生物合成谷胱甘肽及其发酵动力学模型的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用碘量法、可见分光光度法和紫外分光光度法这3种方法对谷胱甘肽的分析方法进行了研究,结果表明紫外分光光度法效果最好,该方法的平均相对误差均在3%以下,具有平行性好、稳定和灵敏的特点,适合于性状不稳定的谷胱甘肽含量的测定。
     以编号为346的酿酒酵母为出发菌株,通过紫外线和~(60)Coγ射线诱变处理,运用推理育种技术,选育到一株抗氯化锌和抗乙硫氨酸的突变株0.5Eth400-5。该菌株经摇瓶发酵谷胱甘肽产量为165.96mg/L,较出发株提高3.5倍,每克干细胞含谷胱甘肽19.76mg,较出发株提高3.2倍。菌株经10次传代培养,谷胱甘肽产量下降10.7%,是一株性状较稳定可深入开发研究的优良菌株。
     应用Plackett-Burman实验设计和响应面分析方法对突变株0.5Eth400-5积累谷胱甘肽的培养条件进行了系统研究和优化,得到了优化的培养条件:葡萄糖1.95%,糖蜜1.95%,蛋白胨3%,Cys·HCl 0.097598%,MgSO_4·7H_2O 0.5%,甲硫氨酸0.048%,生物素2.4×10~(-6)%,肌醇7.5×10~(-3)%,酵母膏0.05%,麦芽汁3%,NH_4H_2PO_4 0.055%,VB_1 8×10~(-4)%,(NH_4)_2SO_4 1.24%,K_2HPO_4 0.3%,FeSO_4 3ppm,ZnSO_4 3ppm,CuSO_4 0.5ppm,250mL三角瓶装30mL培养基,接种量为10%,28℃,培养3d,摇床转速为200r/min。采用此优化工艺,谷胱甘肽产量达235.7mg/L,比优化前提高45.4%。
     在优化的培养工艺基础上,在5升发酵罐中,通过分批补料的方式流加培养基,研究了谷胱甘肽的发酵规律,得出发酵36h谷胱甘肽产量达最大值638.91mg/l。
     对酿酒酵母0.5Eth400-5发酵生产谷胱甘肽的动力学特性进行研究,建立发酵过程菌体生长、谷胱甘肽形成和基质消耗动力学模型。通过数据回归分析,Logistic方程、Luedeking-Piret方程及与Luedeking-Piret方程相似的基质消耗方程能很好的分别描述菌体生长、谷胱甘肽合成及葡萄糖的消耗过程,菌体生长动力学模型为:C_x(t)=(0.2272e~(0.27255t))/(0.9927+0.007329e~(0.27255t))谷胱甘肽合成动力学模型为:
    
    C,(t)=
     1 .1 128‘027255‘
    0 .9927+o.007329eo27255‘
    +74.9794hi(0.9927+0.00732矢”·27255‘)一1.1128
    葡萄糖消耗动力学模型为:c,(t)=32.52359-
    0 .02359eo2,255‘
    0 .9927+0.007329eo27255‘
    o.1797ln(0.9927+o.oo7329e”.2,2,,‘),三个模型的线性相关系数R值均在0.9790
    以上,正确地反映了谷肤甘肤的发酵过程及其动力学机制。
Biosynthesis of Glutathione and its Kinetices Model
    The analytical method of glutathione were studied by iodimetry, visible spectroscopy and ultraviolet spectroscopy. The analytical results obtained by ultraviolet spectroscopy gave the best method, which was very fit the assay of glutathione. The ultraviolet spectroscopy is steady and sensitive. The average relative error of the ultraviolet spectroscopy was no more than 3%.
    A zinc chloride- and ethionine- resistant mutant 0.5Eth400-5 was obtained from its parent strain Saccharomyces cerevisiae 346 by UV and 60Co r-ray treatment and rational screening. The glutathione productivity of the mutant reached 165.96mg/L by flask culture, which was 350% higher than the parent strain, and the glutathione content in the dried cells reached 19.76mg/g, which was 320% higher than the parent strain. A desecend of only 10.7% in the glutathione yield of the mutant was observed after ten times of subculture. Therefore, the obtained mutant is stable strain that is worthwhile to be studied further.
    Systematic studies were carried out on the optimization of composition of medium which accumulated the largest amount of glutathione in the mutant 0.5Eth400-5. This optimizing medium was formulated vas Plackett-Burman design and response surface analysis(RSA).The glutathione yield was235.7mg/L under the optimum condition, which was 45.4% higher than that of non-optimized medium.
