高效纳米银抗菌剂制备及其在棉麻织物中应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米银抗菌纤维是新兴的抗菌纺织品,它能保护皮肤、祛除异味,阻断疾病传播,有卫生保洁的功能,同时可防止微生物对纤维制品的损害,能应用于日常生活用品,包括制服、便装、衬衫、内衣、睡衣、床上用品和手帕等,拥有十分广阔的市场前景。基于抗菌功能性纺织品的社会需求,本论文选择“高效纳米银抗菌剂制备及其在棉麻织物中应用”作为研究方向,从以下几个方面开展了工作:
     1.以聚乙二醇为软模板制备了单分散的纳米TiO2/Ag胶体,TiO2和Ag粒子成球状,纳米TiO2的平均粒径在50 nm, Ag的平均粒径在20nm。X射线衍射分析表明TiO2晶型为锐钛矿型。纳米TiO2/Ag胶体具有很强的紫外屏蔽效果,复合TiO2/Ag胶体在浓度为0.29 mg/mL时就达到了最小防护紫外光效果,在1.19 mg/mL浓度时可以完全防护紫外线照射。纳米TiO2/Ag对大肠杆菌和霉菌具有极好的抑菌效果,Ag浓度10 ppm对大肠杆菌抑菌率为99.9%,对霉菌抑菌率为97.9%。
     2.以聚乙二醇软模板制备了单分散的纳米Ag胶体。1)不同方法制备的纳米银粒子都为球状,不加助还原剂和加入抗坏血酸的纳米Ag粒径分布在10-20 nm,加入单宁酸作为助还原剂粒径分布在3-50 nm。2)在反应温度为60℃,硝酸银浓度为20 mg/mL,硝酸银与抗坏血酸质量比值为4:1.25时,银离子转化率可达94.1%。3)纳米银胶体具有极强的抗菌效果,对大肠杆菌最低抑菌浓度5 ppm,对霉菌最低抑菌浓度16 ppm。
     3.纳米Ag胶体对棉织物进行了抗菌整理。XPS测试表明,纳米银以单质Ag形式负载到棉织物上。在浴比为1:50时,纳米银浓度为100ppm,整理时间1 min,对大肠杆菌抑菌圈达到6 mm,在250 mm时,整理时间30 min,对大肠杆菌抑菌圈达到10mm。100 ppm纳米Ag整理1 min后的抗菌棉布经过50次洗涤后,对金黄色葡萄球菌和大肠杆菌抑菌圈都≥1 mm,对金黄色葡萄球菌抑菌率≥80%,对大肠杆菌抑菌率≥70%,达到AAA级标准。
     4.溶液聚合法制备了聚甲基丙烯酸羟乙酯,合成了聚甲基丙烯酸羟乙酯包覆的纳米Ag胶体。TEM分析表明纳米银被聚甲基丙烯酸羟乙酯包覆,平均粒径为20 nm;利用红外光谱研究了高聚物与纳米银的结合机理,采用抑菌圈法初步研究了它的抗菌性能。
Nano-silver antimicrobial fibers are emerging antimicrobial textiles. It can protect the skin, eliminate the offensive smell, and prevent the spread of disease, which has the function of cleaning and hygiene. Meanwhile, it can prevent fiber products from microbial damage. It can be used in daily necessities, including uniforms, clothes, shirts, underwear, pajamas, bedding and a handkerchief and so on. Thus, it has a very broad market prospects. Considering the above reasons, our research focused on preparation of Ag colloidal dispersions and preparation of durable and permanent antibacterial cotton products using a new finishing process, inserting nanometer-like silver particles to cotton fibers and the thesis consists of the following contents:
     1. TiO2/Ag colloidal dispersions was prepared by using PEG as template.1) TiO2 and Ag nanoparticles are both spherical, the average particle size of TiO2 among these nanomaterials was around 50 nm, and the average particle size of nano-silver was around 20 nm. X-ray diffraction (XRD) reveals that the formation of metallic silver particles crystallized in the face centered cubic (fcc) structure and the TiO2 samples exhibit well-crystallized anatase phase.2) TiO2/Ag has excellent anti-UV effect, complex colloidal solution has smallest UV protective effect with concentration at 0.29 mg/mL, folly protective ultraviolet radiation effect as the concentration is 1.19 mg/mL.3) TiO2/Ag has strong antibacterial effect. The growth inhibition rates of 10 ppm TiO2/Ag against Escherichia coli and Staphylococcus aureus are 99.9% and 97.9% respectively.
     2. Nano-Ag colloidal dispersions were prepared by using PEG as template. The effect of reaction temperature and ratio of AgNO3 to ascorbic acid on conversion rate of silver ion were determined by Volhard law.1) Transmission electron microscopy (TEM) analysis showed that stable spherical metal particles 3-50 nm in diameter with a well-crystallized structure were obtained by using tannic acid as co-reducing agent, and particles 10-20 nm in diameter were gained by using ascorbic acid as co-reducing agent.2) Conversion rate of silver ion can exceed 94.1% under the following condition:temperature was fixed at 60℃, concentration of AgNO3 is 20 mg/mL, the initial ratio between AgNO3 and ascorbic acid is 4:1.25. However, the Ag colloidal solution would become unstable with the increase of ascorbic acid.3) MIC against E.coli of Ag-nanoparticles reduced by ascorbic acid and tannic acid are 5 ppm, comparing to 16 ppm against Streptomyces. All of them were significantly lower than the values obtained for the Ag metal particles.
