蛛网膜下腔出血导致迟发脑血管痉挛的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:改进枕大池2次注血法,建立蛛网膜下腔出血(SAH)导致迟发脑血管痉挛(DCVS)的大鼠模型;应用该模型动态监测SAH后脑血流(CBF)的变化,对基底动脉进行形态学测定和组织病理学检查,动态观察CVS的病理演变过程;探讨SAH导致DCVS的脑代谢变化规律,及其与皮质CBF变化的相关性;观察DCVS大鼠海马CA1区神经元的凋亡情况及演变过程,进一步探讨SAH后DCVS的发生机制及演变规律。
     方法:(1)模型建立及CBF监测:50只SD大鼠随机分为5组:对照组、SAH后1天、3天、5天、7天组,每组10只。应用鼠尾非抗凝自体动脉血,枕大池2次注血法制作动物模型。5只大鼠(n=5)用于大体观察:其中4只在2次注血后30分钟处死,观察血的大体分布;1只2次注入人工脑脊液后30分钟处死做为对照观察。激光多普勒(LDF)测定各组的皮层CBF;(2)各组在相应时段处死,取基底动脉应用光学显微镜对基底动脉进行形态学测定,应用透射电子显微镜观察基底动脉超微结构变化;(3)采用微透析(MD)仪监测各组脑细胞外液的葡萄糖(Glu)、乳酸(Lac)、丙酮酸(Pyr)、谷氨酸(Glut)及甘油(Gly)的浓度,并计算乳酸与丙酮酸比值(L/P);(4)各组在相应时段处死取海马组织,应用原位细胞凋亡检测法(TUNEL)监测海马CA1区神经元的凋亡情况及演变过程。组间差异应用单因素方差分析,两两比较应用LSD法。
     结果:(1)模型建立情况:SAH组血液主要分布于基底池、脚间池及额叶底面。亚甲蓝与血液混合物主要沉积于颅底,同时在脑室及纵裂池亦可见血液分布。对照组大鼠注入人工脑脊液后未见发生颅内出血及血液沉积现象;LDF监测显示,SAH各组出现了严重的CVS,CBF明显低于对照组(P<0.05),其中第5天组降低最显著。表明模型建立成功;(2)形态学研究:与对照组相比,光镜下SAH组发生了明显的CVS,表现为血管直径减小、管壁增厚、管腔周长减少、内弹力膜皱褶,同时可见痉挛血管细胞增殖现象明显。尤以第5天组最显著(P<0.05)。出血第1、3、5、7天组基底动脉直径分别减少了46.34%、33.95%、50.59%、17.21%;管壁厚度分别增加了98.55%、75.58%、159.27%、19.21%;管腔内周长分别减少了56.30%、45.97%、62.50%、25.77%。与对照组比较,电镜下SAH组内皮细胞出现类凋亡样变化,包括内皮细胞膜起泡,胞质凝聚,胞浆空泡变,核染色质凝聚、趋边。以第5天组最显著,伴有大量内皮细胞的剥离导致内弹力膜的裸露,平滑肌细胞的坏死。(3)脑代谢检测:SAH组大鼠脑ECF中Glu及Pyr含量明显降低(P<0.05);L/P明显升高(P<0.05),以第5天及第7天组升高最为明显(P<0.05);第5天组Lac含量亦明显升高(P<0.05);Glut及Gly浓度明显升高,以第5天组升高最明显(P<0.05)。CBF的变化率与Lac、L/P比值、Glut、Gly呈明显正相关(r=0.477,0.721,0.804,0.718;均P<0.05),与Glu、Pyr呈明显负相关(r=-0.447,-0.579;均P<0.05);(4)凋亡研究:对照组未见凋亡细胞;SAH第1天组可见TUNEL阳性细胞,第3天组逐渐增多,第5天、7天组明显增多。
     结论:(1)大鼠SAH并发DCVS模型制备成功,该模型可以在一定程度上模拟人类SAH后CVS的双时相特点和病理演变过程;(2)DCVS的发生,与血管周围细胞的增殖以及基底动脉内皮细胞类凋亡样变化相一致,表明凋亡和血管细胞增殖可能是CVS发生机制中非常重要的因素;(3)微透析指标与CBF变化具有一致性,可作为SAH脑组织间液生化指标的动态监测工具,用于预测DCVS的发生。(4)SAH大鼠海马CA1区出现了明显的神经元的凋亡,并且随着DCVS的发生,神经元的凋亡现象更为严重,提示海马区的凋亡可能是SAH后伴发迟发性缺血性神经功能缺陷(DIND)的重要因素。
Objective: To establish the animal model of subarachnoid hemorrhage(SAH) -induced delayed cerebral vasospasm(DCVS) by modifying the two injections of nonheparinized autologous arterial blood into the cisterna magna. Using the animal model, we dynamically monitor the changes of cerebral blood fluid(CBF) and chose basilar artefies(BA) for morphometric Analysis and histopathological examination; To investigate the changes of the cerebral energy metabolism and the neuronal apoptosis in hippocampal CA1 region following SAil-induced DCVS, and explore the correlation with CBF changes; To further explore the pathogenesis of DCVS.
     Methods: (1) Establishment of animal model: Male Sprague-Dawley rats(n=50) were divided into five groups: control group and 1d、3d、5d、7d group following SAH. The animal model was induced by two injections of nonheparinized autologous arterial blood into the cistema magna. Five rats(n=5) were used for the general observation: Four rats were euthanized at 30 min after dobble-hemorrhage for blood distribution; One rat was injected twice into the cisterna magna with artificial cerebrospinal fluid for control.; The cortical CBF was measured by Laser Doppler Flowmetry(LDF); (2) Each group was sacrificed respectively, We chose basilar artedes(BA) for morphometdc Analysis with light microscope and for observation the changes of ultrastructure with transmission electron microscopy; (3) Microdialysis(MD) was applied to monitor the concentration of Glu、Lac、Pyr、Glut、Gly in the cerebral extracellular fluid(ECF)in each group, and calculated the I/P; (4) we chose hippocamp for the study on the neuronal apoptosis with TUNEL and observe the time course of apoptosiso Results:(1) The distribution of blood clot was seen in the basal cisterns, interpeduncular cisterns, on the base of the frontal lobe. Methylthioninium Chloride with blood was mainly observed in the subarachnoid space on the base of the brain, blood was seen in the ventricle and diastematia cistern as well. However, in control group none of the rats developed blood and no blood distribution was seen. the LDF measurements show severe vasospasm and there was an obviously decrease in CBF compared with baseline in each group following SAH(P<0.05), especially in 5d group the CBF decreased significantly(P<0.05); (2) Morphometric Analysis and histopathological examination: The basal artery revealed luminal narrowing, reduction in diameter, increased wall thickness, corrugation of the internal elastic lamina(IEL), and cellular proliferation were observed in the spastic BA as well, especially severe in 5d group(P<0.05). In 1d、3d、5d、7d group, the mean diameter of BA was reduced from control levels by46.34%, 33.95%, 50.59%, 17.21%; the increases in wall thickness of BA were 98.55%, 75.58%, 159.27%, 19.21%; the mean luminal perimeter reduced by 56.30%, 45.97%, 62.50%, 25.77%. Apoptotic-like changes were noted in endothelial cells in each group following SAH and consisted of blebbing of the cell membrane, condensation of the cytoplasm, condensation of peripheral nuclear chromatin, and cytoplasmic vacuolization. The morphological changes in endothelial were most severe and wide spread in 5d group with some endothelial cells and smooth muscle cells showed evidence of necrotic .changes. (3) MDanalysis: [Glu]、[Pyr] was lower ineach group following SAH, whereas L/P、[Glut] and [Gly] were significantly higher than that in control group(P<0.05), at same time, L/P in 5d、7d group was higher than that in other groups(P<0.05), [Lac]、[Glut] and [Gly] were significantly elevated in 5d group(P<0.05); Changes in CBF has significantly positive correlation with L/P、Lac、Glut and Gly (r=0.721, 0.477, 0.814, 0.718 P<0.05), whereas, it has strongly negative correlation with Glu and Pyr (r=-0.447, -0.579; P<0.05); (4) Neuron apoptosis in the hippocampal CA1 region was no found in control . the number of TUNEL—positive cells showed a significant increase in each SAIl group, especially in the 5d、7d group (P<0.05).
     Conclusion: (1) The model of SAH was induced successfully and it can accurately simulate the time course of vasospasm in humans following SAH; (2) The course of CVS following SAH coincided with the progress of apoptosis changes in ehdothelial cells and proliferation of cells in the vascular wall. Endothelial apoptosis and cellular proliferation might play an important role in the pathogenesis of vasospasm; (3) MD markers are in good accordance with changes in CBF, MD is an ideal tool for dynamically monitoring neurochemical substances in the ECF following SAH and can indicate early the onset of delayed cerebral ischemia; (4) Neuron apoptosis in the hippocamp may play an important role in the pathogenesis of DIND.
引文
[1] Sen J, Belli A, Albon H, et al. Triple-H therapy in the management of aneurysmal subarachnoid haemorrhage. Lancet Neurol 2003;2:614-21.
    
