高效传热低流阻换热器的开发研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提高换热器的换热效率和减小压降是换热器研究的主要目的,而换热器内部流体的流动状态是影响换热器综合性能的重要因素,因此,只有了解流体流动的规律才能找到提高换热效率和减小压降的方法。本文以螺旋流动为研究对象,分析了传热系数和压降的影响因素,并运用到新型换热管和换热器的开发研究,通过实验测试了新型换热器的性能,结果表明,新型换热器的综合性能明显优于折流杆换热器。
     本文的主要研究内容及取得的主要成果如下:
     (1)以管内螺旋流动为研究对象,以换热管内置扭带为模型,分别用解析和数值模拟的方法分析了管内螺旋流动,讨论了扭比和雷诺数对流体流动和传热的影响,得出螺旋流动强化传热的机理主要是:扭带使管内流体作螺旋流动,提高了流速,随之次流也增强,减薄了流动边界层和传热边界层,从而强化了管内的对流换热。螺旋流道的截面积沿轴向没有变化,流体没有产生涡和回流,流体流动连续通畅、稳定。提高雷诺数、减小扭比都可提高流体的流速,使传热系数增大,从而强化了管内的对流传热。
     (2)以管外螺旋流动为研究对象,以螺旋扭片套管换热器为模型,用同样的方法分析了管外螺旋流动,讨论了螺旋角和雷诺数对管外螺旋流动和传热的影响,得出管外螺旋流动与管内螺旋流动有着相同的强化传热机理,同样可以提高传热系数。管外螺旋流道的横截面积沿轴向不会变化,不会出现涡和回流,流体流动连续通畅、稳定。管外螺旋流动和管内螺旋流动不同的是扭片和扭带的作用范围,扭片的作用范围较小,对流体的影响比扭带小,做结构设计时应尽可能扩大扭片的作用范围。
     (3)在对螺旋流动研究的基础上,汲取螺旋折流板换热器的优点,开发出了一种新型换热管——螺旋肋片换热管和由这种换热管组装成的新型换热器——螺旋肋片自支撑管壳式换热器。对新型换热管的结构做了设计,设计了新型换热管的加工工艺。对新型换热器进行了结构设计,说明了这种换热器的组装方法。新型换热器中的螺旋肋片既增加了传热面积、诱导流体做螺旋流动,又起到支撑管束保持管间距的作用,完全取代了折流板。螺旋肋片换热器具有较高的传热系数和较低的压降,综合性能明显提高,并且结构简单、制造方便,另外,换热管上的支撑点多,约束增加,具有较好的防振和抗振性能。
     (4)建立了同向肋片管束和反向肋片管束的三维模型,进行了数值模拟。模拟结果表明,传热得以强化,而压降提高不大;反向肋片管束能使各单个旋流相互促进,旋流得到加强,总体性能优于同向肋片管束。通过对螺旋角的优化,确定了螺旋角的最佳取值范围为20°<α<25°。
     (5)用实验的方法测定了螺旋肋片换热器的换热和流体流动性能,并与数值模拟结果做了对比,证明了数值模拟的可行性。在相同的实验条件下做了折流杆换热器的性能实验,并与螺旋肋片换热器进行了对比。结果表明,螺旋肋片换热器总传热系数高于折流杆换热器,而流阻低于折流杆换热器,综合性能明显提高。得出了螺旋肋片换热器传热准数关联式,为工程应用奠定了基础。
It is the main purpose of research on heat exchanger to increase heat transfer efficiency and reduce pressure drop. The important factor which affects the comprehensive performance of heat exchanger is fluid flow conditions in heat exchanger. So, only by understanding the law of fluid flow can it be found to improve heat transfer efficiency and reduce pressure drop. In this paper, the spiral flows have been studied as research object, the influential factors of the heat transfer coefficient and pressure drop has been analyzed, and the new type of tube and heat exchanger has been researched and developed by using the results. The performance of this new type of heat exchanger has been tested by experiment. The results show a better performance of this kind of heat exchanger than the rod baffler heat exchanger. The main works and productions in this paper are as follows:
     (1) The spiral flows in the tube have been analyzed by using method of numerical and analyses in which the model of tube with twisted tape inserts had been set up. The effects of twist ratio and Reynolds number on fluid flow and heat transfer have been discussed. The enhanced heat transfer mechanism of spiral flow is: twisted tape can induce spiral flow so that the flow velocity and the secondary flow are increased, the flow boundary layer and heat transfer boundary layer are thinned, and the convection heat transfer is enhanced. The cross-sectional area of spiral duct along the axis doesn't change, and fluid doesn't produce vortex and return fluid flow, and the movement of fluid is fluent and stable continuously. The velocity and heat transfer coefficient can be increased by increasing Reynolds and reducing twist ratio, thus convective heat transfer is enhanced.