     3. The bacterial inactivation of E.coli and S. aureus on Ag-cotton textiles were investigated under different experimental conditions with novel stable Ag colloids fixed on cotton textiles. X-ray photoelectron spectroscopy (XPS) results indicated that only one states of silver were present on the surface of the antimicrobial textile. The antimicrobial test results showed that the treated textile has an excellent antimicrobial effect and laundering durability. Bacterial inhibition ring of antimicrobial textile reached 6 mm, which was treated by 100 ppm nano-silver at bath ratio of 1:50 for 1 min,10 mm(treated by 250 ppm nano-silver at bath ratio of 1:50 for 30 min).The bacterial inhibition ring of antimicrobial cotton finished by 100 ppm nano-Ag for 1 min against E. coli and S. aureus are more than 1 mm as the antibacterial fabric was washed for 50 times. Growth inhibition rates against S. aureus is higher than 80%, and E. coli higher than 70%. Thus, antibacterial finished products can reach AAA result.
     4. Silver nano-particles coated by poly (hydroxyethyl methacrylate) using N, N-dimethylformamide (DMF) as a medium has been performed successfully using solution polymerization method. Transmission electron microscopy(TEM) analysis showed that stable Ag spherical metal particles, coated by PHEMA,20 nm in diameter with a well-crystallized structure were obtained. Antimicrobial properties of Ag/PHEMA nano-composite was studied primarily.
引文
[1]黄霞,沈晋明.微生物危害和生物安全防护实验室环境控制.洁净与空调技术,2002,(3):21-24
    [2]唐靓,李跃中,朱染枫.微生物对食品安全造成的危害及其控制.浙江省医学科学院学报,2006,(4):46-48
    [3]张利,玛丽亚.生活饮用水中微生物指标及微量元素超标对人体危害的探讨.地方病通报,2007,22(4):129-130
    [4]王友贞,苗螈昕,台芳玲.医院图书馆病原微生物污染原因及控制措施.实用医药杂志,2007,24(12):1518-1520
    [5]徐歌,冯民.微生物对医用设备的危害和应采取的防范措施.装备技术,2007,(3):28-30
    [6]周俊辉,周厚高.植物组织培养中的内生细菌污染问题.广西植物,2003,23(1):41-47
    [7]钟福新,蒋治良,李芳.纳米银胶的光化学制备及其共振散射光谱研究.光谱学与光谱分析,120(15):724-726
    [8]刘绍璞,周贤杰,孔玲.银纳米微粒的光谱研究.西南师范大学学报(自然科学版),2005,30(4):690-694
    [9]杨生春,唐春,董守安.基于纳米Ag粒子的表面等离子体共振光谱测定CN-的研究.分析试验室,2005,24(1):55-58
    [10]Vidhu S. Tiwari, T. Oleg, G. K. Darbha. Non-resonance SERS effects of silver colloids with different shapes. Chemical Physics Letters,2007, (446):77-82
    [11]K. Park, D. Seo, J. Lee Conductivity of silver paste prepared from nanoparticles. Colloids and Surfaces A:Physicochem. Eng. Aspects,2008,313:351-354
    [12]Kan-Sen Chou, Yu-Chieh Lu. The application of nanosized silver colloids in far infrared low-emissive coating. Thin Solid Films,2007, (515):7217-7221
    [13]Y. Liu, L. M. Hu, S. Q. Yang. Amplification of bioelectrocatalytic signalling based on silver nanoparticles and DNA-derived horseradish peroxidase biosens. Microchim Acta,2008, 160(3):357-365
    [14]孙洪,夏英,陈莉.国内外抗菌剂的研究现状及发展趋势.塑料工业,2006,34(9):1-4
    [15]I. Sondi, S. S. Branka. Silver nanoparticles as antimicrobial agent:a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science,2004(275):177-182
    [16]林爱红,秦彦珉,饶健.纳米抗菌剂抑菌杀菌性能研究.实用预防医学,2003,10(2):168-170
    [17]M. Brust, C. J. Kiely. Some recent advances in nanostructure preparation from gold and silver particles:a short topical review. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2002, (202):175-186
    [18]梁文平.乳状液科学与技术基础.北京:科学出版社,2002.211
    [19]I.CaPek. Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions Advances in Colloidand Interface Science,2004,110(1):49-74
    [20]施利毅,华彬.微乳液的结构及其在制备超细颗粒中的应用.功能材料,1998,29(2):136-139
    [21]D. Ai, S. Kang, X. Dai. Synthesis of nickel nanopowders in microemulsion. China Particuology, 2003
    [22]E. Lacaze, M. Maillard, M. P. Pileni. Self-Assemblies of Silver Sulfide Nanocrystals on Various Substrates. Langmuir,2000,16 (8):3803-3812
    [23]沈兴海,高宏成.纳米微粒的微乳液制备法.化学通报,1995,(11):6-9
    [24]梁桂勇,翟学良.微乳液法制备纳米银粒子.功能材料,1999,30(5):485-486
    [25]路林波,陈建中,高绍康.反相微乳液法制备纳米金属银粉.福州大学学报:自然科学版,2004,32(4):208-211
    [26]W. Z. Zhang, X. L. Qiao, J. G. Chen. siynthesis of silver nanoparticles-Effects of concerned parameters in water/oil microemulsion. Materials Science and Engineering B,2007,142(1): 1-15
    [27]Y. J. Dai, T. Deng, S. R. Jia. Preparation and characterization of fine silver powder with colloidal emulsion aphrons. Journal of Membrane Science,2006,(281):685-691
