黄瓜不同品种对白粉病的抗性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验对近130个黄瓜品种(杂交组合)对白粉病的抗性进行了初步鉴定。其中,田间露地栽培鉴定54份,高感材料有6份,中感材料有14份,中抗材料有5份,未发病的高抗材料有29份。大棚栽培鉴定55份,高感材料有10份,中感材料有12份,中抗材料有5份,未发病的高抗材料有28份。对露地和大棚同期栽培的10份黄瓜材料白粉病抗性鉴定结果表明,栽于大棚的品种发病重于露地,有些品种则露地和大棚栽培白粉病发生相差不大,如J201;另一些品种(津优30号、L203等)则在露地基本不发病,而在大棚则有一定程度的发病;GY2、GY4等在露地和大棚均未发病,表现了较好的抗性。室内子叶期人工接种33份材料,由于条件适宜,发病程度远重于田间发病。其中高感材料3份,中感材料12份,中抗材料15份,未发病的高抗材料3份。
     试验选择对白粉病抗性有一定差异的8个黄瓜品种,研究不同抗性品种在组织结构和接种白粉病菌后生理生化特性变化的差异。
     叶片组织石蜡切片显微结构表明:高抗白粉病的品种其组织结构紧凑,细胞壁较厚,栅栏组织排列整齐、紧密,海绵组织紧贴栅栏组织,且都较清晰。而发病最重的高感品种“平望乳瓜”的叶片组织的切片出现大量空隙,较难见到完整细胞,细胞壁较薄。中抗品种的细胞壁要薄于高抗品种,栅栏组织虽不及高抗品种紧密,但要远好于“平望乳瓜”等高感品种。其余品种虽能见到清晰的栅栏组织,但空隙仍较大。叶片组织细胞排列整齐、紧密,细胞壁较厚可能是黄瓜抗白粉病的主要原因之一。
     对不同抗性品种叶片接种前后不同时间内与植物抗性相关的酶活性进行了研究。抗病品种的苯丙氨酸解氨酶(PAL)活性在接种后出现了明显的上升,高抗品种“GY14A”在接种1d和5d出现明显的活性峰,并以接种1d后的峰值最大,与其它品种差异显著,是感病品种“DE843”的1.69倍以上;中抗品种“津优30号”在接种3d后活性达最大值,是感病品种的1.75倍以上;感病品种接种后未见活性上升。过氧化物酶(POD)活性接种后以高抗品种上升幅度最大,接种后1d POD活性即超过其它中抗和感病品种,差异显著,是感病品种的1.22倍。感病品种的POD活性在接种后3d达峰值,但仍低于抗病品种,以后活性下降明显快于抗病品种。抗病品种多酚氧化酶(PPO)活性以接种早期(接种后3d内)活性较高,其后则与抗性关系不明显。抗病品种超氧化物歧化酶(SOD)的活性,接种后上升较为明显,并且一直维持在较高水平,至接种5d后高抗品种的SOD活性迅速下降。感病品种大多在接种后先出现下降,接种3d后才出现明显上升。
     从接种前后过氧化物酶(POD)同工酶谱的变化可以看出,接种前品种的抗性与POD同工酶谱带条数和染色的深浅(酶活性)无相关性。接种后,最为明显的变化是高抗品种原有的同工酶谱带染色明显深于其它供试品种(活性增强)。且所有供试品种均增加了一条谱带,但以高抗品种染色较深,其次是中抗品种,感病品种大多较浅。
     另外,抗病品种叶片中的可溶性糖含量要低于感病品种,说明高糖有利于白粉病的发生,而不同抗性品种还原糖含量则无显著差异。高抗品种可溶性蛋白含量在接种后1d出现明显的高峰,是其它供试品种含量的2倍,中抗品种和感病品种则未见上升。叶片木质素含量抗病品种要高于感病品种。接种后,不同品种植株叶片内过氧化氢(H_2O_2)含量均有上升,但以感病品种的H_2O_2积累快,至接种3d H_2O_2含量达到高峰。高抗品种的叶绿素含量较高,其次是中抗品种,而感病品种的叶绿素含量一直低于抗病品种,尤其是高感品种。
Preliminary identification on the resistance of 130 cucumber cultivars(cross combination) to powdery mildew was conducted in this research. Among them, 54 cucumber cultivars were identificated in open-field, which included 6 high-susceptible, 14 mid-susceptible, 5 mid-resistant and 29 high-resistant cultivars without disease occurrence. In greenhouse, 55 cucumber cultivars were identificated, which included 10 high-susceptible, 12 mid-susceptible, 5 mid-resistant and 28 high-resistant cultivars without disease occurrence. Ten cucumber cultivars were chosen and identificated on resistance to powdery mildew both in open-field and greenhouse at the same period time. The results demonstrated that the degree of disease occurrence in greenhouse was more serious than open-field. Different cultivars showed different resistance to powdery mildew when they were cultivated in open-field and greenhouse. The cultivars GY2, GY4 showed better resistance both in two conditions. 33 cultivars were inoculated in vitro at cotyledon stage, the disease damage was more serious than in the open-field along with the better condition, 3 cultivars were high-susceptible, 12 were mid-susceptible, 15 were mid-resistant and 3 uninfected were high-resistant cultivars.