    [2] Weir B. The pathophysiology of cerebral vasospasm. Br J Neurosurg 1995;9:375-90.
    [3] Megyesi JF, Findlay JM. In vivo animal models of cerebral vasospasm: a review. Acta Neurochir Suppl 2001;77:99-102.
    [4] Ecker A, Riemenschneider PA. Arteriographic demonstration of spasm of theintracranial arteries, with special reference to saccular arterial aneurysms. J Neurosurg 1951;8:660-7.
    [5] Gules I, Satoh M, Clower BR, Nanda A, Zhang JH. Comparison of three rat models of cerebral vasospasm. Am J Physiol: Heart Circ Physiol 2002,283:H2551-9.
    [6] Macdonald RL, Weir B. Cerebral vasospasm. Academic Press, San Diego, 2001,ppl7-508.
    [7] Lin CL, Calisaneller T, Ukita N, et al. A murine model of subarachnoid hemorrhage-induced cerebral vasospasm. J Neurosci Methods 2003,123:89-97.
    [8] The rat: a refinement of the endovascular filament model. J Neurosci Methods 2000,96:161-7.
    [9] Kader, A, Krauss WE, Onesti ST,et al. Chronic cerebral blood flow changes following experimental subarachnoid hemorrhage in rats. Stroke 1990,21: 577-581.
    [10] Meguro Schwartz AY, Masago A, et al. Experimental models of subarachnoid hemorrhage in, T, Clower BR, Carpenter R, et al. Improved rat model for cerebral vasospasm studies. Neurol Res 2001, 23: 761-766.
    