    [28]沈明,姚玉峰,杨功俊.憎水性纳米银粒的反相微乳液法制备与自组装.扬州大学学报,2006,9(4):23-27
    [29]W. Z. Zhang, X. L. Qiao, J.G. Chen. Synthesis and characterization of silver nanoparticles in AOT microemulsion system. Chemical Physics,2006 (330):495-500
    [30]P. Forrer, F. Schlottig, H. Siegenthaler, et al. Electrochemical preparation and surface properties of gold nanowire arrays formed by the template technique. Journal of Applied Electro-chemistry, 2000,30(5):533-541
    [31]J. Choi. Organic/Inorganic Imide Nanocomposites from Aminophenylsilsesquioxanes. Chem Mater,2003,15(3):776
    [32]G. Sauer. Highly ordered monocrystalline silver nanowire arrays .J Appl Phys,2002,91(5): 3243
    [33]M. Barbic. Single crystal silver nanowires prepared by the metal amplification method .J Appl Phys,2002,91(11):9341
    [34]Wu Yi ying et al. Templated Synthesis of Highly Ordered Mesostructured Nanowires and Nanowire Arrays Nano Lett,2004,4(12):2337-2342
    [35]M. H. Huang et al. Ag nanowire formation within mesoporous silica Chem Commun,2000, 0(12):1063-1064
    [36]冯永成.纳米导电胶粘剂的研究.化工新型材料,2005,33(5):25-26
    [37]J. Sloan et al. Capillarity and silver nanowire formation observed in single walled carbon nanotubes.Chem Commun,1999,998(6):699-700
    [38]E Braun et al. DNA-templatedassembly andelectrode attachment of a conducting silver wire. Nature,1998,391:775
    [39]N. Vigneshwaran, R. P. Machine, R. H. Balasubramanya. A novel one-pot'green'synthesis of stable silver nanoparticles using soluble starch. Carbohydrate Research,2006,(341):2012-2018
    [40]M. Popa, T. Pradell, D. Crespo. Stable silver colloidal dispersions using short chain polyethylene glycol. Colloids and Surfaces A:Physicochem. Eng. Aspects,2007,(303):184-190
    [41]D. Long, G. Z. Wu, S. M. Chen. Preparation of oligochitosan stabilized silver nanoparticles by gamma irradiation Radiation. Physics and Chemistry,2007, (76):1126-1131
    [42]H. Z. Huang, X. R Yang. Synthesis of polysaccharide-stabilized gold and silver nanoparticles:a green method. Carbohydrate Research,2004,339:2627-2631
    [43]宋吉明,张胜义,史洪伟.纳米银的软模板制备方法及形成机理研究.贵金属,2006,(27):26-31
    [44]曹洁明,郑明波,陆鹏.利用还原性多糖合成银纳米粒子.化学学报,2005,63:1541-1544
    [45]钟福新,蒋治良,李芳,等.纳米银胶的光化学制备及其共振散射光谱研究.光谱学与光谱分析,2000,20(5):724-726
    [46]X. W. Ge, Y. H. Li, H. R. Liu, et al. a novel irradiating template approach to prepare silver nano-ribbons. J. Radiat Res Radiat Process,2001,19(2):118-121.
    [47]Choi Seong-Ho, Lee Se-Hee, Hwang Young-Mi, et al. Interaction between the surface of the silver nanoparticles prepared by y-irradiation and organic molecules containing thiol group. Radiation Physics and Chemistry,2003,67(34):517-521.
    [48]廖学红,朱俊杰,赵小宁,等.纳米银的电化学合成.高等学校化学学报,2000,21(12):1837-1839.
    [49]王银海,牟季美,等.交流电在Al2O3模板中沉积金属机理探讨.物理化学学报,2001,17(2):116-118.
    [50]N. Leopold, B. Lendl. A New Method for Fast Preparation of Highly Surface-Enhanced Raman Scattering (SERS) Active Silver J. Phys. Chem. B,2003 (107):5723
    [51]K.K. Caswell, C.M. Bender, C.J. Murphy. Seedless,Surfactantless Wet Chemical Synthesis of Silver Nanowires Nano Letters 2003,3(5):667-669
    [52]Z.S. Pillai, P.V. Kamat, What Factors Control the Size and Shape of Silver Nanoparticles in the Citrate Ion Reduction Method. J. Phys. Chem. B,2004 (108):945-951
    [53]Y. D. Yin, Z.Y. Li, Z.Y. Zhong, et al. Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the Tollens process. J. Mater. Chem,2002, (12):522-527
    [54]Y.J. Hou, Y.Q. Wang, F. He. Liquid phase hydrogenation of 2-ethylanthraquinone over La-doped Ni-B amorphous alloy catalysts.2004,58(7):1267-1271
    [55]N. K. Chaki, J. Sharma, A.B. Mandle, Size dependent redox behavior of monolayer protected silver nanoparticles (2-7 nm) in aqueous medium. et al. Phys. Chem. Chem. Phys.,2004 (6): 1304-1309
    [56]M. Hu, P. Hillyard, Gregory V. Hartland,et al. Determination of the ElasticConstants of Gold Nanorods Produced by Seed Mediated Growth Nano Letters,2004,4(12):2493-2497
    [57]Y.G. Sun, Y. N. Xia. Shape-Controlled Synthesis of Gold and Silver Nanoparticles. Science, 2002, (298):2176-2179
