新型螺旋折流片式换热器强化传热研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
管壳式换热器壳侧强化传热问题一直受到专家学者们的重视,人们也在不断探索改进传统管壳式换热器壳侧结构的新方案。近年来,螺旋折流板式换热器的研究引起了众多研究者对旋流强化壳程换热的重视,经研究发现,螺旋流动可以可提高有效传热温差,通道中的速度梯度影响了边界层的形成,使传热系数有较大的增加,且基本不存在流动与传热死区,但其制造比较困难。
     本文在这样的背景下,展开了新型壳程强化方法—螺旋折流片强化壳侧换热方案的研究与开发。本文在总结和吸取前人成功经验的基础上,提出将管壳式换热器的全部或部分传热管套上螺旋折流片,代替折流板对管束支撑的方案,可诱导形成多个局部螺旋流场,不仅可强化被套的管子本身,而且也强化其周围管子的传热,通过无功强化的方式获得较高的强化传热效果。
     针对流场的特点,建立单管和四管模型,利用大型计算流体力学软件FLUENT6.0对壳侧流场、温度场进行模拟,着眼于流动与换热的局部细节信息,探讨其强化换热的机理。从不同结构参数的螺旋片对壳侧流动工况适应性的角度,综合分析了其与光管在换热性能上的比较。结果显示,螺旋片所强化的壳程换热系数比光管通道高37.96%~100.06%,平均74.28%;整体上看,大螺旋角度的螺旋片强化换热的效果好,而小螺旋角度的螺旋片适应流速的范围较广,实际应用时,应当结合换热器的实际应用工况来综合评价其优劣。
     本文的研究工作为旋流强化换热机理的探讨打开了思路,也为该方案后续的理论与实验研究提供了有益的参考,无疑为管壳式换热器开辟了更加广阔的应用空间。
A lot of emphases have been focused on the study of the heat transfer enhancement at the shell-side of the shell-tube heat exchangers; researchers are still trying to find new methods to improve the shell-side structure. During recent years, interests on the heat transfer enhancement by helical flow have been aroused by the application of the helical-baffle heat exchangers. Enough results have proved that helical flow can effectively increase the temperature difference and destroy the flow boundary near the wall, which can greatly enhance the heat transfer coefficient. Studies also find that there exist almost no flow and heat transfer stagnant sections in the shell side of such kind of heat exchangers. However, it is quite difficult to design and manufacture the helical baffles, which in turn limited their application.
     In this thesis, study on the property of a new modification scheme named coil-strip-baffle has been performed, which can also induce the helical or vortex flow in the shell-side. Here the novel coil-strip-baffle scheme is designed by replace the traditional bow baffles or single helical ones with separate coil-strip-baffles around some or all the tubes of the tube bundle. In this way, the coil-strip-baffle can enhance not only the heat transfer of the sleeved tube but also the bared tubes around it. For this reason, high effect of heat transfer enhancement can be gained by use of this simpler method without any added power.
     Single-tube model and four-tube model have been constituted to simulate the flow and temperature fields by FLUENT6.0 software according to the feature of the flow field. In this study a lot of local detail features of the fluid flow and heat transfer have been caught which make possible to demonstrate its mechanism. Analyses on the property of the coil-strip-baffle with different structure working on a range of different velocities have been made by comparison between the baffled shell side with the bared-tube shell side. The results show that the heat transfer coefficient on thebaffled shell side is higher than the bared-tube shell side by 37.76%~100.06% which means the average value can reaches 74.28%. As a whole, the coil-strip-baffle with bigger helical angle can result in better heat transfer efficiency and also higher flow resistance, which make it necessary to consider the practical working condition during the estimate of its performance in application.
     The work done here have provided some ideas for the study on the mechanism of heat transfer enhancement by helical flow method and present some valuable results for the further research on this new method which will undoubtedly push forward the more extensive application of shell-tube exchangers.