    [11] Bederson, JB, Levy AL, Ding WH, et al. Acute vasoconstriction after subarachnoid hemorrhage. Neurosurgery 1998,42: 352-360.
    [12] Carpenter, RC, Miao L, Miyagi Y, et al. Altered expression of P2 receptor mRNAs in the basilar artery in a rat double hemorrhage model. Stroke 2001,32: 516-522.
    [13] Veelken JA, Laing RJC, Jakubowski FJ. The shefllield model of subarachnoid hemorrhage in rats. Stroke, 1995, 26: 1279-1284.
    [14] Kuwayama A, Zervas NT, Belson R, Shintani A, Pickren K. A model for experimental cerebral arterial spasm. Stroke 1972, 3:49-56.
    [15] Pluta RM, Zauner A, Morgan JK, et al. Is vasospasm related to proliferative arteriopathy? J Neurosurg 1992,77:740-748.
    [16] Prunell GF, Mathiesen T, Diemer NH, et al. Experimental subarachnoid hemorrhage: subarachnoid blood volume, mortality rate, neuronal death, cerebral blood flow, and perfusion pressure in three different rat models.Neurosurgery 2003,52:165-76.
    [17] Reilly C, Amidei C, Tolentino J, Jahromi BS, Macdonald RL. Clot volumeand clearance rate as independent predictors of vasospasm after aneurysmalsubarachnoid hemorrhage. J Neurosurg 2004,101:255-61.
    [18] Meguro T, Clower BR, Carpenter R, et al. Improved rat model for cerebral vasospasm studies. Neurol Res 2001,23:761-766.
    [19] Zhou ML,Shi JX,Zhu JQ, et al,Comparison between one- and two-hemorrhage models of cerebral vasospasm in rabbits. J Neurosci Methods 2007,159:318-324.
    [20] Hickey J, Buckley D. Cerebral aneurysms. In: Hickey J, ed. The Clinical Practice of Neurological and Neurosurgical Nursing. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2003,523-548.
    [21] Baldwin ME, Macdonald RL, Huo D: Early vasospasm on admission angiography in patients with aneurysmal subarachnoid hemorrhage is a predictor for in-hospital complications and poor outcome. Stroke .2004,35:2506-2511.
    [22] Meguro T, Clower BR, Carpenter R, et al. Improved rat model for cerebral vasospasm studies. Neurol Res 2001,23:761-766.
    [23] Miyagi Y, Carpenter RC, Meguro T, et al. Upregulation of rho A and rho kinase messenger RNAs in the basial artery of a rat model of subarachnoid hemorrhage. J Neurosurg, 2000,93:471-476.
    [24] Suzuki H, Kanamaru K, Tsunoda H, et al. Heme oxygenase-1 gene induction as an intrinsic regulation against delayed cerebral vasospasm in rats. J Clin Invest 1999,104:59-66.
    [25] Vatter H, Weidauer S, Konczalla J, et al. Time course in the development of cerebral vasospasm after experimental subarachnoid hemorrhage: Clinical and neuroradiological assessment of the rat double hemorrhage model. Neurosurgery. 2006,58(6):1190-1197.
    
    [26] Nikaido H, Tsunoda H, Nishimura Y, et al. Potential role for heat shock protein 72 in antagonizing cerebral vasospasm after rat subarachnoid hemorrhage .Circulation 2004,110:1838-1846.
    [27] Ono S, Date I, Onoda K, et al. Time course of the diameter of the major cerebral arteries after subarachnoid hemorrhage using corrosion cast technique . Neurol Res 2003,25:383-389.
    