     Eight cultivars which had differences on the resistance to powdery mildew were chosen to study the tissue structure, physiological and biochemical characters with different resistant cultivars after being inoculated with Sphaerotheca fuliginea.
     The microstructure of leaves by paraffin section showed that the tissue structure of high-resistant cultivars was more compact; the cell wall was thicker; the palisade tissue arranged more formal and close; the spongy tissue was tightly close to the palisade tissue and could be seen more clearly. The microstructure of high-susceptible cultivar“PingwangRugua”, which was most serious infected, appeared a great deal of interspace among cells and was not easy to see a whole cell clearly, and the cell wall was thinner. The cell wall of the mid-resistant cultivars was thinner than the high-resistant cultivars. And the palisade tissue of the mid-resistant wasn’t more close than the high-resistant, much more better than the high-susceptible cultivars such as“PingwangRugua”. The palisade tissue of the rest cultivars could be clearly seen, but the interspace was still larger. It may be one of the main reasons of the cucumber resistance to powdery mildew by formal and close cell arrangement, and thicker cell wall in leaf tissue.
     Some kinds of enzyme activities related to the resistance were investigated before and after inoculation at different time on cultivars with different resistance. The PAL activity of the resistant cultivars appeared obvious rise after inoculation. The PAL activity of the high-resistant cultivar“GY14A”appeared an obvious activity peak one day after inoculation. They had obvious difference from other cultivars and were 1.69 times more than that of the susceptible cultivar“DE843”. The PAL activity of the mid-resistant cultivar“JinYou No.30”peaked three days after inoculation and was 1.75 times more than that of the susceptible cultivars. The POD activity of the high-resistant cultivars displayed the maximum rise and were 1.22 times more than that of the susceptible cultivars. The POD activity of the susceptible cultivars peaked three days after inoculation. The PPO activity of the resistant cultivars was higher at the early inoculation stage(3 days after inoculation) and then had no obvious relationship with resistance. The SOD activity of the resistant cultivars appeared an evident rise and maintained at higher level, then declined rapidly five days after inoculation. The SOD activity of the most susceptible cultivars at first declined and then obviously rose three days after inoculation.
     There is no relationship between the cultivar resistance and peroxidase isozyme profiles linked to the shade of gel bands colour before inoculation by comparion of the change of the peroxidase isozyme profiles before and after inoculation. After inoculation, the obvious change was found that the primary peroxidase isozyme profiles of the high-resistant cultivars were darker than any other cultivars which indicated that the peroxidase activity was increased. Apart from that all of the cultivars enhanced an additional gel band, and the band of the high-resistant was darker followed by the mid-resistant and the susceptible cultivars.
     In addition, the soluble sugar content in the resistant cultivars was lower than that of the susceptible, which indicated that high-sugar was good for the occurrence of powdery mildew. The reducing sugar content of different resistant cultivars didn’t show obvious difference. The soluble protein content of the high-resistant cultivars appeared an obvious peak value one day after inoculation. The mid-resistant and mid-susceptible cultivars were not increased in soluble protein content. The leaf lignin content of the resistant cultivars was higher than that of the susceptible cultivars. After inoculation, the hydrogen peroxide content was increased in all cultivars, but accumulated quickly in the susceptible cultivars, and reached the peak value three days after inoculation. The chlorophyll content of the high-resistant cultivars was higher, followed by the mid-resistant and the susceptible cultivars especially the high-susceptible cultivars.
