激光熔覆制备耐磨耐蚀涂层
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用横流式CO2激光器在40Cr钢基体表面上进行了不同质量百分比的Co包WC+Ni60A混合粉末的激光熔覆实验,优选出最佳的WC添加量,在此基础上添加不同质量百分比的纳米Ce02,从而优化出最佳配比。
     利用SEM、XRD等手段进行了熔覆层的相组成和显微组织结构分析,并阐述了激光熔覆过程中WC和纳米CeO2对熔覆层的影响。并利用显微硬度仪、摩擦磨损试验机对熔覆层进行硬度、耐磨性进行表征;利用极化曲线和浸泡试验对熔覆层的耐腐蚀性能分析。对比WC和纳米CeO2添加量对涂层各性能的影响,优化出最合适的熔覆材料配比。
     微观组织分析表明,熔覆试样由表层至基体分为三个不同的组织区域:熔覆层、熔覆层与基体之间的结合带、热影响区。熔覆层组织为树枝状晶和块状物,并且随着WC加入量的增加,枝晶迅速变小;而加入少量稀土氧化物后,使得激光熔覆层组织生长的方向性减弱,针状组织数量增加。涂层主要是由γ-Ni、WC、W2C、CrB2、Cr23C6、Cr7C3等相组成,加入纳米CeO2后,激光熔覆层中除有上述相组成外,还形成了CeNi3, Ce3BO6等化合物相。
     在未加入纳米CeO2时,随着WC加入量的增加,熔覆层的硬度呈现先升后降的趋势,而磨损率则呈现先降后增的趋势,这说明熔覆层的力学性能在WC加入量较小时随着WC加入量的增加而逐渐提高,在WC加入量过大时,随着WC加入量的增加而逐渐下降。在本实验条件下,存在一个WC加入量最佳值使得熔覆层的力学性能达到最佳,即为30%。浸泡试验结果显示,WC加入量对熔覆层的耐腐蚀性能同样有影响,随着WC加入量的增加,熔覆层在1mol/L硫酸腐蚀介质中的腐蚀速率先减后增,在WC加入量为30%时达到最小,仅为0.32 mg/cm2·h,说明在WC加入量为30%时熔覆层的综合性能达到最佳。
     在加入纳米CeO2时,熔覆层的硬度、耐磨性极耐腐蚀性较未加入纳米CeO2的有所提高,随着纳米CeO2加入量的增加,熔覆层综合性能也存在着一个最佳值,纳米CeO2的最佳加入量为1.5%。在本文的实验条件下,配比为30%WC+1.5%纳米CeO2+ Ni基合金可使熔覆层达到最优综合性能。
In this study, through a series of laser cladding experiments, CO/WC+Ni60A powders of different weight percentage were prepared on the surface of 40 Cr steel substrate, with a HJ-3kW crosscurrent typed CO2 laser apparatus, and the additive amount of WC was optimized. Then different content of nano CeO2 was added to the optimal CO/WC+Ni60A powder, and the best ratio was obtained.
     SEM and XRD measurments were employed to analyse the phase constitution and microstructure of the cladding layer, the impact of WC and nano CeO2 on the layer in the process of laser cladding was discussed. The hardness and wear resistance of the cladding layer were characterized by Micro hard-ness tester and wear testing machine, respectively, and the corrosion resistance was analyzed by polarization curves and immersion tests. The most suitable ratio of cladding material was optimized.
     The microstructure analysis results indicated that the cladding layer could be divided into three distinct areas:the suture zone, the substrate and the heat-affected zone. Cladding layer were dendritic crystal and the lump structure, and with the addition of WC, dendrites become fine rapidly. The direction character of laser cladding becomes weak, and the needle structure increased after the addition of a small amount of rare earth oxides. The cladding was mainly composed of y-Ni, WC, W2C, CrB2, Cr23C6, and Cr7C3. Besides the materials above, the compounds such as CeNi3 and Ce3BO6 were formed in the laser cladding layer by adding nano CeO2.
     The hardness of the cladding layer first increased and then decreased, and the wear resistance first increased and then decreased with the increase of WC befor the addition of nano CeO2. It indicated that the mechanical property of the cladding layer improved as the increase of the WC when the amount of WC added was small, and descended when the WC amount was lage. Under the experimental conditions, the best value of the WC amount was 30%, which made the mechanical properties of the cladding layer achieve the best. The results in the soaking experiments showed that, the addition of WC can impact the corrosion resistance of the cladding layer. The corrosion rate of the cladding layer in lmol/L sulfuric acid first decreased and then increased, and achieve the best when the amount of added WC was 30%, only 0.32 mg/cm2·h.