    In a 5 -liter scale batch bioreactor, the rules of glutathione fermentation were studied by fed-batch operation. The maximum glutathione yield was obtained as well after 36 hours' fermentation, which was 638.91mg/L.
    The fermentation kinetics of glutathione with Saccharomyces cerevisiad).5Eth4QQ-5 were studied. The kinetic models were obtained. A simple model was proposed using the Logistic equation for growth, the Luedeking-Piret equation for glutathione and the Luedeking-Piret-like equation for glucose consumption. The cell growth model
    was the glutathione biosynthesis model was
     ln(0.9927 + 0.007329
    the glucose consumption model was Cs(t)=32.52359
    
    
    coefficients of the three models were no less than 0.979. The kinetic model provided
    a reasonable description for biomass, product and substrate variation along with the
    fermentation process.
引文
[1] Hopkins F G.. On an Autoxidisable Constituent of the Cell. Biochem J, 1921,15:286~305.
    [2] Harington C R, Mead T H.,The Synthesis of Glutathione. Biochem. J, 1935,29:1602-1611.
    [3] 王荣民,曹新志,萧刚,等.谷胱甘肽测定方法初探.食品与发酵工业,1992(6):34-37.
    [4] 郑建仙.功能性食品.北京:中国轻工业出版社,1995.
    [5] 郑云朗.谷胱甘肽的生物学功能.生物学通报,1995,30(5):22-24.
    [6] 程元凯,谷胱甘肽的解毒作用与毒性代谢物.生物化学与生物物理进展,1994,21(5):395-399.
    [7] 王正刚,啤酒酵母深加工及在食品医药工业中的应用.水解工业,1999,3:37-39.
    [8] 刘振玉.谷胱甘肽的研究与应用,生命的化学,1995,15(1):19-21.
    [9] 王海鸥.面包酵母中谷胱甘肽对面团流变性质的影响.无锡轻工业大学学报,1999,18(3):29-32.
    [10] 胡学智.日本的保健食品.工业微生物,2000,30(3):44-49
    [11] Kimura A.. Application of recDNA Techniques to the Production of ATP and Glutathione by the "syntechne system". Adv. Biochem. Eng. Biotechnol.,1986,33:21-51.
    [12] Murata K, Tani K, Kato J, et al. Glutathione Couple with an ATP Regeneration System. Eur. J. Appl. Microbiol. Biotechnol., 1980,10(1-2): 11-21.
    [13] 沈蓓英,江志炜.具有生物活性新型功能性食品添加剂—谷胱甘肽,粮食与油脂,1993,2:27-32.
    [14] 沈亚领,李爽,迟莉丽,等.谷胱甘肽的应用与生产.工业微生物,2000,30(2):41-45.
    [15] 袁尔东,郑建仙.功能性食品基料—谷胱甘肽的研究进展.食品与发酵工业.1999,25(5):52-57.
    [16] 曹新志.谷胱甘肽的分离和干燥方法,广州食品工业科技,1996,12(2):44-45.
    [17] 曹新志.四川食品工业科技,1996,2:17-20.
    [18] Murata K., Kimura A. Overproduction of Glutathione and its Derivatives by Genetically Engineered Microbial Calls.Biotechnol. Adv., 1990, 8(1):59-96.
    [19] 储炬,李友荣.现代工业发酵调控学,北京:化学工业出版社,2002.
    [20] 詹谷宇,田萍,刘卫东,等.酵母菌生物合成谷胱甘肽,药学学报,1990,25(7):494-499.
    [21] Shimizu H, Araki K, Shioya S.,et al. Optimal Production of Glutathione by Controlling the Specific Growth Rate of Yeast in Fed-Batch Culture. Biotech. And Bioeng., 1991,38:196-205.
    [22] Fahey R C, Neuton G L. "Occurrence of low molecular thiols in biological systems"in Functions of Glutathione. Biochemical, Pysiological, Toxicological and Chinocal Aspect. New York:Larrson S, 1983.
    [23] Murata K, Tani K, Kato J. Glutathione Production Coupled with an ATP Regeneration System. Eur. J. Appl Microbiol. Biotechnol., 1980,10(1): 11-12.
    [24] 吴坚平,林建平,岑沛霖.谷胱甘肽的生物合成.化工进展,1999,1:38-41.
    
    
    [25] Ohtake Y, Okumura Y. Baiosaiensu to Indasutori(Japan), 1992,50(10):989-999.