引文
1.陈利锋,徐敬友,等.农业植物病理学(南方本)[M].中国农业出版社,2001,62~65
    2.李海英.大豆叶片结构与灰斑病抗性的研究Ⅰ大豆叶片气孔密度、茸毛密度与灰斑病抗性的关系[J].中国油料作物学报,2001,23(3):52~53
    3. Ford C M. Identification of seedless table grape cultivars and a bud sport berry[J]. Horticulture Science,1993,17(3):366~368
    4.李海英,刘亚光,等.大豆叶片结构与灰斑病抗性的研究Ⅱ大豆叶片组织结构与灰斑病抗性的关系[J].中国油料作物学报,2002,24(2):58~60
    5.顾本康,马存.中国棉花抗病育种[M].南京:江苏农业科技出版社,1996,73~90
    6. Nagdy P L, Boyd D J. Binary pathway for analysis of primary infection and host response in populations of powdery mildew fungi[J]. Canadian Journal of Botany,1993,57:497~511
    7.李洪连.黄瓜对炭疽病诱导抗性的初步研究[J].植物病理学报,1993,23(4):327~332
    8.李靖,利容千,等.黄瓜感染霜霉病菌叶片中一些酶活性的变化[J].植物病理学报,1991,21(4):277~283
    9.王冬梅,王智炘,等.已知Lr基因小麦在叶锈菌侵染过程中PO活性及其同工酶的变化[J].河北农业大学学报,1994,17(1):1~5
    10. Zacheo G, et al. Involvement of superoxide dismutase and superoxide redicals in the susceptibility and resistance of tomato plants to Medoidogyme incognita attack[J]. Physiological and Molecular Plant Pathology,1988,32:313
    11.黄锐,黄富,等.杂交稻及其亲本抗瘟性的生化机制[J].西南农业学报,2008,21(1):80~83
    12.刘亚光,李海英,等.大豆品种的抗病性与叶片内苯丙氨酸解氨酶活性关系的研究[J].大豆科学,2002,21(3):195~198
    13.吴岳轩,曾富华,等.杂交稻对白叶枯病的诱导抗病性与细胞内防御酶系统关系的初步研究[J].植物病理学报,1996,26(2):127~131
    14.朱莲,刘应高,等.毛豹皮樟感染白粉病菌后生理生化的变化[J].华中农业大学学报,2008,27(1):41~45
    15.王雅平,吴兆苏,等.小麦抗赤霉病性的生化研究及其机制探讨[J].作物学报,1994,20(3):327~333
    16.陈惠明,黄学跃,等.烟草罹赤星病后苯丙烷类代谢途径有关酶及物质的动态研究[J].中国烟草学报,1998,4(1):49~53
    17. Parish R W. The intracellular location of phenoloxidase and peroxidase in stem of spinach beet[J]. Z. pflanzenphysiol,1972,66:176~188
    18. Raa J. Cytochemical localization of peroxidase in plant cells[J]. Physiological plant,1973,28:123~132
    19. Stahman M A, Clare B G. Increased disease resistance and enzyme activity induced by ethylene and ethylene production of black rot infected sweet potato tissue[J]. Plant physiology,1966,41:1505~1512
    20.李淑菊,马德华,等.黄瓜感染黑星病菌后的生理变化及抗病性的产生[J].华北农学报,2003,18(3):74~77
    21.魏国强,钱琼秋,等.黄瓜白粉病抗性及生理机制的研究[J].华北农学报,2004,19(2):84~86
    22. Coffey M D, Cassidy D S M. Peroxidase activity and induced lignification in rusted flax interaction varying in their degree of incompatibility[J]. Canadian Journal of Botany,1984,62:134~141
    23. Lazarovits G, Ward E W B. Polyphenoloxidase activity in soybean hypocotyls at sites inoculated with Phytophtora megasoperma f.sp. glycinea physiol[J]. Plant pathology,1982,21:223~236
    24.董毅敏,徐建华,等.抗病和感病黄瓜品种感染白粉病后几种酶活性的变化[J].植物学报,1990,32(2):160~164
    25.刘庆元,张穗,等.黄瓜品种对霜霉病的抗性机理[J].华北农学报,1993,8(1):70~75
    26.郭文硕,黄宗安.锥栗对栗疫病抗性与过氧化物酶的关系[J].福建林学院报,2000,20(1):1~4
    27.惠勒著.植物病程(沈崇尧译)[M].北京:科学出版社,1979,193~215