    [58]D. H. Chen, Y. W. Huang, Spontaneous Formation of Ag Nanoparticles in Dimethylacetamide Solution of Poly(ethylene glycol). J. Colloid Interface Sci.2002,255 (2):299-302
    [59]I. Pastoriza-Santos, L.M. Liz-Marzan, Synthesis of Silver Nanoprisms in DMF. Nano Letters, 2002,2 (8):903-905
    [60]R. He, X. F. Qian, J. Yin, et al. Formation of silver dendrites under microwave irradiation.Chemical Physics Letters 2003,369 (3):454-458
    [61]C. Faure, A. Derre, W. Neri. Spontaneous formation of silver nanoparticles in multilamellar vesicles. Phys. Chem. B2003,107 (20):4738-4746
    [62]S.H. Chen, D.L. Carroll, The Formation of an Irreversibly Adsorbed and Organized Micelle Layer at the Solid Liquid Interface Nano Letters,2002,2:1003
    [63]S. Mandal, D. Rautaray, M. Sastry. Ag+-Keggin ion colloidal particles as novel templates for the growth of silver nanoparticle assemblies J. Mater. Chem.2003,13:3002-3005
    [64]G. Malandrino, S.T. Finocchiaro, I. L. Fragala. Silver nanowires by a sonoself-reduction template process J. Mater. Chem.2004,14:2726-2728
    [65]S. Behrens, J. Wu, W. Habicht. et al. Silver Nanoparticle and Nanowire Formation by Microtubule Templates. Chem. Mater.2004,16(16):3085-3090
    [66]K.S. Morley, P.C. Marr, P.B.Webb et al. Clean preparation of nanoparticulate metals in porous supports:a supercritical route.J. Mater. Chem.2002,12 ():1898-1925
    [67]C. Johans, J. Clohessy, S. Fantin et al.Electrosynthesis of polyphenylpyrrole coated silver particles at a liquid-liquid interface Electrochem. Commun.2002,4 (3):227-230
    [68]F. Huang, H. B. Wu, D. L. Wang. Novel Electroluminescent Conjugated Polyelectrolytes Based on Polyfluorene Chem. Commun.2004,16:708-716
    [69]Y. Gao, P. Jiang, D. F. Liu, et al. Evidence for the Monolayer Assembly of Poly (vinylpyrrolidone) on the Surfaces of Silver Nanowires. J. Phys. Chem. B,2004,108 (34):12877-12881
    [70]B.S. Yin, H.Y. Ma, S.Y. Wang. Electrochemical Synthesis of Silver Nanoparticles under Protection of Poly (N-vinylpyrrolidone) J. Phys. Chem. B,2003,107 (34):8898-8904
    [71]J.Q. Cheng, S.W. Yao.Synthesis and characterization of silver nanoparticles by sonoelectrodeposition Rare Met.2005,24(4):376-380
    [72]Y. Socol, O. Abramson, A. Gedanken et al. Suspensive electrode formation in pulsed sonoelectrochemical synthesis of silver nanoparticles. Langmuir,2002,18 (12):4736-4740
    [73]J. P. Zhang, L.Q. Sheng, P. Chen. Synthesis of Various Types of Silver Nanoparticles Used as Physical Developing Nuclei in Photographic Science. Chin. Chem. Lett.2003,14 (6):645-648
    [74]Q.F. Zhou, Z. Xu, The preparation of nano-scale plate silver powders by visible light induction method.J. Mater. Sci.2004,39 (7):2487-2491
    [75]D.G. Shchukin, I. L. Radtchenko, G. B. Sukhorukov. Synthesis of nanosized magnetic ferrite particles inside hollow polyelectrolyte capsules. Chem. Phys. Chem.,2003,107(1) 86-90
    [76]L.Z. Zhang, J.C. Yu, H.Y. Yip et al.Ambient light reduction strategy to synthesize silver nanoparticles and silver-coated TiO2 with enhanced photocatalytic and bactericidal activities. Langmuir,2003,19 (24):10372-10380
    [77]A.M. Junior, H.P.M. de Oliveira, M.H. Gehlen.Preparation of silver nanoprisms using poly(N-vinyl-2-pyrrolidone) as a colloid-stabilizing agent and the effect of silver nanoparticles on the photophysical properties of cationic dyes.Photochem. Photobiol. Sci.2003,2 ():921-925
    [78]R.C. Jin, Y.C. Cao, E.C. Hao et al. Controlling anisotropic nanoparticle growth through plasmon excitation.Nature,2003,425 (6957):487-490
    [79]K. Mallick, M.J. Witcomb, M.S. Scurrell. Polymer stabilized silver nanoparticles:A photochemical synthesis route .J. Mater. Sci.2004,39 (14):4459-4463
    [80]A.I. Kryukov, N.N. Zin'chuk, A.V. Korzhak. et al The Effect of the Conditions of Catalytic Synthesis of Nanoparticles of Metallic Silver on Their Plasmon Resonance.Theor. Exp. Chem. 2003,39 (1):9-14
    [81]P. D. Cozzoli, R. Comparelli, E. Fanizza et al.Photocatalytic synthesis of silver nanoparticles stabilized by TiO2 nanorods:a semiconductor/metal nanocomposite in homogeneous nonpolar solution .J. Am. Chem. Soc.2004,126 (12):3868-3879
