神经内镜治疗脑积水及症状性透明隔囊肿的临床与初步实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑积水是脑出血后常见的并发症,发生率很高。国外统计高达50%的自发性脑出血合并有脑室出血,其中35%会发展成为出血后脑积水。研究表明脑积水形成后会导致脑实质的继发性损害,是病情加重、致死和预后不良的重要原因。迄今为止,脑出血后慢性脑积水的发生机制尚不完全清楚,推测可能是蛛网膜下腔纤维化导致脑脊液(cerebrospinal fluid,CSF)的循环吸收障碍所致,但缺乏直接的证据并存在较多争议。因此目前国内外对脑出血后慢性脑积水的治疗困难,实践表明传统的分流术因并发症较多而易致手术失败,其主要并发症为分流管堵塞及术后感染,国外统计堵管率大约40%,感染率约15%,部分患者因反复手术失败而成为难治性脑积水。近年来,采用经神经内镜+分流术治疗脑出血后慢性脑积水,虽然较传统分流术的效果稍好些,但对于部分病例的治疗仍非常困难,而成为临床亟待解决的一个难题。
     本研究在回顾性总结神经内镜手术治疗184例脑积水及症状性透明隔囊肿的基础上,根据内镜观察脑出血后慢性脑积水患者脑室内较多纤维蛋白沉积这一现象,推测这些纤维蛋白沉积物可能在脑出血后慢性脑积水的形成中具有重要意义,同时可能也是分流术后分流管堵塞的主要原因。并对脑出血后慢性脑积水的可能发生机制进行了初步实验研究。
     材料与方法:首先采用放射免疫分析法(RIA)检测了组织纤维化标志物PⅠCP、PⅢNP、HA、LN在人脑出血后慢性脑积水的CSF中的含量;然后分别建立了小型猪及大鼠实验性脑室出血后慢性脑积水动物模型,采用MRI动态观察猪脑室容积改变、SPECT观察猪蛛网膜下腔CSF循环的改变,及脑积水形成后猪脑的病理改变、超微结构改变;同时分别采用免疫组化、原位杂交方法观察了大鼠脑室出血后LN及LNR1、水通道蛋白(AQP1)及AQP1mRNA在大鼠脑内的表达及尿激酶腹腔注射的干预作用。
     结果:1.神经内镜手术治疗184例脑积水及透明隔囊肿,总治愈率79.35%、好转率14.67%、有效率94.02%。并发症为9.24%。脑出血、脑外伤后慢性脑积水患者脑室内较多胶冻样或絮状沉积物,病理检查为纤维蛋白成分。
     2.脑出血及脑外伤后慢性脑积水患者CSF中PⅠCP、PⅢNP、HA、LN的含量显著高于对照组(P<0.01)。
     3.猪实验性脑室出血后30d 7只出现慢性脑积水,占63.64%(7/11),大鼠实验组30d出现慢性脑积水为80%(4/5),尿激酶治疗组30d出现慢性脑积水为60%(3/5)。
     4.猪脑室出血后各时相点蛛网膜下腔核素显影均局限在椎管穿刺点附近,显示CSF循环障碍。
     5.猪脑室出血后主要病理改变有蛛网膜下腔轻度增宽、脉络丛萎缩、室管膜萎缩,未发生脑积水动物病理改变较发生脑积水动物略轻。
     6.猪脑室出血后主要超微结构改变为蛛网膜细胞间隙纤维样结构增多,未发生脑积水动物改变较发生脑积水动物略轻。
     7.大鼠脑室出血后主要病理改变有脑室明显扩张,蛛网膜下腔增宽水肿、脉络丛萎缩、室管膜萎缩,未发生脑积水动物病理改变较发生脑积水动物略轻。
     8.实验组大鼠脑室出血后LN在脉络丛的疏松结缔组织膜、纵裂池、软脑膜、蛛网膜、硬膜、脑内毛细血管壁、蛛网膜下腔血管壁的表达在3d时增加,7d表达继续增加,14d表达最强较对照组、假手术组差异显著(P<0.01),30d仍强烈表达;尿激酶治疗组较实验组无明显差异。
     9.实验组大鼠脑室出血后LNR1在脉络丛的立方上皮细胞胞浆及顶质膜、室管膜细胞、软脑膜细胞、蛛网膜细胞、硬膜、纵裂池、胶质细胞的表达增加。LNR1在蛛网膜下腔的表达变化与LN基本一致。
     10.对照组大鼠AQP1在脉络丛上皮细胞顶质膜强烈表达,室管膜、纵裂池、软脑膜、蛛网膜、硬脑膜也有较强烈表达;实验组脑室出血后3d表达减少,7d表达继续减少,14d表达最弱较对照组、假手术组差异显著(P<0.01),30d表达仍较弱;尿激酶治疗组表达强度较实验组明显增强(P<0.01)。
     11.大鼠AQP1mRNA在脑内的表达强度较AQP1弱,表达部位及变化与AQP1基本一致。
     结论:
     1.神经内镜手术可作为单纯的梗阻性脑积水及症状性透明隔囊肿的首选治疗方法;神经内镜脑室冲洗有可能减少脑出血后慢性脑积水分流术的堵管率。
     2.脑出血后慢性脑积水患者CSF中PⅠCP、PⅢNP、HA、LN的含量显著增高,提示人脑出血后蛛网膜下腔可能存在纤维化趋势。
     3.小型猪实验性脑室出血后蛛网膜下腔的CSF循环吸收障碍可能与电镜所发现的蛛网膜纤维化有关。
     4.大鼠实验性脑室出血后LN及LNR1的表达上调可能参与蛛网膜纤维化的形成。
     5.大鼠实验性脑室出血后AQP1表达下调导致CSF吸收减少可能也参与脑出血后慢性脑积水的形成。