    [28] Kassell, NF, Tomer JC,Haley EC, et al. The International Cooperative Study on the Timing of Aneurysm Surgery. Part 1: overall management results. J neurosurg 1990,73:18-36.
    
    [29] Beck J, Paabe A, Lanfermann H, et al. Tissue at risk concept for endovascular treatment of severe vasospasm after aneurysmal subarachnoid hemorrhage. J Neurosurg Psychiatry 2004,75:1779-1781.
    [30] Weidauer S, Vatter H, Dettmann E , et al. Assessment of vasospasm in experimental subrachnoid hemorrhage in rats by selective biplane digital subtraction angiography. Neuroradiology. 2006,48:176-181.
    [31] Fabricius M, Lauritzen M: Laser-Doppler evaluation of rat brain microcirculation:Comparison with the [14C]-iodoantipyrine method suggests discordance during cerebral blood flow increases. J Cereb Blood Flow Metab, 1996 ,16:156-161,.
    [32] Giselle FP,Tiit M, Niels-Aage S, et al.Experimental subrachnoid hemorrhage: Cerebral blood and brain metabolism during the acute phase in three different models in the rat.Neurosurgery 2004,54:426-437
    [33] Cambj-Sapunar L, Yu M, Harder DR, et al .Contribution of 5-hydroxytryptamine1B receptors and 20-hydroxyeiscosatetraenoic acid to fall in cerebral blood flow after subarachnoid hemorrhage. Stroke 2003,34:1269-1275.
    [1] Zubkov AY, Nanda A, Zhang JH, et al. Signal transduction pathways in cerebral vasospasm. Pathophysiology. 2003,9(2),47-61.
    [2] Borel CO, Mckee A, Parra A, et al. Possible role for vascular cell proliferation in cerebral vasospasm after subarachnoid hemorrhage. Stroke. 2003,34:427-433.
    [3] Zhou C, Yamaguchi M, Kusaka G, et al: Caspase inhibitors prevent endothelial apoptosis and cerebral vasospasm in dog model of experimental subarachnoid hemorrhage J .Cere. Blood Flow Metab.2004,24(4):419-431
    [4] Huang J, van Gelder JM. The probability of sudden death from rupture of intracranial aneurysms: a meta-analysis. Neurosurgery. 2002, 51:1101-1105.
    [5] Broderick JP, Brott TG, Duldner JE, et al. Initial and recurrent bleeding are the major causes of death following subarachnoid hemorrhage. Stroke. 1994,25:1342-1347.
    [6] Selman W, Taylor C, Tarr R, et al. The neurosurgeon and the acute stroke patient in the emergency department: diagnosis and management. Clin Neurosurg. 1999;45:74-85.
    [7]Macdonald R.L,Stoodley M,Weir B.Intracranial Aneurysms. Neurosurgery Quarterly.2001,11(3):181-198
    [8] Macdonald RL, Weir B. Cerebral vasospasm. Academic Press, San Diego, 2001,pp17-508
    [9] Megyesi JF, Vollrath B, Cook DA. In vivo animal models of cerebral vasospasm: a review. Neurosurgery 2000, 46:448-461.
    [10]Prunell GF, Mathiesen T, Svendgaard N-A. A new experimental model in rat for study of the pathophysiology of subarachnoid hemorrhage. Neuroreport .2002,13:2553-2556.
    
    [11] Prunell GF, Mathiesen T, Diemer NH, et al .Experimental subarachnoid hemorrhage: subarachnoid blood volume, mortality rate, neuronal death, cerebral blood flow, and perfusion pressure in three different rat models. Neurosurgery 2003,52:165-176
    
    [12] Gules I, Satoh M, Clower BR, et al. Comparison of three rat models of cerebral vasospasm . Am J Physiol Heart Circ Physiol , 2002,283: H2551-2559.
    
    [13]Hickey J, Buckley D. Cerebral aneurysms. In: Hickey J, ed. The Clinical Practice of Neurological and Neurosurgical Nursing. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2003,523-548.
    
    [14]Baldwin ME, Macdonald RL, Huo D: Early vasospasm on admission angiography in patients with aneurysmal subarachnoid hemorrhage is a predictor for in-hospital complications and poor outcome. Stroke .2004,35:2506-2511.
    
    [15]Meguro T, Clower BR, Carpenter R, et al. Improved rat model for cerebral vasospasm studies. Neurol Res 2001,23:761-766.
    
    [16]Miyagi Y, Carpenter RC, Meguro T, et al. Upregulation of rho A and rho kinase messenger RNAs in the basial artery of a rat model of subarachnoid hemorrhage . J Neurosurg, 2000,93:471-476.
    