    [26] Murata K., Kimura A. Some Properties of Glutathione Biosyntesis-deficient Mutant of coli.B.J. Gen. Microbiol., 1982,128(5):1047-1052.
    [27] Gushima H, Miya T, Mutara K. Construction of Glutathione-producing Strains of E. coliB by Reombinant DNA Techiques. J. Appl. Biochem., 1983,5(1):43-52.
    [28] Watanabe K, Yamata Y, Murata K.Glutathione Producing by E. coli Cells with Hybrid Plasmid Containing Tandemly Polymerized Genes for Glutalhione Synthase. Appl. Microbiol. Biotechnol., 1986,24(3):375-378.
    [29] Hamada S,Hisao T, Kuniaki S.Process for Producing Glutathione[P].US4582801, 1986-4-15.
    [30] 施碧红,黄建忠,施巧琴,等.啤酒酵母(Saccharamyces cerevisiae)M-05变株合成谷胱甘肽的研究Ⅰ.菌种的选育.福建师范大学学报(自然科学版),1996,12(4):91-95.
    [31] Lang-Hinrichs, Christine, Jansen-Weismann, et al.Zink-resistent Helen zur Herstellung von Glutathion[P].DE4219381,1993-12-16.
    [32] Murata K, Kimura A.Mutant Strain of Escherichia coli and its Use for the Preparation of Glutathione[P]. US4598046,1986-7-1.
    [33] Ikeno Y, Tanno K, Omori I. Glutathione[P]. JP87296, 1976-1-16.
    [34] Kono G, Harada M, Sugisaki K. High Glutathione-containing Yeast[P].JP1976-4-13.
    [35] Murata K, et al. J. Gen. Microbiol., 1980,120:545-547.
    [36] 陈坚,李寅.发酵过程优化原理与实践.北京:化学工业出版社,2002.
    [37] Chi-Hsien Liu, Chin-Fa Hwang, Chii-Cherng Liao. Medium Optimization for Glutathione Production by Saccharamyces cerevisiae. Process Biochemistry, 1999,34:17-23.
    [38] 施碧红,黄建忠,施巧琴,等.啤酒酵母(Saccharamyces cerevisiae)M-O5变株合成谷胱甘肽的研究Ⅱ发酵条件的研究.福建师范大学学报(自然科学版),2000,16(4):74-78.
    [39] Sakato K, Tanaka H.Advanced Control of Glutathione Fermentation. Process Biotechnology and Bioengineering. 1992, 40:904-912.
    [40] 李寅,陈坚,周楠迪.环境条件及摇瓶补糖策略对谷胱甘肽发酵的影响.生物工程学报.1998,14(2):147-152.
    [41] 李寅,李华钟,林金萍.生物合成谷胱甘肽种间耦合ATP再生系统的构建.微生物学报,2001,41(2):191-197.
    [42] 陶锐,吴梧桐,许激扬.酶法制备谷胱甘肽工艺的研究,药物生物技术,1999,6(4):203-207.
    [43] Alfafara C G, Miura K, Shimizu H, et al. Cysteine Addition Strategy for Glutathione Production in Fed-batch Culture of Saccharomyces cerevisiae. Appl. Microbio. Biotech.,1992, 37:141-146.
    [44] 李寅,陈坚,毛英鹰,等.前体氨基酸和三磷酸腺苷对重组大肠杆菌生产谷胱甘肽的影响.无锡轻工大学学报,1998,17(2):11-15.
    [45] Alfafara, C. G., Kanda A., Shioi, T., et al. Effect of Amino Acids on Glutathione Production
    
    by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol, 1992, 36(4):538-540.
    [46] 李华钟,林金萍,李寅,等.谷胱甘肽的生物合成.中国医药工业杂志,2000,31(5):236-239.
    [47] Langer R S, Hamilton B K, Gardner C R. Enzymatic Regeneration of ATP, Ⅰ. Alternative Routes. Atche J., 1976,22:1079-1082.
    [48] Tochikura T, Kusahara M, Tagi H. Fermentation and Metabolism of Nuclueic Acid Related Compound in Yeast. J. Ferment. Technol., 1967, 45(5):511-529.
    [49] Nakayama R, Kumagai H, Tochikura T. Leakage of Glutathione from Bacterial Cell Caused by Inhibition of γ -glutamytranapeptidase. Appl. Environ. Microbio., 1984, 47(4):653-657.