     The hardness, wear-resistance and corrosion resistant of cladding layer all increased after the addition of nano CeO2. The optimum value appeared when the best amount of nano-CeO2 was 1.5%. Therefore, under the experimental conditions, the best ratio was 30% WC,1.5% CeO2 and Ni-based alloys.
引文
[1]潘邻.激光表面改性的现状和展望[J].表面工程资讯2005,2(01):5-6.
    [2]R.L.Sun, D.Z.Yang, L.X.Guo, S.L.Dong. Microstructure and wear resistance of NiCrBSi laser clad layer on titanium alloy substrate[J]. Surface and Coatings Technology.2000,132:251-255.
    [3]张维平,刘文艳.激光熔敷陶瓷涂层综述[J].表面技术,2001,30(8):30-33.
    [4]D.E.Wolfe, J.Singh, J.Senderson.Laser Clad Composite Coatings[J]. Advanced Materials & Processes.2000,8:41-44.
    [5]C.L.Sexton, GByrne, K.GWalkins. Alloy Development by Laser Cladding an Overview[J]. Jounral of Laser Applications.2001,13(1):2-11.
    [6]L.Sexton, S.Lavin, GByrne, A.Kennedy. Laser Cladding of Aerospace Materials[J]. Journal of Materials Processing Technology.2002,122:63-68.
    [7]张思玉.碳钢表面激光熔覆WC-TIC-SiC-Co的研究[J].激光技术,1994(2):110-113.
    [8]门毓禾,钟敏霖编著.高功率激光加工其应用[M].大津科学技术出版社,1994,128-164.
    [9]刘江龙,邹至荣.高能束热处理[M].机械工业出版社,1997:248.
    [10]关振中,激光加工工艺手册[M].中国计量出版社,1998:269.
    [11]吴健.影响激光涂层品质的主要因素分析[J].机械制造与自动化.2004,33(4):55-56.
    [12]孙宽,姚继蔚,徐忠锦等.影响激光熔覆质量的主要因素[J].农业装备与车辆工程.2007,3:36-37.
    [13]姜伟,胡芳友,黄旭仁.工艺参数对激光熔覆层微观形貌的影响[J].表面技术.2007,36(4):57-58.
    [14]Qiang Li, Jiahu Quyang, Tingquan Lei. Recent development in laser cladding of materials surface[J]. Materials and Technology,1996,4:22-36.
    [15]黄尚猛,李华川.激光熔覆技术在工业中的应用及其发展[J].装备制造技术,2007,6:118-120.
    [16]张三川.送粉激光熔覆陶瓷掺杂复合涂层技术及涂层成形机理研究[D].郑州:郑州大学博士学位论文,2002.
    [17]李春彦,张松,康煌平.综述激光熔覆材料的若干问题激光杂志,2002,3(23): 5-8.
    [18]赵文轮.自熔合金筱层工艺研究[J].二机械工程材料,1996,4(20):13-15.
    [19]马玉涛.激光熔覆钢基表面自生复合材料的研究[D].大连:大连理工大学硕士学位论文,2004.
    [20]徐滨士,刘世参.表面工程新技术[M].北京:国防工业出版社,2002,1.
    [21]尚丽娟,朱荆璞,谭朝鑫.激光熔覆镍基和钻基自熔合金的研究.中国激光.1990,17(8):491-496.
    [22]M. Cadenas, R.Vijande, H. J. Montes, J. M. Sierra.Wear Behaviour of Laser Cladded and Plasma Spraved WC-Co Coatings[J]. Wear.1997,212:244-253.
    [23]曾晓雁,吴新伟,陶曾毅等.激光熔覆铸态Ni-W C金属陶瓷的耐磨性分析.金属学报,1997,33(8):885-890.
    [24]S. Mridha, T. N. Baker. Composite Laser Formation on Ti-6Al-4V Surfaces by Laser Treatment Using Preplaced SiC Powder[J]. Surface&Engineering. 1997,13(3):233-237.
    [25]J. H. Ouyanb,Y T. Pei, T. C. Lei, Y. Zhou. Tribolobical Behaviour of Laser-Clad TiCp Composite Coating[J]. Wear.1995,185:167-172.
    [26]陈传忠,王佃刚,张亮激.光熔覆陶瓷及其复合涂层的材料体系[J].激光技术,2002,26(2):123-128.
    [27]斯松华,袁晓敏,何宜柱,等.激光熔覆Ni基B4C合金涂层的组织与性能研究[J].应用激光,2003,23(1):2.