    [17]Suzuki H, Kanamaru K, Tsunoda H, et al. Heme oxygenase-1 gene induction as an intrinsic regulation against delayed cerebral vasospasm in rats. J Clin Invest 1999,104:59-66
    
    [18]Vatter H, Weidauer S, Konczalla J, et al. Time course in the development of cerebral vasospasm after experimental subarachnoid hemorrhage: Clinical and neuroradiological assessment of the rat double hemorrhage model. Neurosurgery. 2006,58(6): 1190-1197.
    [19]Longo M, Blandino A, Ascenti G, et al .Cerebral angiography in the rat with mammographic equipment: a simple cost-effective method for assessing vasospasm in experimental subarachnoid hemorrhage. Neuroradiology . 2002,44:689-694
    [20]Weidauer S, Vatter H, Dettmann E , et al. Assessment of vasospasm in experimental subarachnoid hemorrhage in rats by selective biplane digital subtraction angiography. Neuroradiology. 2006,48:176-181.
    [21]Nazli J, Mayer S. Cerebral vasospasm after subarachnoid hemorrhage. Curr Opin Crit Care. 2003;9:113-119.
    [22]Treggiari-Venzi M, Suter P, Romand J. Review of medical prevention of vasospasm after aneurismal subarachnoid hemorrhage: a problem of neurointensive care. Neurosurgery. 2001;48(2):249-262.
    [23]Gaetani F, Tancioni F, Grifnani G, et al. Platelet derived growth factor and subarachnoid haemorrhage: A study on cisternal cerebrospinal fluid. Acta Neurochir. 1997,139:319-324.
    [24]Zhang J, Lewis AL, Bernanke DH, et al. Stroke: anatomy of a catastrophic event. Anat Rec.1998,253:58-63.
    [25]Zubkov AY, Lewis AL, Scalzo D, et al. Morphological changes after percutaneous transluminal angioplasty. Surg Neuro.1999,51:399-403.
    [26]Zubkov AY, Tibbs RE, Clower B, et al. Morphological changes of cerebral arteries in a canine double hemorrhage model. Neuroscience Letters . 2002,326:137-141.
    [27]Meguro T, Klett CP, Chen B, et al. Role of calcium channels in oxyhemoglobin-induced apoptosis in endothelial cells. J Neurosurg. 2000,93:640-646.
    [28]Ogihara K, Zubkov AY, Bemanke DH, et al. oxyhemoglobin induced apoptosis in cultured endothelial cells. J Neruosurg. 1999,91:459-465.
    [1] Nazli J,Mayer S.Cerebral vasospasm after subarachnoid hemorrhage. Curr Opin Crit Care.2003,9:113-119.
    [2]Macdonald R.L,Stoodley M,Weir B.Intracranial Aneurysms. Neurosurgery Quarterly.2001,11(3):181-198.
    
    [3] Whalen MJ. Predicting significant vasospasm in patients with subarachnoid hemorrhage: a role for bedside microdialysis? Crit Care Med.2002;30:1171-1173.
    
    [4]Delgado,J.M.,Defeudis,F.V.,Roth,R.H, et al. Dialytrode for long term intracerebral perfusion in awake monkeys.Arch.Int.Pharmacodyn.Ther, 1972,198,9-21.
    
    [5]Hillered L,Pual M,Vespa and David A, et al. Translational Neurochemical Research in Acute Human Brain Injury:The Current Ststus and Potential Future for Cerebral Microdialysis[J].J Neurotrauma,2005,22(1):3-41.
    [6] Sarrafzadeh A, Haux D, Plotkin M, et al. Bedside microdialysis reflects dysfunction of cerebral energy metabolism in patients with aneurysmal subarachnoid hemorrhage as confirmed by ~(15)O-H_2O PET and 18F-FDG-PET. J Neuroradiol.2005,32(5):348-51.
    
    [7] Ritz MF, Schmidt P, Mendelowitsch A, Effects of isoflurance on glutamate and taurine releases, brain swelling and injury during transient ischemia and reperfusion. Int J Neurosci. 2006,116(2):191-202.
    [8] Hillman J, Aneman O, Anderson C, et al. A microdialysis technique for routine measurement of macromolecules in the injured human brain. Neurosurgery. 2005,56(6):1264-8; discussion 1268-70.
    [9] Sarrafzadeh A, Haux D, Ludemann L, et al. Cerebral Ischemia in Aneurysmal Subarachnoid Hemorrhage: A Correlative Microdialysis-PET Study. Stroke. 2004,35(3):638-643.
    [10]Noske DP, Peerdeman SM, Comans EFI, et al. Cerebral microdialysis and positron emission tomography after surgery for aneurysmal subarachnoid hemorrhage in grade I patients. Surgical Neurology 2005, 64:109-115.
    [11]Sarrafzadeh AS, KieningKL, CallsenTA, et al. Metabolic changes during impending and manifest c erebral hypoxia in traumatic brain injury. Br J Neurosurg.2003,17: 340-346.
    [12] Landolt H, Langemann H, Alessandri B. A concept for the introduction of cerebral microdialysis in neurointensive care[J] . Acta Neurochir,1996, 67(Suppl): 31-33.
    [13]Nilsson OG, Brandt L, Ungerstedt U, Saveland H. Bedside detection of brain ischemia using intracerebral microdialysis:subarachnoid hemorrhage and delayed ischemic deterioration.Neurosurgery 1999,45(5): 1176-84.
    [14] Sarrafzadeh AS, Sakowitz OW, Kiening KL, et al. Bedside microdialysis: A tool to monitor cerebral metabolism in subarachnoid hemorrhage patients? Crit Care Med 2002,30:1062-1070.
    