    28. Joseph L M, Tan T K, et al. Antifungal effects of hydrogen peroxide and peroxidase on spore germination and mycelial growth of Pseudocercospora species[J]. Canadian Journal of Botany,1998,76(12):2119~2124
    29. Nodolny L, Sequeira L. Increases in peroxidase activity and not directly induced in tobacco. Physiol[J]. Plant pathology,1980,16:1~8
    30.周克琴,崔崇士,等.籽用南瓜苗期接种辣椒疫霉菌对POD、PPO活性影响的研究[J].吉林农业科学,2003,28(2):37~40
    31. Overeen J C, Hhrefall D R(ed). Biochemical aspects of plant parasite relationship [M]. Academic Press,1976,133~135
    32.郭红莲,程根武,等.玉米灰斑病抗性反应中酚类物质代谢作用的研究[J].植物病理学报,2003,33(4):342~346
    33. Lovrekovitch L, et al. Inhibition phenol oxidation by Eiwinia carolovora in potato tuber tissue and its significance in disease resistance[J]. Phytopathology,1967,57:737~742
    34.张俊华,崔崇士.不同抗性南瓜品种感染Phytophthora capsici病菌后几种酶活性测定[J].东北农业大学学报,2003,34(2):124~128
    35.丁九敏,高洪斌,等.黄瓜霜霉病抗性与叶片中生理生化物质含量关系的研究[J].辽宁农业科学,2005,(1):11~13
    36.孔庆科,丁爱云,等.茄子感染黄萎病菌前后酶活性的动态反应和同工酶变化[J].山东农业大学学报(自然科学版),2001,32(3):271~274
    37.李盾,王振中,等.花生体内几种酶的活性与抗锈病的关系[J].华南农业大学学报,1991,12(3):1~6
    38. Ekbote A U, Mayee C D. Biochemical changes due to rust in resistant and susceptible groundnuts I:Changes in oxidative enzymes[J]. Indian Journal of Plant Pathology,1984,2(1):21~26
    39.张显,王鸣.西瓜枯萎病抗性及其与体内一些生化物质含量的关系[J].西北农业学报,2001,10(4):34~36
    40. Bowler C, Montagu V M, et al. Plant physiol[J]. Plant Molecule Biology,1992,43:83
    41. Tzeng D D, Devay J E. Role of oxygen radicals in plant diswase development[J]. Advanced Plant Pathology,1983,10:1
    42.朱友林,刘纪麟.受玉米大斑病菌侵染后玉米抗感近等位基因系SOD动态变化的研究[J].植物病理学报,1996,26(2):133~137
    43. Keppler L D, Baker C J, et al. Banker C. T O2ˉ·initiated lipid peroxidation in a bacteria-induced hypersensitive reaction in tobacco cell suspensions[J]. Phytopathology,1989,79(5):55
    44.王爱国,罗广华,等.大豆种子超氧物歧化酶的研究[J].植物病理学报,1983,9(1):78~83
    45.云兴福,崔世茂,等.黄瓜组织中几种酶活性与其对霜霉病抗性的关系[J].华北农学报,1995,10(1):92~98
    46.陈利锋,聂理,等.抗感赤霉病小麦品种超氧化物歧化酶和过氧化物酶的活性比较[J].植物病理学报,1997,27(3):209~213
    47.史国安,康业斌,等.黑胚对小麦幼芽某些生理生化代谢的影响[J].麦类作物学报,2000,20(3):50~53
    48. Boller T. Induction of hydrolases as a defense reaction against pathogens[A]. In: Alan R L.Cellular and molecular biology of plant stress[C]. New York,1985,247~262
    49. Wessels J G H, Sietsma J H. Fungal cell walls:A survey[A]. In: Tanner W, Loewus F A (eds). Encyclopedia of plant physiol, New Series[C]. New York,1981,138:352~394
    50. Schlumbaum A, Mauch F, et al. Plant chitinase are potent inhibitors of fungal growth[J]. Nature,1986,324:365~367
    51. Mauch F, Mauch-mani B, et al. Antifungal hydrolases in pea tissue II. Inhibition of fungal growth by combination of chitinase andβ-1,3-glucanase[J]. Plant Physiology,1988,88:936~942