     (2) Spiral flows around tube have been researched by using the same method in which the model of double-tube heat exchanger with spiral tape has been set up. The effects of helical angle and Reynolds number on fluid flow and heat transfer have been discussed. The results reveal the same mechanism of enhanced heat transfer of spiral flows both in tube and around tube. The cross-section area of spiral duct around tube along the axis will not change, so vortex and return fluid flow fluid will not be produced. The difference between spiral flow around tube and in tube is the action area. The spiral tape exert less influence on fluid than twisted tape because its small action area. It is necessary to enlarge action area of spiral tape in structure design.
     (3)A new type of tube, helical rib tube, and heat exchanger, helical ribbed self-support type heat exchanger, have been developed based on above research and the merits of helical baffle heat exchanger. The structure of this new type of tube has been designed. This new type of tube has been manufactured by designing a proper processing technique. The helical ribs in heat exchanger can substitute for baffle plate because it will increase heat transfer area, induce spiral flow, and support tube bundle and tube. The structure and assembly method of this new type of heat exchanger have been designed. The helical ribbed self-support type heat exchanger has the merits of higher heat transfer coefficient, lower pressure drop, good compressive performance, and simple structure. The supports and restrictions for tubes are so many that can produce the favorable antivibration capability.
     (4) The three dimensional models of two kind of tube bundle have been set up, the velocity field, the pressure field and temperature field have been simulated. The results reveal the enhanced heat transfer and lower pressure. The different spiral flows are promoted each other because of the tube bundle arranged ribs with the different spiral directions. The comprehensive performance of tube bundle with different spiral direction is better than the same direction. The best range of spiral angle has been determined which is from 20°to 25°by optimizing.
     (5) The performance of helical ribbed self-support type heat exchanger has been tested by experiment, and the results have been contrasted with the simulation results which show the feasibility of numerical simulation. The performance experiment of rod baffle exchanger with the same conditions with helical ribbed self-support type heat exchanger has been done, and the results have been contrasted. The conclusions are attained that the total transfer heat coefficient of helical ribbed self-support type heat exchanger is higher than that of rod baffle heat exchanger and the pressure drop is lower than its, the comprehensive performance is heightened distinctly. The relationship formula of heat transfer has been attained by disposing the data of experiments, and can provide reference for engineering application.
引文
[1] 林宗虎.强化传热及其工程应用[M].北京:机械工业出版社,1987
    [2] 崔海亭,彭培英.强化传热新技术及其应用[M].北京:化学工业出版社,2006
    [3] 徐国想,邓先和,张亚君等.强化传热技术及其在硫酸转化系统中的应用进展[J].化工进展,2001,18(11):23~27
    [4] 崔海亭,姚仲鹏,王瑞君.强化型管壳式换热器的研究现状与发展[J].化工机械, 1999,26(3):168~170
    [5] 周明霞.国内外换热器技术进展[J].压力容器,1995,(1):19~23
    [6] 赵国辉,隋军.管壳式换热器技术进展[J].化学工程与工业程技术,2000,21(4): 12~15
    [7] 赵欣,王瑞君,姚仲鹏.螺旋型表而强化管现状与进展[J].石油化工设备,2001, 30(3):38~41
    [8] Withers J G.Tube-side heat transfer presser drop for having helical internal ridging with turbulent/transitional flow of single-phase fluid[J]. Heat Transfer Engineering, 1980, 2 (1): 48~58