引文
[1] 吴慧英.管内衰减旋流及其复合强化传热的研究.东南大学博士学位论文, 1997
    [2] 刘明言,崔岩,黄鸿鼎,李修伦,林瑞泰.管壳式换热器工艺设计进展.石油化工设备, Vol.32, No.5, pp.34-37, Sept.2003
    [3] 赵晓曦,邓先和,陈颖,王杨君.管壳式换热器壳程传热强化研究.Vol.21, No.7, pp.14-17, 2001
    [4] 吴金星,魏新利,董其伍,刘敏珊.纵向流管壳式换热器强化传热研究与发展.石油机械,Vol.30, No.4, pp.49-52, 2002
    [5] 邓先和,徐国想,陆恩锡,经孔板形成旋转流的管壳式换热器壳程传热及流阻的研究. 化学工程,Vol.31, No.1, pp.30-37, 2003
    [6] 钱颂文,岑汉钊,江楠等.换热器管束流体力学与传热.中国石化出版社, 2002
    [7] 严良文,王志文.一种新型纵向流管壳式换热器管束支承结构.压力容器,Vol.20, No.9, pp.19-23, 2003
    [8] 吴金星,耿志强,刘敏珊,董其伍.纵流式管束支撑物的结构及性能对比.河南化工,No.3, pp.4-6, 2003
    [9] 王秋旺.螺旋折流板管壳式换热器壳程强化换热研究进展.西安交通大学学报, Vol.38, No.9, pp.881-886, Sept.2004
    [10] 陶文铨.计算传热学的近代进展.科学出版社, 2000
    [11] 邓斌,陶文铨.管壳式换热器壳侧湍流流动与换热的三维数值模拟.化工学报,Vol.55, No.7, pp.1054-1060, 2004
    [12] 吴金星,王定标,魏新利,刘宏.管壳式换热器壳程流动和传热的数值模拟研究进展. 流体机械,Vol.30, No.5, pp.28-32, 2002
    [13] 林宗虎.强化传热及其工程应用.机械工业出版社, 1987
    [14] Stehlik P, Nemcansky J, Kral D. Comparison of correction factors for shell-and-tube heat exchangers with segmental or helical baffles.Heat Transfer Engineering, Vol.15, No.1, pp.55-65, 1994
    [15] Shou-Shing Hsieh, Tsung-Ying Yang. Nucleate Pool Boiling From Coated and Spirally Wrapped Tubes in Saturated R-134a and R-600a at Low and Moderate Heat Flux. Trans. of ASME J. of Heat Transfer. Vol.123, No.2, pp.257-270,2001
    [16] 胡庆均.纵流壳程换热器概述.压力容器. Vol.19, 增, pp.113-116, 2002
    [17] 过增元.对流换热的物理机制及其控制:速度场与热流场的协同.科学通报,Vol.45, No.19, pp.2118-2122, 2000
    [18] 孟继安,李志信,过增元等.螺旋扭曲椭圆管层流换热与流阻特性模拟分析.工程热物理学报,Vol.23, 增, pp.117-120, 2002
    [19] 徐百平,朱冬生,黄晓峰,顾雏军.管外翅片强化传热途径与研究进展.石油化工设备, Vol.33, No.5, pp.41-43, Sept.2004
    [20] 王玉,于斐,翟守信,高志伟.翅片管及其在管壳式换热器的使用.管道技术与设备, No.4, pp.22-24, 2000
    [21] 陆国栋.顺列螺旋槽管传热及光管颗粒撞击特性的研究.东南大学博士学位论文, 2004
    [22] 陶文辁.数值传热学.西安交通大学出版社,2001
    [23] FLUENT6.0 help 文件
    [24] 陈彦泽,周一卉,丁信伟.计算传热学在工程换热设备传热研究中的应用.化学工业与工程技术,Vol.23, No.3, pp.21-27, 2002
    [25] 王定标,董其伍,刘敏珊,李培宁.纵流壳程换热器数值模拟的应用研究.郑州工业大学学报,Vol.20, No.2, pp.18-20, 1999
    [26] 王定标,向飒,董其伍,刘敏珊,魏新利.纵流壳程换热器的三维流场.化工学报,Vol.55, No.5, pp.699-703, 2004
    [27] 吴金星,王定标,董其伍,刘敏珊,魏新利.纵流式换热器壳程层流流动与传热的数值模拟.石油机械,Vol.30, No.7, pp.15-19, 2002
    [28] 张少维,桑芝富.螺旋折流板换热器壳程流体流动的数值模拟.南京工业大学学报,Vol.26, No.2, pp.81-85, 2004
    [29] 邓斌,吴扬,陶文铨.螺旋折流板换热器壳侧流动的数值模拟.西安交通大学学报,Vol.38, No.1, pp.1106-1109, 2004
    [30] 朱冬生,钱颂文.强化传热技术及其设计应用.化工装备技术,Vol.21, No.6, pp.1-9, 2000
    [31] 李国君等.可压缩 k ? ε方程紊流模型及其应用.工程热物理学报,Vol.20, No.3, pp.309-312, 1999
    [32] 杨茉等.QUICK 与多种差分方案的比较和计算.工程热物理学报,Vol.20, No.5, pp.593-597, 1999
    [33] C.Jonas Bolinder, Bengt Sunden. Numerical prediction of laminar flow and forced convective heat transfer in a helical square duct with a finite pitch. .Int. Heat Mass Transfer, Vol.39, No.15, pp.3101-3115, 1996
    [34] 陈永东.我国换热器的技术进展.第二届全国换热器学术会议论文集,压力容器, 增, pp.1-9, 2002