Background Hydrocephalus is a major complication of intracerebral haemorrhage. The incidence of intraventricular hemorrhage amalgamating intracerebral haemorrhage is greater than 50%,of which 35%will develop into progressive posthemorrhagic hydrocephalus(PPHH).PPHH can induce secondary injury to brain,and is an important causation of mortality and morbidity in these intracerebral haemorrhages.Up to date,the definite pathogenesis of posthaemorrhagic chronic hydrocephalus is not clear.It is speculated that the obstruction of CSF absorption induced by subarachnoid space fibrosis after intraventricular hemorrhage might be the cause of posthaemorrhagic chronic hydrocephalus;however,there is no definite evidence to support it and many disputes still exist.So,it is very difficult to seek the proper treatment for posthaemorrhagic chronic hydrocephalus.The traditional ventriculoperitoneal shunt has not achieved satisfactory curative effects because of the complications such as blockages and infections.Lately, although posthaemorrhagic chronic hydrocephalus via neuroendoscopic approach is more effectual than the traditional shunt,in some cases such treatment still faces great challenges.
     We reviewed 184 cases patients with hydrocephalus or intracranial cyst underwent neuroendoscopic operation.Based on the clinical discovery of fibrous tissues deposit in ventricles of posthaemorrhagic chronic hydrocephalus,we think these fibrous tissues deposit of ventricles might be the aetiology of chronic hydrocephalus and the cause of shunt blockages,and the primary experimental study of the pathogenesis of posthaemorrhagic chronic hydrocephalus was made.
     Methods 184 cases patients with hydrocephalus or symptomatic septum pellucidum cysts underwent neuroendoscopic operation were reviewed.The levels of procollagen I C-propeptide(PⅠCP),procollagenⅢN-propeptide(PⅢNP)、hyaluronic acid(HA) and laminin(LN) in patients with posthaemorrhagic chronic hydrocephalus were detected by radioimmunoassay.The experimental models of posthaemorrhagic chronic hydrocephalus in pigs and rats were founded.The changes of pigs' ventricular dimension were observed with MRI and CSF circulation in subarachnoid space observed by SPECT.The changes of structures in pigs' brains after intraventricular hemorrhage were investigated by light and electron microscopy,and the changes of structures in rats' brains were investigated by light microscopy.
     The changes of LN,laminin receptor1(LNR1),AQP1 and AQP1 mRNA expressions in rats brains after intraventricular hemorrhage were detected with the aid of immunohistochemical techniques and in situ hybridization,respectively,and the effect of urokinase was observed synchronously.The possible pathogenesis of posthaemorrhagic chronic hydrocephalus was discussed.