    [28]孙荣禄,杨贤金.激光熔覆TiC陶瓷涂层的组织和摩擦磨损性能研究[J].光学技术,2006,32(2):287-289.
    [29]潘应君,许伯藩,张细菊.La2O3对激光熔覆TiC/Ni基复合涂层的影响[J].稀土,2003,24(4):49-52.
    [30]赵涛,王顺兴,郑世安.CeO2对镍基金属陶瓷复合层组织和耐腐蚀性能的影响[J].金属热处理,2001,26(2):1-3.
    [31]赵高敏,王昆林,李传刚.La2O3对铁基合金激光熔覆层耐蚀性能的影响[J].中国稀土学报.2004,22(2):254-260.
    [32]赵高敏,王昆林,刘家浚.La2O3对激光熔覆铁基合金层硬度及其分布的影响[J].金属学报.2004,29(4):1115-1120.
    [33]赵高敏,王昆林,李传刚.稀土对铁基合金激光熔覆层抗磨性能的影响[J].摩擦学学报.2004,24(4):318-320.
    [34]J.S. Selvan, K.Subramamian, A.K.Nath. Laser Boronising of Ti-6A1-4V as A Result of Laser Alloying with Pre-placed BN[J]. Materials Science and Engineering.1999,260:178-187.
    [35]朱蓓蒂,陶曾毅.激光熔覆WC金属陶瓷颖拉的试验研究,全国第三届高能密度,热处理学术会议论文,1990年9月.
    [36]张宇,钟敏霖,刘文今.送粉激光熔覆合成制备WC/Ni硬质合金涂层及其耐磨性[J].金属热处理,2005,30(11):1-5.
    [37]熊党生.稀土化合物对粉末冶金镍基合金摩擦磨损性能的影响[J].2002,20(2):67-70.
    [38]张晓勇,晁明举,梁二军等.钒掺杂纳米TiO2薄膜的结构和光吸收性能[J].无机材料学报,2009,24(1):34-38.
    [39]李晓燕,王顺兴,田保红.稀土对Cu-Cr合金显微组织及电性能影响[J].2008,37(10):24-36.
    [40]骆心怡,何建平,李顺林.纳米氧化铈微粒对渡锌层结构和耐蚀性能的影响[J].稀土,2003,24(1):24-27.
    [41]Tucker T R, Clauer A H, Wright L Cz and Stropki J T. Laser-Processed Composite Metali Cladding for Slurry Erosion Resistance [J]. Thin Solid Films,1984,118:73-91.
    [42]Tao Zengyi. Cheng Xin, Laser Cladding of Ceramer for Improving the Wear Resistance of a Low Alloying Steel[J]. Chinese Journal of Metal Science and Technology,1990,6(1):45-49.
    [43]Zhu Beidi, Zeng Xiaoyan. Coarse WC Particles Ceramic-Metal Composite Coatings Produced by Laser Cladding [J]. Wear,1993,17:161-166.
    [44]杨永强.硬质合金激光熔覆层的显微组织及其影响因素,中国机械工程学会材料学会第二届年会论文集,1990,武汉:267-291.
    [45]张松,激光熔覆Ni基WC合金[J].材料科学进展,1990,4(2):12-14.
    [46]Ramous E, Giordano L, Tiziani A, Badan B. Laser Cladding of Ceramic and Metallic Coatings on Steel Key Engineering Materials[J].1990,46:425-434.
    [47]Kira and Kazoo. Laser Processing of Plasma Sprayed Coating[J]. Transaction of JWRI, 1989,18(2):14-16.
    [48]Mordike B L. Science of the Art of Surface Engineering with High Energy Beams[J]. Key Engineering Materials,1990,18:13-26.
    [49]Boas M and Bamderger M. Laser-Alloying of a Plasma WC/Co layer to Enhance Wear Properties [J]. Surface and Coatings Technology,1990,42: 175-186.
    [50]Gasser A. Hoffmann D. Jansen F, Krentz E W, Lugscheider E. and Wissenbach K. Remelting of Surface and Coatings on Steel by CO2 Laser Radiation[J]. Surface and Coatings Technology,1991,45:409-416.
    [51]Cerri W, Mortinella R, Mor G P, Ianchi P B.Laser Deposition of Carbide-Reinforced Coatings[J]. Surface and Coatings Technology,1991,49: 40-45.
    [52]王克智.高能束热处理[M].北京:电子工业出版社,1991,1-5.
    [53]周昌炽.激光熔覆Ni基和Co包WC合金层的显微结构和硬度性能[J].高能束热处理,1991,7:141-143.