    [82]F.K. Liu, P.W. Huang, Y.C. Chang et al.Microwave-assisted synthesis of silver nanorods J. Mater. Res.2004,19 (2):469-473
    [83]T. Yamamoto, B. Yin, Y. Wada,et al. Morphology-Control in Microwave-Assisted Synthesis of Silver Particles in Aqueous Solutions.Bull. Chem. Soc. Jpn.2004,77 (4):757-761
    [84]S. Komarneni, S. Li, B. Newalkar. Microwave-polyol process for Pt and Ag nanoparticles Langmuir,2002,18 (15) 5959-5962
    [85]K. S. Chou, Y. S.Lai Effect of polyvinyl pyrrolidone molecular weights on the formation of nanosized silver colloids Mater. Chem. Phys.2004,83:82-88
    [86]A.M. Qin, Z.L. Jiang, Q.Y. Liu, et al. Studies on simultaneous enantiomeric separation of ceftazidime and cefriaxone Na by capillary Chin. J. Anal. Chem.2002,30:1254
    [87]V. Hornebecq, M. Antonietti, T. Cardinal, et al. Stable Silver Nanoparticles Immobilized in Mesoporous Silica.Chem. Mater.2003,15(10):1993-1999
    [88]S.H. Choi, S.H. Lee, Y.M. Hwang et al. Interaction between the surface of the silver nanoparticles prepared by γ-irradiation and organic molecules containing thiol group Radiat. Phys. Chem.2003,67 (3):517-521
    [89]H.S. Wang, J. She, L. H. Zhang. Natural Products Silver (Ⅰ) Oxide Mediated Selective Monoprotection of Diols in Pyranosides.2004,23:
    [90]T. Tsuji, T. Kakita, M. Tsuji.Preparation of nano-size particles of silver with femtosecond laser ablation in water.Appl. Surf. Sci.2003,206 (2):314-320
    [91]J. G. Liang, X. P. Ai, Z. K. He. Functionalized CdSe quantum dots as selective silver ion chemodosimeter Analyst,2004,129:619-622
    [92]X. Zheng, L. Zhu, A. Yan, Controlling synthesis of silver nanowires and dendrites in mixed surfactant solutions J. Colloid Interface Sci.2003,268(2):357-361
    [93]B.S. Yin, H. Y. Ma, S. Y. Wang. Electrochemical Synthesis of Silver Nanoparticles under Protection of Poly (N-vinylpyrrolidone) J. Phys. Chem. B,2003,107 (34):8898-8904
    [94]M. Maillard, S. Giorgio, M.P. Pileni.Tuning the size of silver nanodisks with similar aspect ratios:Synthesis and optical properties. J. Phys. Chem. B,2003,107 (11):2466-2470
    [95]M. Maillard, S. Giorgio, M.P. Pileni. Silver nanodisks. Adv. Mater.2002,14 (15):1084-1086
    [96]M.C. McLeod, R.S. McHenry, E.J. Beckman et al. Synthesis and stabilization of silver metallic nanoparticles and premetallic intermediates in Perfluoropolyether/CO2 reverse micelle systems. J. Phys. Chem. B,2003,107 (12):2693-2670
    [97]E.M. Egorova, A.A. Revina.Optical Properties and Sizes of Silver Nanoparticles in Micellar Solutions. Colloid J.2002,64 (3):301-311
    [98]R.R. Naik, S.J. Stringer, G. Agarwal et al. Biomimetic synthesis and patterning of silver nanoparticles Nat. Mater.2002,1 (3):169-172
    [99]J.L. Gardea-Torresdey, E. Gomez, J.R. Peralta-Videa, et al. Alfalfa sprouts:A natural source for the synthesis of silver nanoparticles. Langmuir,2003,19 (4):1357-1361
    [100]S.S. Shankar, A. Ahmad, M. Sastry. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol. Prog.2003,19 (6):1627-1631
    [101]M.Kowshik, S. Ashtaputre, S. Kharrazi, et al. Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3 Nanotechnology,2003,14 ():95-100
    [102]A. Ahmad, P. Mukherjee, S. Senapati et al.Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum.Colloids Surf. B:Biointerfaces,2003,28 (4):313-318
    [103]K.C. Bhainsa, S.F. D'Souza. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus.Colloids Surf. B:Biointerfaces,2006,47 (2):160-164
    [104]S.S. Shankar, A. Rai, A. Ahmad et al. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci,2004, 275(2):496-502
    [105]李德刚,陈慎豪,赵世勇.相转移方法制备银纳米粒子单层膜.化学学报,2002,60(3):408-412
    [106]于伟,傅洵.含纳米银有机流体的制备及其摩擦学性能研究.摩擦学学报,2004,24(5):425-428
    [107]商成杰,邹承淑,李君文.国内外织物抗菌卫生整理的进展.纺织科学研究,2005,(2):14-20
    [108]刘华,让刘同.家纺产品功能化与纳米技术的应用.纺织科技进展,2005,(1):7-9
    [109]冯德才,刘小林,杨其.抗菌剂和抗菌纤维研究进展.合成纤维工业,2005,(4):40-43
    [110]李毕忠.抗菌纤维及抗菌织物的研制与开发.纺织科学研究,2003,(1):13-15
    [111]Won Keun Son, Ji Ho Youk, Won Ho Park. Antimicrobial cellulose acetate nanofibers containing silver nanoparticles. Carbohydrate Polymers,2006, (65):430-434