     Results 1.184 cases patients with hydrocephalus or symptomatic septum pellucidum cysts underwent neuroendoscopic surgery.The total rate of cure was 79.35%(146/184), 14.67%(27/184) had catabatic symptom;total effectual rate was 94.02%(173/184),and 9.24%(17/184) had complications.2.The levels of PICP、PⅢNP、HA and LN in patients with posthaemorrhagic chronic hydrocephalus group were significantly increased than those in the controlled group(P<0.01).3.In 30 days after intraventricular hemorrhage, chronic hydrocephaluses were found by MRI in 7 experimental pigs,63.64%(7/11).In 30 days after intraventricular hemorrhage,4 rats(80%) and 3 rats(60%) chronic hydrocephalus were produced in the experimental group and the urokinase therapeutic group,respectively.4.The persistently obstruction of CSF circulation and absorption in pigs subarachnoid space after intraventricular hemorrhage was detected by SPECT.5.After hemorrhage,the major changes in pigs' brains included enlargement of subarachnoid space, atrophy of choroids plexus and ependyma.Non- hydrocephalus pigs had less obvious changes than hydrocephalus pigs did.6.Augmented fibrous tissues in hydrocephalus pigs arachnoid space were found by electron microscopy,and these changes were less obvious in non- hydrocephalus pigs.7.The major changes in rats' brains included ventricular dilatation,enlargement and edema of subarachnoid space,atrophy of choroids plexus and ependyma.The changes in non- hydrocephalus rats were less obvious than that in hydrocephalus animals.8.After intraventricular hemorrhage,the increases of LN expressions in experimental rats' brains were found in loose connective tissue stroma of choroids plexus,pia mater,arachnoid,dura and vascular wall.On the 14~(th) day,the expressions of LN reached to the peak and had evident increase compared with the controlled group(P<0.01).The Urokinase therapeutic group had no difference with the experimental group.9.The increase of LNR1 expressions in the experimental rats' brains were found in cuboidal epithelium of choroids plexus,epithelium of pia,arachnoid,dura and vascular endothelial cell.On the 14~(th) day,the expressions of LNR1 reached to the peak and had evident increase compared with the control group(P<0.01).The Urokinase therapeutic group had no difference with the experimental group.10.In the controlled group rats,the intense expressions of AQP1 were found in the apical of cuboidal epithelium of choroids plexus,ependyma,pia mater,arachnoid and dura.After intraventricular hemorrhage,the expressions of AQP1 gradually descended in experimental group rats and dropped to bottom on the 14~(th) day(P<0.01).The Urokinase therapeutic group had evident increase compared with the experimental group(P<0.01).11.The expressions of AQP1 mRNA accorded with those of AQP1 basically.
     Conclusions 1.Neuroendoscopic operation could be an effective,safe,convenient and preferred therapeutic method for simplex obstructive hydrocephalus and symptomatic septum pellucidum cysts.The irrigation of ventricles via neuroendoscopic approach might reduce the blockages of shunt in posthaemorrhagic chronic hydrocephalus.2.The increases of PⅠCP、PⅢNP、HA and LN of cerebrospinal fluid in patients with posthaemorrhagic hydrocephalus imply that there is a tendency of arachnoidal fibrosis after intracerebral haemorrhage.3.The obstruction of CSF circulation and absorption after pigs' intraventricular hemorrhage might be derived from arachnoid fibrosis detected by electron microscopy.4.The increase of LN and LNR1 expressions after rats' intraventricular hemorrhage might involve the development of arachnoidal fibrosis.5.The decrease of CSF absorption induced by the decline of AQP1 expressions after rats' intraventricular hemorrhage might also relate to the development of posthaemorrhagic chronic hydrocephalus.
引文
1.Mancao M,Miller C,Cochrane B,et al.Cerebrospinal fluid shunt infections in infants and children in Mobile,Alabama.Acta Paediatr.1998,87:667-70.
    2.孟辉,冯华,王宪荣,等.第三脑室底造瘘术治疗梗阻性脑积水与分流术的疗效比较.中华神经外科杂志.2003,19(6):411-3.
    3.Iannelli A,Rea G,Di Rocco C.CSF shunt removal in children with hydrocephalus.Acta Neurochir(Wien).2005,147(5):503-7.
    4.Kulkarni AV,Drake JM,Lamberti M.Cerebrospinal fluid shunt infection:a prospective study of risk factors.J Neurosurg.2001,94(2):195-201.
    5.Mcgirt J,Leveque J,Wellons C,et al.Cerebrospinal fluid shunt survival and etiology of failures:a seven-year institutional experience.Pediatr Neurosurg,2002,36(5):248-55.