    [15] Unterberg AW, Sakowitz OW, Sarrafzadeh AS, et al. Role of bedside microdialysis in the diagnosis of cerebral vasospasm following aneurysmal subarachnoid hemorrhage.J Neurosurg 2001,94:740-749.
    [16] Michael A, De G, Anupa D: Multimodal Monitoring in the Neurological Intensive Care Unit: The Neurologist 2005;11: 45-54
    [17] Urban U, Elham R. Microdialysis in Neurointensive Care: Current Pharmaceutical Design, 2004;10: 2145-2152.
    [18] Nilsson OG. Brandt L, Ungerstedt U, el al. Detection of brain ischemia using intracerebral microdialysis: subarachnoid hemorrhage and delayed ischemic deterioration. Neurosurg, 1999, 45(5): 1176—1184
    [19] Enblad P, Valtysson J, Andersson J, et al. Simultaneous intracerebral microdialysis and positron emission tomography in the detection of ischemia in patients with subarachnoid hemorrhage. J Cereb.Blood Flow Metab.1996,16:637-644.
    
    [20] Kett-White R, Hutchinson P.J, Al-Rawi P.G, et al. Extracellular lactate/pyruvate and glutamate changes in patients during per-operative episodes of cerebral ischaemia. Acta Neurochir.Suppl. 2002,81:363-365.
    [21] Enblad P, Frykholm P, Valtysson J, et al. Middle cerebral artery occlusion and reperfusion in primates monitored by microdialysis and sequential positron emission tomography. Stroke.2001,32:1574-1580.
    [22] Muir KW. Glutamate-based therapeutic approaches: clinical trials with NMDA antagonists. Current Opinion in Pharmacology . 2006, 6:53-60
    [23] Schulz MK,Wang LP, Tange M, et al. Cerebral microdialysis monitoring: determination of normal and ischemic cerebral metabolisms in patients with aneurismal subarachnoid hemorrhage. J Neurosurg. 2000,(93):808-814.
    [24] Unterberg AW, Sakowitz OW, Sarrafzadeh AS, et al. Role of bedside microdialysis in the diagnosis of cerebral vasospasm following aneurymal subarachnoid hemorrhage . J Neurosurg. 2001,94,740-749.
    
    [25] Staub F, Graf R, Gabel P, et al . Multiple interstitial substances measured by microdialysis in patients with subarachnoid hemorrhage. J Neurosurgery, 2000,47(5):1106-1116.
    
    [26] Heiss WD, Dohmen C,Sobesky J, et al.Identification of malignant brain edema after hemispheric stroke by PET-imaging and microdialysis. [ J] Acta Neurochir Suppl. 2003,86:237-40.
    
    [27] Schneweis S, Grond M, Staub F, et al. Predictive value of neurochemical monitoring in large middle cerebral artery infarction. Stroke. 2001,32:1863-1867.
    