    [54]陶曾毅.WC在激光熔覆层中的行为[J].高能束热处理,1991,7:56-59.
    [55]张光钧.45钢表面激光熔覆镍基纳米WC/Co镀层显微组织研究[J].机械制造,2006,44(497):59-62.
    [56]汤光平,黄文荣,杨家林.模具钢的激光熔覆组织和性能[J].四川大学学报(工程科学版),2001,33(5):69-74.
    [57]JuandeDamborenea.Surface modification ofmetalsby high power lasers[J]. Surface and Coatings Technology,1998,100(123):377-382.
    [58]L. Shepeleva, B. Medres. Laser cladding of turbine blades[J]. Surface andCoatingsTechnology,2000,125(123):45-48.
    [59]李春彦,张松.综述激光熔覆材料的若干问题[J].激光杂志,2002,23(3):5-10.
    [60]HuM L, Xie C S. Development ofmaterial consistency oflaser cladding[J]. Heat Treatment of Metals,2001, (1):1-8.
    [61]赵高敏,王昆林,李传刚.稀土对Fe基合金激光熔覆层抗磨性能的影响[J].摩擦学学报,2004,24(4):318-320.
    [62]宋晓岚,杨振华,邱冠周.纳米氧化铈在高新技术领域中的应用及其制备研究进展[J].材料导报,2003,17(12):36.
    [63]Gleiterh. Nanostructured materials basic concept sandmi crostructure[J]. ActaMaterialia,2002,48(1):1-29.
    [64]He Y, Huang Z. Oxidation behavior ofinicrocrystalline Ni-20Cr-Y2O3ODS alloy coatings[J]. Materials Letters,2000,45(2):79-85.
    [65]Suryanarayana C. Mechanicalalloying and milling[J]. Progress in Materials Science,2001,12(46):1-184.
    [66]Hum L, Xie Chen, Zhu B. Fractogragy study on cracking behavior of laser-clad multitrack coatings [J]. Transactions of Materials and Heat Treatment,2001,22(2):23-26.
    [67]Shen Y F, Chen J, Feng Zh. Distribution and behavior of rear earth in laser coating[J]. Journal of the RearEarth Society,1997,15(4):344-349.
    [68]Xu Y, Jih,Chenx etal. Effect of laser surfacemelting treatmenton the structure and corrosion resistance of rare earth permeating layer of pure iron[J]. Journal of theRearEarth Society,2001,19(4):346-349.
    [69]沈以赴.稀土在激光熔筱涂层中的分布和行为[J].中国稀土学报,19974(4):344-349.
    [70]Wang K L, Zhang Q B, Sun M L. Microstructure and corrosion resistance of laser cladded coatings with rare earth elements[J]. Corrosion Science,2001, 43:255-267.
    [71]单际国,丁建春,任家烈.铁基自熔合金光束熔覆层的微观组织及强化机理[J].焊接学报,2001,22(4):1-4.
    [72]杜挺.稀土元素在金属材料中一些物理化学作用[J].金属学报,1997,33(1):69-77.
    [73]钟华仁.钢的稀土化学热处理[M].北京,国防工业出版社,1998,35-55.
    [74]杜挺.稀土元素在金属材料中一些物理化学作用[J].金属学报,1997,33(1)::69-77.
    [75]马运哲,董世运.CeO2对激光熔覆Ni基合金涂层组织与性能的影响[J].中国表面工程,2006,19(1):7-11.
    [76]匡建新,汪新衡.稀土对激光熔覆金属陶瓷复合层的影响[J].润滑与密封,2007,32(6):87-89.
    [77]Liam, Xu B F, Pan Y J. Effect of La2O3 microstructure and property of TiC/Ni-based composite coating[J]. Journal of Iron and Steel Reseach,2003, 15(1):57-61.
    [78]Eliaz N, Mitton D B, Jcantini N. The use of electrochemical impedance spectroscopy and vibrating sample magnetometeror measuring the corrosion rate of polymer-coated ferromagnetic metals[J].2001,16(2):90.
    [79]严密,张小星.镱对镍磷合金化学镀组织和抗腐蚀性能的影响[J].稀有 金属,2005,、29(3):285.
    [80]王成,张庆生,江峰.非晶合金Zr55Al10Cu30Ni5在3.5%NaCl溶液中的电化学行为[J].金属学报,2002,38(7):765.
    [81]徐向荣,黄拿灿,杨少敏.稀土表面改性在改善高温抗氧化和耐蚀性方面的应用[J].热处理技术与装备,2006,27(1):8-13.
    [82]钟华仁.钢的稀土化学热处理[M].北京:国防工业出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700