    6.Reinprecht A,Dietrich W,Berger A,et al.Posthemorrhagic hydrocephalus in preterm infants:long-term follow-up and shunt-related complications.Childs Nerv Syst.2001,17(11):663-9.
    7.Hui Meng,Hua Feng,Fei Le,et al.Neuroendoscopic Management of Symptomatic Septum Pellucidum Cysts.Neurosurgery.2006,59(2):278-83.
    8.张亚卓,王忠诚,高鲜红,等.神经内镜手术并发症及防治.中华神经外科杂志.2003,19(6):405-7.
    9.Perneczky A,Fries G.Endoscope-assisted brain surgery:part 1--evolution,basic concept,and current technique.Neurosurgery.1998,42,219-24.
    10.Yadav YR,Jaiswal S,Adam N,et al.Endoscopic third ventriculostomy in infants.Neurol India.2006,54(2):161-3.
    11.张亚卓,王忠诚,高鲜红,等.神经內窥镜技术的临床应用.中华神经外科杂志.2000,16(1):3-7.
    12.Longatti PL,Fiorindi A,Martinuzzi A.Failure of endoscopic third ventriculostomy in the treatment of idiopathic normal pressure hydrocephalus.Minim Invasive Neurosurg.2004,47(6):342-5.
    1. Whitelaw A. Intraventricular haemorrhage and posthaemorrhagic hydrocephalus: pathogenesis, prevention and future interventions. Semin Neonatol, 2001,6(2): 135-46.
    2. Cherian S, Thoresen M, Silver IA, et al. Transforming growth factor-betas in a rat model of neonatal posthaemorrhagic hydrocephalus. Neuropathol Appl Neurobiol, 2004,30(6):585-600.
    3. Whitelaw A, Cherian S, Thoresen M. Posthaemorrhagic ventricular dilatation: new mechanisms and new treatment. Acta Paediatr Suppl, 2004,93(444): 11-14.
    4. Tada T, Zhan H, Tanaka Y, et al. Intraventricular administration of hepatocyte growth factor treats mouse communicating hydrocephalus induced by transforming growth factor beta1. Neurobiol Dis. 2006,21(3):576-86.
    5. Motohashi O, Suzuki M, Shida N, et al. Subarachnoid haemorrhage induced proliferation of leptomeningeal cells and deposition of extracellular matrices in the arachnoid granulations and subarachnoid space. Immunhistochemical study. Acta Neurochir (Wien), 1995,136(1-2):88-91.
    6. Heep A, Stoffel WB, Soditt V, et al. Procollagen I C-propeptide in the cerebrospinal fluid of neonates with posthaemorrhagic hydrocephalus. Arch Dis Child Fetal Neonatal Ed, 2002, 87(1): F34-36.
    7. Sajanti J, Heikkinen E, Majamaa K. Rapid induction of meningeal collagen synthesis in the cerebral cisternal and ventricular compartments after subarachnoid hemorrhage. Acta Neurochir(Wien), 2001, 143(8):821-6.
    8. Massicotte EM, del Bigio MR. Human arachnoid villi response to subarachnoid hemorrhage: possible relationship to chronic hydrocephalus. J Neurosurg, 1999,91(1): 80-84.
    9. Fukumizu M, Takashima S, Becker LE. Glial reaction in periventricular areas of the brainstem in fetal and neonatal posthemorrhagic hydrocephalus and congenital hydrocephalus. Brain Dev, 1996, 18(1): 40-5.
    10. Badaut J, Lasbennes F, Magistretti PJ, et al. Aquaporins in brain: distribution, physiology, and pathophysiology. J Cereb Blood Flow Metab, 2002, 22(4): 367-78.
    11. Longatti PL, Basaldella L, Orvieto E, et al. Choroid plexus and aquaporin-1: a novel explanation of cerebrospinal fluid production. Pediatr Neurosurg, 2004, 40(6):277-83.
    12. Speake T, Freeman LJ, Brown PD. Expression of aquaporin 1 and aquaporin 4 water channels in rat choroid plexus. Biochim Biophys Acta, 2003, 1609(1):80-86.
    13. Masseguin C, Corcoran M, Carcenac C, et al. Altered gravity downregulates aquaporin-1 protein expression in choroid plexus. J Appl Physiol, 2000, 88(3):843-50.