    [50] Iizuka M, Murat. K, Kimura A. Induction of Glutathione Leakage from Saccharomyces cerevisiae Cells by Selenite. Agric. Biol. Chem., 1988, 52(2):613-614.
    [51] 赵旭东,魏东芝,俞俊棠.固定化酵母细胞生物合成谷胱甘肽的研究.华东理工大学学报,2000,26(1):29-32.
    [52] 赵旭东,魏东芝,俞俊棠,等.半胱氨酸共存下一种快速准确测定谷胱甘肽的新方法.华东理工大学学报,1999,25(5):474-476.
    [53] 周楠迪,李寅,陈坚,等.从酵母中提取谷胱甘肽的初步研究,生物技术,1997,7(4):30-33.
    [54] Zouhair Aherrahrou, XuJiyang, Wu Wutong. Determination of Glutathione in Biosynthesis Reaction by Paper Chromatography. Journal of China Pharmaceutical University, 1997,28(3): 176-179.
    [55] Asensi M, Sastre J, Federico V P, et al. A High-performance Liquid Chromatorgraphy Method for Measurement of Oxidized Glutathione in Biological Sample. Anal. Biochem, 1994, 217:323-328.
    [56] 程敬君,匡培根,张凤英,等.高效液相色谱—电化学检测法测定鼠脑中透析液中谷胱甘肽和半胱氨酸.色谱,1998,16(2):167-169
    [57] Brent A, Tetri, Joseph F R. Glutathione Measurement by High- performance Liquid Chromatorgraphy Separation and Fluorometry Detection of Glutathione -orthopthalaldehyde Adduct. Anal. Biochem., 1989, 179:236-241
    [58] 郭黎平,刘国良,张卓勇,等.铜(Ⅱ)—新铜试剂—谷胱甘肽—乙醇体系显色反应研究.光谱学与光谱分析,2000,20(30):412-414.
    [59] George T. Determination of Glutathione in Human Platelets. Clinical Chem, 1985,31(2):350-351.
    [60] 赵旭东,魏东芝,万群,等.谷胱甘肽的简便测定方法.药物分析杂志,2000,20(1):34-37.
    [61] 夏弈明.总谷胱甘肽的测定方法.营养学报,1990,12(1):18-22.
    [62] Theodorus P M, Akerboom, Helmut S. Assay of Glutathione Disulfide, and Glutathione Mixed Disulfides in Biological Samples. Methods in Enzymology, 1981,77:373.
    
    
    [63] Frassanito R, Rossi M, Dragai LK, et al. New and Simple Method for the Analysis of the Glutathione Adduct of Atrazine. J. chromatography A, 1998,795:53-60.
    [64] Thomas J, Shea O, Lunte S M. Selective Detection of Free Thiols by Capillary Electrophoresis-electrochemistry Using a Gold/mercury Amalygam Microelectrode. Anal. Chem., 1993, 65(3):247-250.
    [65] 曹新志,陈彦.荧光法测定黄瓜中的谷胱甘肽.资源开发与市场,2000,16(5):272-273.
    [66] Hissin P J, Hilf R. A Fluorometric Method for Determination of Oxidized and Reduced Glutathione in Tissue. Anal. Biochem., 1976, 74:214-226.
    [67] Victor H C, Jerry L. A Fluorometric Assay for Glutathione. Analy. Biochem., 1966, 14:434-440.
    [68] 周德庆.微生物学教程.北京:高等教育出版社,1993.
    [69] 陈思坛,萧熙佩.酵母生物化学.济南:山东科学技术出版社,1990.
    [70] Walther U I, Wilhelm B, Walther S. Effect of Zinc Chloride on GSH Synthesis Rate in Various Lung Cell Line. In Vitro Mol. Toxicol., 2000, 13 (2): 145-151.
    [71] 吴坚平,林建平.培养条件对产朊假丝酵母合成谷胱甘肽的影响.化学反应工程与工艺,2001,17(1):89-93.
    [72] 童群义,陈坚,李华钟.高产谷胱甘肽的酵母菌选育及其培养条件研究.工业微生物,2002,32(2):13-17.
    [73] Douglas C.M.实验设计与分析.北京:中国统计出版社.1998.
    [74] 戚以政,汪叔雄.生化反应动力学与反应器.北京:化学工业出版社.1996.
    [75] 蔡武城,袁厚积.生物物质常用化学分析法.北京:科学出版社.1982.
    [76] Luedeking,R..A Mechanistic Model for Lactic Acid Fermentation. J. Biochem. Microbio.Technol.Eng., 1959,1:393~399.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700