    [112]H. I. LEE, S. Y. YEO, S. H. JEONG. Antibacterial effect of nanosized silver colloidal solution on textile fabrics. Journal of materials science,2003, (38):2199-2204
    [113]T. Yuranova, A.G Rincon, C. Pulgarin, Performance and characterization of Ag-cotton and Ag/TiO2 loaded textiles during the abatement of E. coli. Journal of Photochemistry and Photobiology A:Chemistry,2006,(181):363-369
    [114]商成杰,邹承淑,李君文.国内外织物抗菌卫生整理的进展.纺织科学研究,2005,(2):14-20
    [115]刘华,让刘同.家纺产品功能化与纳米技术的应用.纺织科技进展,2005,(1):7-9
    [116]冯德才,刘小林,杨其.抗菌剂和抗菌纤维研究进展.合成纤维工业,2005,(4):40-43
    [117]高铭,董瑛,朱平.抗菌超细纤维及其织物的开发.印染,2006,16:21-23
    [118]Yanjun Xing, Xiaojun Yang, Jinjin Dai. Antimicrobial finishing of cotton textile based on water glass by sol-gel method. J Sol-Gel Sci Technol,2007,(43):187-192
    [119]王亦彤,李晔,陈建军.纺织品中原位生成超微银粒及其性能测试.浙江理工大学学报,2006,23(4):389-392
    [120]邵明,赵敏,周翔.棉织物纳米银抗菌整理.印染,2006,(10):1-4
    [121]王鸿博,王锦嫣,王强.纳米银抗菌非织造布研究.纺织学,2006,27(7):34-36
    [122]杜磊,李荣先.纳米材料改型性抗菌水性木器涂料的开发.中国涂料,2007,22(6):35-41
    [123]殷杰,尹光福,张云.纳米银粉内墙抗菌涂料的制备及抗菌性研究化工新型材料.2006, (34):54-560
    [124]胡涛,贾建波,赵玉萍.银粒子抗菌材料在涂料中的应用研究.上海涂料,2006,44(1):12-14
    [125]张文钲,张羽天.载银抗菌材料的研究与开发.化工新型材料,1997,25(7):20-22
    [126]朱孟府.银在净水中的应用.医疗卫生装备,1993,3:17-19
    [127]R. Pedahzur,O. Lev, B. Fattal, et al. The interaction of silver ions and hydrogen peroxide in the inactivation of E. Coli:A preliminary evaluation of a new long acting residual drinking water disinfection. Wat Sci Tech,1995,31 (56):123-129
    [128]T. R. Bott. Techniques for reducing the amount of biocide necessary to counteract the effects of biofilm growt h in cooling water systems. Applied Thermal Engineering,1998, 18:1059-1066
    [129]J. E. Stout, Y. S. Lin, A. M. Goetz et al. Controlling Legionella in hospital water systems: experience with the superheat and flush method and copper-silver ionization. Infect Cont rol HospEpidemiol,1998,19 (12):911-914
    [130]王黔平,吴卫华Ag2MoO4系抗菌卫生瓷的研究.中国陶瓷,2008,44(3):18-21
    [131]刘维良,李雄德,李毅坚.抗菌保健陶瓷材料及制品的产业发展现状与前景.中国陶瓷:[业2003,10(6):55-58
    [132]胡海泉,吴大选.复合型抗菌陶瓷的研究硅酸盐通报,2000,19(6):54-57
    [133]刘曙光,魏伟,郑庆新.抗菌、自清洁陶瓷的制备及性能表征.硅酸盐通报,2006,6:182-186
    [134]刘春红,罗宏,梁铁.埃米妇康女士凝胶抗菌器治疗阴道炎等107例观察.长春大学学报,2006,16(8)90-92:
    [135]A. Fujishima, T. N. Rao, D. A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C:Photochem Rev.2000, (1):1-21
    [136]S. W. Lam, K. Chiang, T. M. Lim, The effect of platinum and silver deposits in the photocatalytic oxidation of resorcinol, Appl. Catal. B:Environ.2007, (72):363-372
    [137]A. ValentineRup, D. Manikandan, D. Divakar, Effect of deposition of Ag on TiO2 nanoparticles on the photodegradation of reactive yellow-17, J. Hazard. Mater.2007, 147(3):906-913
    [138]M. S. Lee, S. S. Hong, M. Mohseni, Synthesis of photocatalytic nanosized TiO2-Ag particles with sol-gel method using reduction agent, J. Mol. Catal. A:Chem.2005, (242):135-140
    [139]S. Rengaraj, X. Z. Li, Enhanced photocatalytic activity of TiO2 by doping with Ag for degradation of 2,4,6-trichlorophenol in aqueous suspension, J. Mol. Catal. A:Chem.2006, (243):60-67
    [140]H.W. Wang, H.C. Lin, C.H. Kuo, Synthesis and photocatalysis of mesoporous anatase TiO2 powders incorporated Ag nanoparticles, J. Phys. Chem. Solids.2008, (69):633-636
    [141]L. M. Zhang, D. X. Xia, Q. Shen, Synthesis and characterization of Ag@TiO2 core-shell nanoparticles and TiO2 nanobubbles, J. Nanopart. Res.2006 (8):23-28
    [142]X. F. You, F. Chen, J. L. Zhang, A novel deposition precipitation method for preparation of Ag-loaded titanium dioxide, Catal. Lett.2005, (10):3-4
    [143]K. D. Kim, D. N. Han, J. B. Lee, Formation and characterization of Ag-deposited TiO2 nanoparticles by chemical reduction method, Scripta Mate.2006, (54):143-146
    [144]
    [145]L. Z. Zhang, J. C. Yu, A simple approach to reactivate silver-coated titanium dioxide photocatalyst, Catal. Commun.2005, (6):684-687
    [146]N. Sobana, M. Muruganadham, M. Swaminathan, Nano-Ag particles doped TiO2 for efficient photodegradation of Direct azo dyes, J. Mol. Catal. A:Chem.2006, (258):124-132
    [147]肖汉宁,李玉平,胡智荣.纳米二氧化钛表面吸附聚乙二醇及其分散性能研究.无机材料学报,2005,20:310-316
    [148]符崖,黄岳山,岑人经.PEG分子量对二氧化钛纳米晶的影响.中国医学物理学杂志,2007,(24):41-45