    14. Saadoun S, Papadopoulos MC, Davies DC, et al. Increased aquaporin 1 water channel expression in human brain tumors. Br J Cancer, 2002, 87(6): 621-23.
    15. Mayfrank L, Kissler J, Raoofi R,et al. Ventricular dilatation in experimental intraventricular hemorrhage in pigs. Characterization of cerebrospinal fluid dynamics and the effects of fibrinolytic treatment. Stroke. 1997,28(1): 141-8.
    16. Pang D, Sclabssi RJ, Horton JA. Lysis of intraventricular blood clot with urokinase in a canine model:part 1. Neurosurgery, 1986,19(4):540-6.
    17. Mayfrank L, Kim Y, Kissler J, et al. Morphological changes following experimental intraventricular haemorrhage and intraventricular fibrinolytic treatment with recombinant tissue plasminogen activator. Acta Neuropathol (Berl) , 2000,100(5):561-7.
    18. Yamada S, Shibata M, Scadeng M, et al. MRI tracer study of the cerebrospinal fluid drainage pathway in normal and hydrocephalic guinea pig brain. Tokai J Exp Clin Med. 2005,30(1):21-9.
    19. Soul JS, Taylor GA, Wypij D, et al. Noninvasive detection of changes in cerebral blood flow by near-infrared spectroscopy in a piglet model of hydrocephalus. Pediatr Res. 2000,48(4):445-9.
    20. Madhavi C, Jacob M. Light & electron microscopic structure of choroid plexus in hydrocephalic guinea pig. Indian J Med Res. 1995,101:217-24.
    21. Penn RD, Lee MC, Linninger AA, et al. Pressure gradients in the brain in an experimental model of hydrocephalus. J Neurosurg. 2005,102(6):1069-75.
    22. Lodhia KR, Shakui P, Keep RF. Hydrocephalus in a rat model of intraventricular hemorrhage. Acta Neurochir Suppl. 2006,96:207-11.
    23. Cosan TE, Gucuyener D, Dundar E, et al. Cerebral blood flow alterations in progressive communicating hydrocephalus: transcranial Doppler ultrasonography assessment in an experimental model. J Neurosurg.2001,94(2):265-9.
    24. Johanson CE, Szmydynger-Chodobska J, Chodobski A, et al. Altered formation and bulk absorption of cerebrospinal fluid in FGF-2-induced hydrocephalus. Am J Physiol. 1999,277(1 Pt 2):263-71.
    25. Babapour B, Oi S, Boozari B, et al. Fetal hydrocephalus, intrauterine diagnosis and therapy considerations: an experimental rat model. Childs Nerv Syst. 2005,21(5):365-71.
    26. Jones HC, Yehia B, Chen GF, et al. Genetic analysis of inherited hydrocephalus in a rat model. Exp Neurol. 2004,190(1):79-90.
    27. Jones HC, Chen GF, Yehia BR, et al. Single and multiple congenic strains for hydrocephalus in the H-Tx rat. Mamm Genome. 2005,16(4):251-61.
    28. Li X, Miyajima M, Arai H. Analysis of TGF-beta2 and TGF-beta3 expression in the hydrocephalic H-Tx rat brain. Childs Nerv Syst, 2005, 21(1):32-38.
    29. Oshio K, Watanabe H, Song Y,et al. Reduced cerebrospinal fluid production and intracranial pressure in mice lacking choroid plexus water channel Aquaporin-1. FASEB J, 2005, 19(1):76-8.
    30. Moon Y, Hong SJ, Shin D, et al. Increased aquaporin-1 expression in choroid plexus epithelium after systemic hyponatremia. Neurosci Lett, 2006,395(1): 1-6.
    31. Knuckey NW, Preston J, Palm D, et al. Hydrocephalus decreases chloride efflux from the choroids plexus epithelium. Brain Res, 1993,618(2):313-17.
    32. Silverberg GD, Huhn S, Jaffe RA, et al. Downregulation of cerebrospinal fluid production in patients with chronic hydrocephalus. J Neurosurg, 2002, 97(6): 1271-75.
    33. Kim J, Kim WY, Ham KH, et al. Developmental expression of aquaporin-1 in the rat renal vasculature. Am J Physiol, 1999,276(4 Pt 2):F498-509.
