Research, 2003, 42: 4084-4100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700