    [149]包南,孙剑,谢晴.PEG辅助纳米TiO2的可控制备及其光催化活性.传感技术学报,2006,(19):2355-2358
    [150]M.D. Chadwick, J.W. Goodwin, B. Vincent. Rheological behaviour of titanium dioxide (uncoated anatase) in ethylene glycol. Colloids and Surfaces A:Physicochemical and Engineering Aspects 2002, (196):235-245
    [151]Monica Popa, Trinitat Pradell, Daniel Crespo, Stable silver colloidal dispersions using short chain polyethylene glycol,Colloids and Surfaces A:Physicochem. Eng. Aspects,2007, (303) 184-190
    [152]Kunyaluck Kontapakdee, Joongjai Panpranot, Piyasan Praserthdam. Effect of Ag Addition on the Properties of Pd-Ag/TiO2 Catalysts Containing Different TiO2 Crystalline Phases, Catalysis Communications,2007,8(12):2166-2170
    [153]Zhenguo Wang, Xun Cai, Qiulong Chen. Effects of Ti transition layer on stability of silver/titanium dioxide multilayered structure. Thin Solid Films,2007, (515):3146-3150
    [154]Y. Zhou, C.Y. Wang, H.J. Liu. Preparation and studies of Ag-TiO2 hybrid nanoparticles of core-shell structure. Materials Science and Engineering B,1999, (67):95-98
    [155]V. Vamathevan, R. Amal, D. Beydoun, et al. Photo-catalytic oxidation of organics inwater using pure and silver-modified titanium dioxide particles. J. Photochem. Photobiol. A:Chem. 2002, (148):233-245.
    [156]E. Szabo-Bardos, H. Czili, K. Megyery-Balog, A. Horvath, Photo-catalytic oxidation of oxalic acid enhanced by silver and copper deposition on a TiO2 surface. Progr. Colloid Polym. Sci., 2004 (125):42-48
    [157]M. K. Seery, R. George, P. Floris. Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis. J. Photochem. Photobiol. A:Chem.2007, (189):258-263
    [158]X. F. You, F. Chen, J. L. Zhang. A novel deposition precipitation method for preparation of Ag-loaded titanium dioxide. Catal. Lett.2005, (10):3-4
    [159]T. Sano, N. Negishi, K. Uchino, et al. J. Photochem. Photobiol. A Chem.2003, (160):93
    [160]F. L Toma, G. Bertrand, S. Begin. Microstructure and environmental functionalities of TiO2-supported photocatalysts obtained by suspension plasma spraying. Appl. Catal. B:Environ. 2006, (68):74-84
    [161]QB/T2410-1998 UVB sunscreen cosmetics area method evaluation of the effect of sunscreen(China)
    [162]刘绍璞,周贤杰,孔玲.银纳米微粒的光谱研究.西南师范大学学报(自然科学版),2005,30(4):690-694
    [163]Vidhu S. Tiwari, Tovmachenko Oleg, Gopala Krishna Darbha. Non-resonance SERS effects of silver colloids with different shapes. Chemical Physics Letters,2007, (446):77-82
    [164]Park K, Seo D, Lee Jk. Conductivity of silver paste prepared from nanoparticles. Colloids Surf. A:Physicochem. Eng. Aspects,2008,313(1):351-354
    [165]Shi C, Cheng M, Qu Z. Investigation on the catalytic roles of silver species in the selective catalytic reduction of NOx with methane. Appl Catal B 2004,51 (3):171-181
    [166]Li JL, Dai WL, Dong Y. A new silver-containing ceramics for catalytic oxidation of methanol to formaldehyde. Mater Lett 2000,44(3-4):233-236
    [167]Boehm DA, Gottlieb PA, Hua SZ. On-chip microfluidic biosensor for bacterial detection and identification. Sens Actuators, B 2007,126 (2):508-514
    [168]Tiwari VS, Oleg T, Darbha GK. Non-resonance SERS effects of silver colloids with different shapes. Chem. Phys. Lett.2007,446 (1-3):77-82
    [169]Sabatini CA, Pereira RV, Marcelo. Fluorescence Modulation of Acridine and Coumarin Dyes by Silver Nanoparticles. J Fluoresc 2007,17(4):377-382
    [170]Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent:a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci.2004,275 (1):177-182
    [171]Kyung-Hwan C, Jong-Eun P, Osaka T. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochimica Acta 2005,51(5):956-960
    [172]Mohan YM, Lee K, Premkumar T. Hydrogel networks as nanoreactors:A novel approach to silvernanoparticles for antibacterial applications. Polym. J.2007,48(1):158-164
    [173]Sun SH, Murray CB, Weller D. Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices Science 2000,287 (5460):1989-1992
    [174]马守栋,李明春,梁东升.以葡聚糖-乙二胺聚合物为载体制备纳米银.2008,20(10):1282-1285
    [175]徐峰,彭长兰,吕宏霞.多糖在金属纳米材料合成中的应用.化学进展,2008,20(2):273-279
    [176]陈庆春,邓慧宇,马燕明.聚乙二醇在新材料制备中的作用及其机理.日用化学工业,2002,32(5):35-38.