    [28] Reinstrup P, Stahl N, Mellergard P, et al. Intracerebral microdialysis in clinical practice: baseline values for chemical markers during wakefulness, anesthesia,and neurosurgery. Neurosurgery. 2000,47:701-710.
    [1] Hirashima Y, Endo S, Kato R, et al.Prevention of cerebral vasospasm following subarachnoid hemorrhage in rabbits by the platelet activating factor antagonist E5880[J]. Neurosurgery.1996, 84(5): 826—830.
    [2] Graham SH, Chen J. Programmed cell death in cerebral ischemia[J]. J Cereb Blood How Metab, 2001, 21(2): 99-109.
    [3] White BC, Grossman LT, O' Neil BJ, et al. Global brain ischemia and repefusion[J]. Ann emerg Med, 1996, 27(5): 588—594.
    [4] Zhou C, Yamaguchi M, Kusaka G, et al: Caspase inhibitors prevent endothelial apoptosis and cerebral vasospasm in dog model of experimental subarachnoid hemorrhage J .Cere. Blood Flow Metab.2004,24(4):419-431
    [5] Zubkov AY, Tibbs RE, Clower B, et al. Morphological changes of cerebral arteries in a canine double hemorrhage model. Neuroscience Letters . 2002,326:137-141.
    [6] Borel CO, Mckee A, Parra A, et al. Possible role for vascular cell proliferation in cerebral vasospasm after subarachnoid hemorrhage. Stroke. 2003,34:427-433.
    [7] Prunell GF, Svendgaard NA, Alkass K, et al. Delayed cell death related to acute cerebral blood flow changes following subarachnoid hemorrhage in the rat brain[J]. J Neurosurg, 2005,102(6):1046-1054.
    [8] Sakahira H, Enari M, Nagata S. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apeptosis. Nature 1998; 391(6662): 96—99.
    [9] Meguro T, Klett CP, Chen B, et al. Role of calcium channels in oxyhemoglobin-induced apoptosis in endothelial cells. J Neurosurg. 2000,93:640-646.
    [10] Ogihara K, Zubkov AY, Bernanke DH, et al. oxyhemoglobin induced apoptosis in cultured endothelial cells. J Neruosurg. 1999,91:459-465.
    [11] Miyagi Y, Carpenter RC, Meguro T, et al. Upregulation of rho Aand rho kinase messenger RNAs in the basial artery of a rat model of subarachnoid hemorrhage . J Neurosurg, 2000,93:471-476.
    [12] Zhou C, Yamaguchi M , Colohan AR, et al. Role of p53 and apoptosis in cerebral vasospasm after experimental subarachnoid hemorrhage[J]. J Cereb Blood Flow Metab, 2005, 25(5): 572—582.
    
    [13]Aoki K, Zubkov AY. Ross IB, et al. Therapeutic efect of caspase inhibitors in the prevention of apoptosis and reversal of chronic cerebral vasospasm[J]. J Clin Neurosci, 2002, 9(6): 672-677.
    [14] Denecker G, Vercammen D, Declercg W, et al. Apoptotic and necrotic cell death induced by death domain receptors[J], Cell Mol life Sci, 2001, 58(3): 356-370.
    [1] Huang J, van Gelder JM. The probability of sudden death from rupture of intracranial aneurysms: a meta-analysis. Neurosurgery. 2002,51:1101-1105.
    [2] Broderick JP, Brott TG, Duldner JE, et al. Initial and recurrent bleeding are the major causes of death following subarachnoid hemorrhage. Stroke. 1994,25:1342-1347.
    
    [3] Selman W, Taylor C, Tarr R, et al. The neurosurgeon and the acute stroke patient in the emergency department: diagnosis and management. Clin Neurosurg. 1999;45:74-85.
    [4]Macdonald R.L,Stoodley M,Weir B.Intracranial Aneurysms. Neurosurgery Quarterly.2001,11(3):181-198
    
    [5] Whalen MJ. Predicting significant vasospasm in patients with subarachnoid hemorrhage: a role for bedside microdialysis? Crit Care Med.2002;30:1171-1173.
    
    [6] Delgado,J.M.,Defeudis,F.V.,Roth,R.H, et al. Dialytrode for long term intracerebral perfusion in awake monkeys.Arch.Int.Pharmacodyn.Ther, 1972,198,9-21.
    
    [7] Hillered L,Pual M,Vespa and David A, et al. Translational Neurochemical Research in Acute Human Brain Injury:The Current Ststus and Potential Future for Cerebral Microdialysis [J] J Neurotrauma,2005,22(1):3-41.
    [8] Sarrafzadeh A, Haux D, Plotkin M, et al. Bedside microdialysis reflects dysfunction of cerebral energy metabolism in patients with aneurysmal subarachnoid hemorrhage as confirmed by ~(15)O-H_2O PET and 18F-FDG-PET. J Neuroradiol.2005,32(5):348-51.
    
    [9] Ritz MF, Schmidt P, Mendelowitsch A, Effects of isoflurance on glutamate and taurine releases, brain swelling and injury during transient ischemia and reperfusion. Int J Neurosci. 2006,116(2):191-202.
    
    [10].Hillman J, Aneman O, Anderson C, et al. A microdialysis technique for routine measurement of macromolecules in the injured human brain. Neurosurgery. 2005,56(6):1264-8; discussion 1268-70.
    
    [11]. Sarrafzadeh A, Haux D, Ludemann L, et al. Cerebral Ischemia in Aneurysmal Subarachnoid Hemorrhage: A Correlative Microdialysis-PET Study. Stroke. 2004,35(3):638-643.
    
    [12] Noske DP, Peerdeman SM, Comans EFI, et al. Cerebral microdialysis and positron emission tomography after surgery for aneurysmal subarachnoid hemorrhage in grade I patients. Surgical Neurology 2005,64:109-115.
    [13] Sarrafzadeh AS, Kiening KL, Callsen TA, et al. Metabolic changes during impending and manifest c erebral hypoxia in traumatic brain injury. Br J Neurosurg.2003,17: 340-346.
    