    34. du-Plessis AJ. Posthemorrhagic hydrocephalus and brain injury in the preterm infant: dilemmas in diagnosis and management. Semin-Pediatr-Neurol, 1998,5(3): 161-79.
    35. Whitelaw A, Pople I, Cherian S, et al. Phase 1 trial of prevention of hydrocephalus after intraventricular hemorrhage in newborn infants by drainage, irrigation, and fibrinolytic therapy. Pediatrics, 2003, 111(4 Pt 1): 759-65.
    36. Pang D, Sclabssi RJ, Horton JA. Lysis of intraventricular blood clot with urokinase in a canine model: part 2-3. Neurosurgery. 1986,19(4):547-71.
    37. Hansen AR, Volpe JJ, Goumnerova LC, et al. Intraventricular urokinase for the treatment of posthemorrhagic hydrocephalus. Pediatric Neurology, 1997, 17(3):213-17.
    1. Sidel VW, Solomon AK. Entrance of water into human red cells under an osmotic pressure gradient. J Gen Physiol, 1957, 41:243-257.
    2. Finkelstein A. Water Movement through Lipid Bilayers, Pores and Plasma Membranes, Theory and Reality, John Wiley & Sons, Inc., New York. 1986
    3. Denker BM, Smith BL, Kuhajda FP, et al. Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. J Biol Chem, 1988, 263(30): 15634-15642.
    4. Cheng A, van Hoek AN, Yeager M, et al. Three-dimensional organization of a human water channel. Nature, 1997, 387(6):627-630.
    5. Murata K, Mitsuoka K, Hirai T, et al. Structural determinants of water permeation through aquaporin-1. Nature, 2000, 407(6804): 599-605.
    6. Preston GM, Jung JS, Guggino WB, et al. The mercurysensitive residue at cysteine 189 in the CHIP28 water channel. J Biol Chem, 1993, 268(1), 17-20.
    7. Ishibashi K, Kuwahara M, Gu Y, et al. Aquaporin (water channels) : role in vasopressin-activated water transport. Biochem Biophys Res Commun, 1998, 244(1):268-274.
    8. Agre P, Kozono D. Aquaporin water channels: molecular mechanisms for human diseases. FEBS Lett, 2003, 555(1): 72-78.
    9. Kobayashi H, Minami S, Itoh S, et al. Aquaporin subtypes in rat cerebral microvessels. Neurosci Lett, 2001, 297(3):163-166.
    10. Verkman AS. Aquaporin channels and endothelial cell function. Journal of Anatomy, 2002, 200(6): 617-627.
    11. Mobasheri A, Marples D. Expression of the AQP-1 water channel in normal human tissues: a Semiquantitative study using tissue microarray technology. Am J Physiol Cell Physiol, 2004, 286(3): C529-537.
    12. Oshio K, Shields S, Basbaum A, et al. Reduced pain sensation and impaired nociception in mice lacking aquaporin-1 water channels. J Am Soc Nephrol, 2001, 12, 20A-21 A.
    13. Masseguin C, Corcoran M, Carcenac C, et al. Altered gravity downregulates aquaporin-1 protein expression in choroid plexus. J Appl Physiol, 2000, 88(3):843-850.
    14. Speake T, Freeman LJ, Brown PD. Expression of aquaporin 1 and aquaporin 4 water channels in rat choroid plexus. Biochim Biophys Acta, 2003, 1609(1 ):80-86.
    15. Venero JL, Vizuete ML, Ilundain AA, et al. Detailed localization of aquaporin-4 messenger RNA in the CNS: preferential expression in periventricular organs. Neuroscience, 1999, 94(1):239-250.
    16. Wen H, Nagelhus EA, Nielsen S, et al. Ontogeny of water transport in rat brain: postnatal expression of the aquaporin-4 water channel. Eur J Neurosci, 1999, ll(3):935-945.
    17. Nielsen S, Nagelhus EA, Amiry-Moghaddam M, et al. Specialized membrane domains for water transport in glial cells: high resolution immunogold cytochemistry of aquaproin-4 in rat brain. J Neurosic, 1997, 17(7): 171-180.
    18. Saadoun S, Papadopoulos MC, Davies DC, et al. Aquaporin-4 expression is increased in oedematous human brain tumors. J Neurol Neurosurg Psychiatry, 2002, 72(2):262-265.