    [177]冯洁,王府梅.聚乙二醇在相变纺织材料上的应用.国际纺织导报,2006,9:67-69
    [178]张兴祥.蓄热调温纤维及纺织品简介.纺织信息周刊,2005,(22):14
    [179]J. Hu, Y. Chen, M. Zhu, et al. Comparative studies of phase change characteriatics of PET-PEG copolymer and PET/PEG blend. Proceedings of 2005 International Conference on Advanced Fibers and Polymer Materials, Oct 19-21, Shanghai, China
    [180]ICS 59.080.01,中国国家标准化委员会,GBT 20944.1-2007纺织品抗菌性能的评价第1部分:琼脂扩散法,北京:中国标准出版社,2008,1.1
    [181]ICS 59.080.30,GBT 20944.2-2007纺织品抗菌性能的评价第2部分:吸收法,北京:中国标准出版社,2008,1.1
    [182]ISO 20743-2007抗菌整理纺织品的抗菌性能测定
    [183]中本一雄.无机和配位化合物的红外和拉曼光谱(第四版)[M].北京:化学工业出版社,1991,252,525
    [184]陈英芳.红外和拉曼光谱技术[M].纺织工业出版社,1988,115-116
    [185]ICS 59.080.30,中华人民共和国国家发展和改革委员会,FZT 73023-2006,抗菌针织品,北京:中国标准出版社,2006,8.1
    [186]G.C.Xu, L.D. Zhang, Nanocomposites Materials.Beijing:Chemisty Pressoflndustry,2002:13
    [187]于建香,刘太奇.纳米丝负载钯催化剂的制备及催化烯烃加氢性能研究,高分子学报,2007,(6):514-518
    [188]陈庆德,沈兴海,高洪成.γ辐照引发无皂乳液聚合法一步合成Ag-聚4-乙烯基吡啶杂化微凝胶.高分子学报,2006,(6):722-726
    [189]Sung Hoon Jeong, Sang Young Yeo, Sung Chul Yi. The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibers. Journal of Materials Science, 2005,40(20):5407-5411
    [190]Sang Wook Kang, Jong Hak Kim, Kookheon Char. Long-Term Separation Performance of Phthalate Polymer/Silver Salt Complex Membranes for Olefin/Paraffin Separation. Macromolecular Research,2005,13(2):162-166
    [191]Y. Akimune, K.Matsuo, H. Higashiyama, Nano-Ag particles for electrodes in an yttria-doped BaCeO3 protonic conductor. Solid State Lonics,2007,178 (7210):575-579
    [192]L. Williaml, Steel J. Peter. Chiral Heterocyclic Ligands. Ⅺ. Self-assembly and X-ray Crystal Structures of Chiral Silver Coordination Polymers of (S)-(-)-Nicotine.2005,17(7):579-584
    [193]Jeong Hyun Yeum, Qunhui Sun, Yulin Deng. Poly (vinyl acetate)/Silver Nanocomposite Microspheres Prepared by Suspension Polymerization at Low Temperature. Macromolecular Materials and Engineering,2005,290 (1):78-84
    [194]J. Zhang, S. Xu, E. Kumacheva. Photogeneration of Fluorescent Silver Nanoclusters in Polymer Microgels, Advanced Materials,2005,17 (19):2336-2340
    [195]S. Matsuda, Y. Yasuda, S. Ando. Fabrication of Polyimide-Blend Thin Films Containing Uniformly Oriented Silver Nanorods and Their Use as Flexible, Linear Polarizers. Advanced Materials 2005,17(18):2221-2224
    [196]蒋长敏,蒋雪涛,魏红.聚甲基丙烯酸羟乙酯-E型胶原烧伤贴膜的研制.第二军医大学学报,1999,20(4):253-255
    [197]刘芳,周晓莲,崔凤萍.聚甲基丙烯酸羟乙酯水凝胶人工晶状体材料的合成与性能.生物医学工程学杂志,2007,24(3):595-598
    [198]王迎军,谭帼馨,张妹江.聚乙二醇/甲基丙烯酸-β-羟乙酯水凝胶的合成及其表征.离子交换与吸附,2008,24(3):275-279
    [199]P. K. Khanna, N. Singh, S. Charan, et al. The processing of CdSe/Polymer nanocomposites via solution organometallic chemistry. Mater. Chem. Phys.2006,97(2):288-294
    [200]K. Ishizu, H. Kakinuma, K. Ochi, et al, Encapsulation of silver nanoparticles within double-cylinder-type copolymer brushes as templates. Polym. Adv.Technol.2005,16(11): 834-839
    [201]H. Y. Xi, Y. Zhang, J.X. Peng, et al. Preparation of silver-poly(acrylamide-co-methacrylic acid) composite microspheres with patterned surface structures, Colloid Polym Sci,2006,284: 1221-1228
    [202]N. Singh, P. K. Khanna. In situ synthesis of silver nano-particles in polymethylmethacrylate Materials Chemistry and Physics,2007,104:367-372
    [203]Jung-Eun Lee, Jin-Woong Kim, Jung-Bae Jun, et al. Polymer/Ag composite microspheres produced by water-in-oil-in-water emulsion polymerization and their application for a preservative. Colloid Polym Sci,2004,282:295-299

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700