    [14] Landolt H, Langemann H, Alessandri B. A concept for the introduction of cerebral microdialysis in neurointensive care[J]. Acta Neurochir, 1996, 67(Suppl): 31-33.
    
    [15] Persson L,Valtyson J, Enblad P, et al. Neurochemical monitoring using intracerebral microdialysis in patient with subarachnoid hemorrhage. J Neurosurgery. 1996,84(4):606-16.
    
    [16] Nilsson OG, Brandt L, Ungerstedt U, Saveland H. Bedside detection of brain ischemia using intracerebral microdialysis:subarachnoid hemorrhage and delayed ischemic deterioration.Neurosurgery 1999,45(5): 1176-84.
    [17] Sarrafzadeh AS, Sakowitz OW, Kiening KL, et al. Bedside microdialysis: A tool to monitor cerebral metabolism in subarachnoid hemorrhage patients? Crit Care Med 2002,30:1062-1070.
    [18] Unterberg AW, Sakowitz OW, Sarrafzadeh AS, et al. Role of bedside microdialysis in the diagnosis of cerebral vasospasm following aneurysmal subarachnoid hemorrhage.J Neurosurg 2001, 94:740-749.
    [19] Muir KW. Glutamate-based therapeutic approaches: clinical trials with NMDA a ntagonists. Current Opinion in Pharmacology . 2006, 6:53-60.
    [20] Kett-White R, Hutchinson P.J, Al-Rawi P.G, et al. Extracellular lactate/pyruvate and glutamate changes in patients during per-operative episodes of cerebral ischaemia. Acta Neurochir.Suppl. 2002,81:363-365.
    [21] Schulz MK,Wang LP, Tange M, et al. Cerebral microdialysis monitoring: determination of normal and ischemic cerebral metabolisms in patients with aneurismal subarachnoid hemorrhage. J Neurosurg. 2000,(93):808-814.
    [22] Unterberg AW, Sakowitz OW, Sarrafzadeh AS, et al. Role of bedside microdialysis in the diagnosis of cerebral vasospasm following aneurymal subarachnoid hemorrhage . J Neurosurg. 2001, 94,740-749.
    [23] Staub F, Graf R, Gabel P, et al . Multiple interstitial substances measured by microdialysis in patients with subarachnoid hemorrhage. Neurosurgery. 2000,47(5): 11064116.
    [24] Michael A, De G, Anupa D: Multimodal Monitoring in the Neurological Intensive Care Unit: The Neurologist 2005;11: 45-54.
    [25] Urban U, Elham R. Microdialysis in Neurointensive Care: Current Pharmaceutical Design, 2004;10: 2145-2152.
    
    [26] Schabitz WR,Berger C, Schellinger PD, et al. Neurometabolic Changes during treatment with moderate hypothermia in a patient suffering from severe middle cerebral artery infarction. Cerebrovasc.Dis.2001,12:298-302.
    
    [27] Enblad P, Valtysson J, Andersson J, et al. Simultaneous intracerebral microdialysis and positron emission tomography in the detection of ischemia in patients with subarachnoid hemorrhage. J Cereb.Blood Flow Metab.1996,16:637-644.
    [28] Heiss WD, Dohmen C,Sobesky J, et al.Identification of malignant brain edema after hemispheric stroke by PET-imaging and microdialysis.[ J] Acta Neurochir Suppl. 2003,86:237-40.
    [29] Schulz MK,Wang LP, Tange M, et al. Cerebral microdialysis monitoring: determination of normal and ischemic cerebral metabolisms in patients with aneurismal subarachnoid hemorrhage. J Neurosurg. 2000,(93):808-814.
    [30] Schneweis S, Grond M, Staub F, et al. Predictive value of neurochemical monitoring in large middle cerebral artery infarction. Stroke. 2001,32:1863-1867.
    [31] Reinstrup P, Stahl N, Mellergard P, et al. Intracerebral microdialysis in clinical practice: baseline values for chemical markers during wakefulness, anesthesia,and neurosurgery. Neurosurgery. 2000,47:701-710.
    [32]Sakowitz OW, Wolfram S, Sarafzadeh AS, et al. Relation of cerebral energy metabolism and extracellular nitrite and nitrate concentrations in patients after aneurysmal subarachnoid hemorhage[J]. J Cereb Blood Flow Metab, 2001; 21(9): 1067—1076.
    
    [33] Sakowitz OW, Wolfram S, Sarrafzadeh AS, et al. Temporal profiles of extracellular nitric oxide metabolites following aneurysmal subarachnoid hemorhage[J]. Acta Neurochir(Wien), 2002; 81(Suppl): 351-354.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700