    19. Rash JE, Yasumura T, Hudson CS, et al. Direct immunogold labeling of aquaporin- 4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc Natl Acad Sci USA, 1998,95(20):11981-11986.
    20. Manley GT, Fujimura M, Ma T, et al. Aquaporin - 4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med, 2000, 6(2):159-163.
    21. Nico B, Frigeri A, Nicchia GP, et al. Role of aquaporin-4 water channel in the development and integrity of the blood-brain barrier. J Cell Sci, 2001, 114(7):1297-1307.
    22. Yoneda K, Yamamoto N, Asai K, et al. Regulation of aquaporin-4 expression in astrocytes. Brain Res Mol Brain Res, 2001,89(1-2):94-102.
    23. Solenov EI, Vetrivel L, Oshio K, et al. Optical measurement of swelling and water transport in spinal cord slices from aquaporin null mice. J Neurosci Methods, 2002, 113(1):85-90.
    24. Badaut J, Hirt L, Granziera C, et al. Astrocyte-specific expression of aquaporin-9 in mouse brain is increased after transient focal cerebral ischemia. J Cereb Blood Flow Metab, 2001, 21(5):477-482.
    25. Elkjaer M, Vajda Z, Nejsum LN, et al. Immunolocalization of AQP9 in liver, epididymis, testis, spleen, and brain. Biochem Biophys Res Commun, 2000, 276(3):1118-1128.
    26. Nicchia GP, Frigeri A, Nico B, et al. Tissue distribution and membrane localization of aquaporin-9 water channel: evidence for sex-linked differences in liver. J Histochem Cytochem, 2001, 49(12):1547-1556.
    27. Badaut J, Petit JM, Brunet JF, et al. Distribution of Aquaporin 9 in the adult rat brain: preferential expression in catecholaminergic neurons and in glial cells. Neuroscience, 2004, 128(1):27-38.
    28. Yamamoto N, Yoneda K, Asai K, et al. Alterations in the expression of the AQP family in cultured rat astrocytes during hypoxia and reoxygenation. Brain Res Mol Brain Res, 2001,90(1):26-38.
    29. Oshio K, Binder DK, Yang B, et al. Expression of aquaporin water channels in mouse spinal cord. Neuroscience, 2004, 127(3):685-693.
    30. Nicchia GP, Frigeri A, Liuzzi GM, et al. Inhibition of aquaporin-4 expression in astrocytes by RNAi determines alteration in cell morphology, growth, and water transport and induces changes in ischemia-related genes. FASEB J, 2003, 17(11):1508-1510.
    31. Solenov E, Watanabe H, Manley GT, et al. Sevenfoldreduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a fluorescence quenching method. Am J Physiol Cell Physiol, 2004, 286(2): C426-432.
    32. Longatti PL, Basaldella L, Orvieto E, et al. Choroid plexus and aquaporin-1: a novel explanation of cerebrospinal fluid production. Pediatr Neurosurg, 2004, 40(6):277-283.
    33. Moon Y, Hong SJ, Shin D, et al. Increased aquaporin-1 expression in choroid plexus epithelium after systemic hyponatremia. Neurosci Lett, 2006,395(1):1-6.
    34. Saito N, Ikegami H, Shimada K. Effect of water deprivation on aquaporin 4 (AQP4) mRNA expression in chickens (Gallus domesticus). Brain Res Mol Brain Res, 2005,141(2):193-197.
    35. Hiroaki Y, Tani K, Kamegawa A, et al. Implications of the aquaporin-4 structure on array formation and cell adhesion. J Mol Biol, 2006,355(4):628-639.
    36. Saadoun S, Papadopoulos MC, Watanabe H, et al. Involvement of aquaporin-4 in astroglial cell migration and glial scar formation. J Cell Sci, 2005,118(Pt 24):5691-5698.
    37. Vizuete ML, Venero JL, Vargas C, et al. Differential upregulation of aquaporin-4 mRNA expression in reactive astrocytes after brain injury:potential role in brain edema.Neurobiol Dis,1999,6(4):245-258.
    38.Taniguchi M,Yamashita T,Kumura E,et al.Induction of aquaporin-4 water channel mRNA after focal cerebral ischemia in rat.Brain Res Mol Brain Res,2000,78(1-2):131-137.
    39.Vajda Z,Pedersen M,Fuchtbauer EM,et al.Delayed onset of brain edema and mislocalization of aquaporin-4 in dystrophin-null transgenic mice.Proc Natl Acad Sci USA,2002,99(20):13131-13136.