    [9] Newson I H, Hodgson T K. Scale of enhanced heat exchanger tubes[J]. Heat Transfer, 1973, 89 (3): 85~89
    [10] Bergles A E. Heat transfer enhancement-The encouragement and accommodation of high heat fluxes[J]. Journal of heat transfer, 1997, 119 (2): 8~19
    [11] 陆应声,陈慕玲,潘宁忠等.强化传热元件与高效换热器研究进展[J].化工进展, 1998,17(1):16~18
    [12] 陈听宽.对流受热面传热强化研究与进展[J].工业锅炉,2004,(2):1~7
    [13] 金安,帅志明.螺旋槽阻力与换热特性研究[J].化工学报,1997,(4):512~516
    [14] 邱广涛,丰春艳.波纹管式换热器(一)[J].管道技术与设备,1998(1):43~45
    [15] 张平亮.新型高效换热器的技术进展及其应用[J].压力容器,1997,(2):146~152
    [16] 思勤夏清,梁龙虎,李定绪.螺旋扁管换热器传热与阻力性能.化工学报,1995, 46(5):601~608
    [17] 黄德斌,邓先和,王扬君,等.螺旋椭圆扁管强化传热研究.石油化工设备, 2003,32(3):1~3
    [18] 朱冬生,钱颂文.强化传热技术及其设计应用[J].化工装备技术,2000,21(6): 1~9
    [19] 杨俊兰,马一太.管内插入物强化换热性能分析及应用[J].动力工程,2004,24, (3):388~392
    [20] 钱颂文,朱冬生,李庆领等.管式换热器强化传热技术[M].北京:化学工业出版社,2003
    [21] 钱颂文.换热器管束流体力学与传热[M].北京:中国石化出版社,2001
    [22] 王素华,王树立,赵志勇.螺旋折流板换热器流动特性研究[J].化工高等学校学报,2001,14(1):64~67
    [23] 张少维,桑芝富.螺旋折流板换热器壳程流体流动的数值模拟[J].南京工业大学学报,2004,26(2):81~84
    [24] 王宏哲,周力.螺旋折流板换热器折流板及定距管的计算[J].石油化工设备, 2003,32(5):29~31
    [25] 张少维,桑芝富.螺旋折流板换热器壳程流体流动的数值模拟[J].南京工业大学学报,2004,26(2):81~84
    [26] 杨军,陈保东,孙成家.螺旋与弓形折流板换热器性能对比及螺旋角优化[J].辽石油化工大学学报,2005,25(2):59~62
    [27] 王秋旺.螺旋折流板管壳式换热器壳程传热强化研究进展[J].西安交通大学学报,2004,38(9):881~886
    [28] 梁旭琴,陈其骥,龚正玮.螺旋折流板换热器制造技术[J].石油化工设备,2005, 34(5).49~52
    [29] Centry C C. ROD baffle heat exchanger technology[J]. Chemical Engineering Progress, 1990, 86 (7): 48~57
    [30] Centry C C, Yong R K, Small W M.Proc. 7th Int. Heat Transfer Conf., 1982, 197~202
    [31] W M Small, R K Young. The ROD baffle heat Exchanger[J].Heat Transfer Engineering.I979, 1 (2): 21~27
    [32] Dong Qiwu, Lin Mingshan, Guo Chaxiu, et al. Characteristic Research of the New Type Energy Saving Tubular Heat Exchanger with Longitudinal-Flow of Shell side Fluid.Proceedings of ICEE, May 1995, 1996 Begell House Inc., 448~454
    [33] 花正旺.高效折流杆列管式换热器[J].湖南化工,1998,28(4):16~19
    [34] 邓先和,邓颂九.管间支撑物的结构对横纹管管束传热强化性能的影响[J].化工学报,1992,43(1):62~67
    [35] X H Deng, S J Deng. Investigation of heat transfer enhancement of roughened tube bundles supported by ring or rod supports[J].Heat Transfer Engineering, 1998, 19 (2): 21~27
    [36] 吴金星,董其伍,刘敏珊等.纵流式换热器的结构研究进展[J].化工进展,2002, 21(5):306~309
    [37] S J Green. Thermal, hydraulic, and corrosion aspects of PWR steam generator problems[J].Heat Transfer Engineering, 1988, 9 (1): 19~22
    [38] 曾舟华,钱颂文.低传热“死区”异形孔板纵向流管壳式换热器传热研究[J].化工设备设计,1997,34(2):15~17
    [39] 陆应生,关建郁,陈慕玲等.整圆槽孔折流栅板和缩放管在中氮肥氮氢气压缩机级间冷却器中的应用[J].化肥工业,2001,28(1):29~30
    [40] 陈敏恒,丛德滋,方图南等.化工原理[M].北京:化学工业出版社,1999
    [41] 盛森芝,徐月亭,袁辉靖.近十年来流动测量技术的新发展[J].力学与实践, 2002,24(5),1~13
    [42] 傅德薰,马延文.计算流体力学[M].北京:高等教育出版社,2002,7
    [43] 陶文铨.数值传热学[M].西安:西安交通大学出版社,2001,5
    [44] Pantankar S V, Spalding D B. A calculation procedure for the transient and steady state behavior of shell-and-tube heat exchanger, in Afgan N F, Schlunder E U. eds. Heat exchanger: design and theory source book[M]. New York: McGraw-Hill, 1974, 155~176
    [45] WU Jin-xin, DONG Qi-wu, Liu Min-shan. 3D simulation on the unit duct in the shell side of ROD baffle heat exchanger[J]. Journal of Shanghai University (English Edition), 2006, 10(4): 362~365
    [46] 过增元,黄素逸等.场协同原理与强化传热新技术[M].北京:中国电力出版社, 2004
    [47] 过增元.对流换热的物力机制及其控制:速度场与热流场的协同[J].科学通报, 2000,45(19),2118~2122
    [48] 高翔,骆仲泱,周劲松,等.螺旋肋片形成非衰减性旋流的强化传热性能[J].化工学报,2003,54(9):1205~1208
    [49] 黄卫星,陈文梅.工程流体力学[M].北京:化学工业出版社,2001
    [50] 孙文策,李元明,周美等.工程流体力学[M].大连:大连理工大学出版社,2003
    [51] 王颖,徐梧.简便可靠的螺旋翅片绕制装置[J].机械制造,2005,43(489):44~45

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700