    [35] 赵静野,刘建伟,祁惠峰.套管换热器旋流强化传热性能研究.北京建筑工程学院学报,Vol.19, No.1, pp.24-27, 2003
    [36] 梁晓军,岳希明,吴金星,王勇.管壳式换热器强化传热的数值模拟分析.中国油脂,Vol.28, No.10, pp.22-24, 2003
    [37] Suga Kazuhiko. Improvement of Second Moment Closure for Turbulent Obstacle Flow and Heat Transfer. Int J of Heat an d Fluid Flow, Vol.25, pp. 776-784, 2004
    [38] Abe K, Suga K. Towards the Development of a Reynolds-Averaged Algebraic Turbulent Scalar-Flux Model. Int J of Heat and Fluid Flow, Vol.22,pp.19-29, 2001
    [39] Lee S H, Ryou H S, Choi Y K. Heat Transfer in a Three-Dimensional Turbulent Boundary Layer with Longitudinal Vortices. Int J of Heat and Mass Transfer, Vol.42, pp.1521-1534, 1999
    [40] 齐承英,周国兵,曹惠玲等.新型涡流发生器强化换热实验研究.工程热物理学报,Vol.23, 增, pp.173-176, 2002
    [41] Atkinson K N, Drakaulie R, Heikal M R, et al. Two and three dimensional numerical models of flow and heat transfer over louver fin arrays in compact heat exchanger. Int. J Heat Mass Transfer, Vol.41, pp.4063-4080, 1998
    [42] Shah R K, Heikai M R. Progress in the numerical analysis of compact heat exchanger surfaces. Advances in Heat Transfer, Vol.34, pp.363-442, 2001
    [43] 邓斌,陶文铨.管壳式换热器壳侧湍流流动的数值模拟及实验研究.西安交通大学学报,Vol.37, No.9, pp.889-894, 2003
    [44] 李志敏,刘长振,张凯,衣秋杰.强化传热螺旋翅片管管束的试验研究.节能,Vol.258, No.1, pp.5-9, 2004
    [45] 刘吉普,文美纯.壳程螺旋扭片强化传热研究.石油化工设备.Vol.29, No.6, pp.3-5, 2000
    [46] 曾文良,林培森,张正国,王世平.空气在不同管束的螺旋隔板换热器壳侧传热与流阻性能实验研究.流体机械,Vol.27, No.11, pp.5-8, 1999
    [47] 傅玉华,王庆均,吴家声,蔡洪涛,薛建设.纵向流混合管束换热器试验研究.武汉化工学院学报,Vol.21, No.4, pp.49-53, 1999
    [48] 周巧明,黄素逸,叶加贵.新型折流杆管壳式换热器研究.长沙电力学院学报(自然科学版),Vol.19, No.3, pp.76-79, 2004
    [49] 邓先和,邓颂九.壳程轴流型换热器管隙间流体流动.化学工程,Vol.24, No.6, pp.38-43, 1996
    [50] 刘敏珊,董其伍,古新.热力系统新型纵流壳程换热器 CAD 技术研究.热能动力工程,Vol.19, No.3, pp.292-296, 2004
    [51] 常思勤.三维流动数值模拟中网格划分方法的研究.武汉汽车工业大学学报,Vol.20, No.2, pp.1-5, 1998
    [52] 张正科,朱自强,庄逢甘.复杂外形网格生成技术及应用.北京航空航天大学学报,Vol.24, No.6, pp.642-645, 1998
    [53] Ulrich Mohr, Horst Gelbe. Velocity distribution and vibration excitation in tube-bundle heat exchangers. Int. J. Therm. Sci, No.39, pp.414-421, 2000
    [54] K. Schroder , H. Gelbe. Two- and three-dimensional CFD-simulation of flow-induced vibration excitation in tube bundles. Chemical Engineering and Processing, Vol.38, pp.621-629, 1999
    [55] Suhas V. Patankar. Computational modeling of flow and heat transfer in industrial applications. International Journal of Heat and Fluid Flow, Vol.23, pp.222-231, 2002
    [56] Howard H. Hu, N. A. Patankar, M. Y. Zhu. Direct Numerical Simulations of Fluid–Solid Systems Using the Arbitrary Lagrangian–Eulerian Technique. Journal of Computational Physics, Vol.169, pp. 427–462, 2001
    [57] 杨世铭.传热学.高等教育出版社,1987

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700