    40.Papadopoulos CM,Krishna S and Verkman AS.Aquaporin-4 water channels and brain edema.Mt Sinai J Med,2002,69(4):242-248.
    41.Aoki K,Uchihara T,Tsuchiya K,et al.Enhanced expression of aquaporin 4 in human brain with infarction.Acta Neuropathol(Berl),2003,106(2):121-124.
    42.Amiry-Moghaddam M,Otsuka T,Hurn PD,et al.An alpha-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain.Proc Natl Acad Sci USA,2003,100(4):2106-2111.
    43.Papadopoulos MC,Manley GT,Krishna S,et al.Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema.FASEB J,2004,18(11):1291-1293.
    44.李燕华,孙善全.大鼠脑出血后AQP4 mRNA的表达与Ca~(2+)关系的探讨.中国急救医学,2003,23(7):437-439.
    45.Ke C,Poon WS,Ng HK,et al.Heterogeneous responses of aquaporin-4 in oedema formation in a replicated severe traumatic brain injury model in rats.Neurosci Lett,2001,301(1):21-24.
    46.Zhao J,Moore AN,Clifton GL,et al.Sulforaphane enhances aquaporin-4 expression and decreases cerebral edema following traumatic brain injury.J Neurosci Res,2005,82(4):499-506.
    47.Endo M,Jain RK,Witwer B,et al.Water channel(aquaporin 1) expression and distribution in mammary carcinomas and glioblastomas.Microvasc Res,1999,58(2):89-98.
    48.Markert JM,Fuller CM,Gillespie GY,et al.Differential gene expression profiling in human brain tumors.Physiol Genomics,2001,5(1):21-33.
    49.Saadoun S,Papadopoulos MC,Davies DC,et al.Increased aquaporin 1 water channel expression in human brain tumors.Br J Cancer,2002,87(6):621-623.
    50.索新,郭永川.水通道蛋白1基因在人脑胶质瘤中的表达及意义.中国微侵袭神经外科杂志,2003,8(6):270-272.
    51.Binder DK,Oshio K,Ma T,Verkman AS,et al.Increased seizure threshold in mice lacking aquaporin-4 water channels.Neuroreport,2004,15(2):259-262.
    52.St Hillaire C,Vargas D,Pardo CA,et al.Aquaporin 4 is increased in association with human immunodeficiency virus dementia:implications for disease pathogenesis.J Neurovirol,2005,11(6):535-543.
    53.Bloch O,Papadopoulos MC,Manley GT,et al.Aquaporin-4 gene deletion in mice increases focal edema associated with staphylococcal brain abscess.J Neurochem,2005,95(1):254-262.
    54.Gunnarson E,Axehult G,Baturina G,et al.Lead induces increased water permeability in astrocytes expressing aquaporin 4.Neuroscience,2005,136(1):105-114.
    55.Chan H,Butterworth RF,Hazell AS.Primary cultures of rat astrocytes respond to thiamine deficiency-induced swelling by downregulating aquaporin-4 levels.Neurosci Lett,2004,366(3):231-234.
    56.Kim J,Kim WY,Ham KH,et al.Developmental expression of aquaporin-1 in the rat renal vasculature.Am J Physiol,1999,276(4 Pt 2):F498-509.
    57.Neely JD,Nielsen S,Agre P,et al.Heterotetrameric composition of aquaporin-4 water channels.Biochemistry,1999,38(34):11156.
    58.Yamamoto N,Sobue K,Miyachi T,et al.Differential regulation of aquaporin expression in astrocytes by protein kinase C.Brain Res Mol Brain Res,2001,95(1-2):110-116.
    59.Gu F,Hata R,Toku K,et al.Testosterone up-regulates aquaporin-4 expression in cultured astrocytes.J Neurosci Res,2003,72(6):709-715.
    60.Fujita Y,Yamamoto N,Sobue K,et al.Effect of mild hypothermia on the expression of aquaporin family in cultured rat astrocytes under hypoxic condition.Neurosci Res,2003,47(4):437-444.
    61.Yamamoto N,Sobue K,Fujita M,et al.Differential regulation of aquaporin-5 and -9expression in astrocytes by protein kinase A.Brain Res Mol Brain Res,2002,104(1):96-102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700