    52.史娟,胡景江,等.霜霉病菌对葡萄细胞壁水解酶的诱导作用与寄主抗病性的关系[J].西北林学院学报,2002,17(1):42~44
    53.张少英,王俊斌,等.甜菜几丁质酶和β-1,3-葡聚糖酶活性与其对丛根病抗性的关系[J].植物生理与分子生物学学报,2005,31(3):281~286
    54.李海燕,刘惕若,等.辣椒品种对疫病的抗性研究(I)不同互作中的水解酶活性及其与抗性的关系[J].植物保护科学,2005,21(6):322~432
    55.余文英,潘廷国,等.甘薯抗疮痂病的活性氧代谢研究[J].河南科技大学学报(农学版),2003,23(3):1~6
    56.饶力群,官春云,罗泽民.过氧化氢、水杨酸与植物抗病性关系的研究进展[J].湖南农业大学学报,2000,26(1):9~14
    57.王树彬,叶明志,等.水稻幼苗感染细菌性条斑病后细胞内几种保护性酶活性的变化[J].福建省农科院学报,1996,11(2):46~52
    58.沈文飚,徐朗莱,等.大豆抗SMV生化机制的初步研究[J].大豆科学,1999,18(1):22~26
    59.邹琦.植物生理学实验指导[M].中国农业出版社,2000,131
    60. Market C L and Fmoller. Multiple forms of enzymes:tisue ontogenetic and species specific patterns[J]. Proceedings of the National Academy of Sciences,1959,45:753~763
    61. Stavely J R. Electrophoretic comparisons of resistant and susceptible trifolum pratense noninoculated and inoculated with Erysiphe polygoni[J]. Phytopathology,1967,57:482~485
    62.李焕秀,苏君芝,等.番茄品种对ToMV抗性与氧化酶活性的关系研究[J].中国农学通报,2004,20(6):19~22
    63. Masks V. The effect of peroxidase on the germination and growth of mycelium of Puccinia graminis f.sp. tritici[J]. Phytopathology,1968,58:1250~1254
    64.郑耘,王纯利,等.过氧化物酶(PO)与甜瓜抗病性关系研究初报[J].长江蔬菜,2002,(5):33
    65. Novacky A, Hamption R Z. Peroxidase isozymes in virus infected plants[J]. Phytopathology,1968,58:301~305
    66.文才艺,吴元华,等.烟草感染马铃薯Y病毒脉坏死株系后PPO活性及其同工酶变化的研究[J].华中农业大学学报,2000,19(4):328~330
    67.赵莉,云兴福.对霜霉病抗性不同的黄瓜品种组织中SOD同工酶的分析[J].内蒙古农业科技,1995,(4):1~3
    68.张穗,刘卫群,等.不同小麦品种对纹枯病的抗性机理的初步研究[J].中国农学通报,1994,10(6):9~12
    69.胡能书,万贤国.同工酶技术及其应用[M].长沙:湖南科学技术出版社,1985,74~112
    70.蒋选利,李振崎,等.几丁质酶与植物的抗病性[J].西北农业学报, 2002,11(3):71~75
    71. Lawrence CB, Joosten MHA, et al. Differential induction of pathogenesis-related proteins in tomato by Alternaria solani and the association of a basic chitinase isozyme with resistance[J]. Physiological and Molecular Plant Pathology,1996,48(6):361~377
    72. Fernandez A, Solorzano E, et al. Chitinase induction in tomato leaves with different degrees of susceptibility to Alternaria solani[J]. Revista de Protection Vegetal,1995,10(3):259~264
    73.李新燕,陈文品,等.小麦白粉菌诱导的几丁质酶同工酶分析[J].南京农业大学学报,2002,25(1):1~4
    74. Horsfall J G, et al. Plant disease-an advanced treatise[M]. New York:Academic Press,1980,5:351~359
    75.云兴福.黄瓜组织中氨基酸、糖和叶绿素含量与其对霜霉病抗性的关系[J].华北农学报,1993,8(4):52~58
    76.刘素萍,王汝贤,等.根系分泌物中糖和氨基酸对棉花枯萎菌的影响[J].西北农业大学学报,1998,26(6):30~31
    77.龙书生,李亚玲,等.糖分含量作为抗镰刀菌茎腐病玉米品种的育种指标研究[J].山东农业大学学报,1999,30(4):372~380
    78.骆桂芬,崔俊涛,等.黄瓜叶片中糖和木质素含量与霜霉病诱导抗性的关系[J].植物病理学报,1997,27(1):65~69
    79.潘汝谦,古希昕.黄瓜不同品种对霜霉病的抗性研究[J].华南农业大学学报,1993,14(1):70~77
    80.谢文华,谢大森.棱角丝瓜不同品种对霜霉病抗性的相关研究[J].华南农业大学学报,1999,20(2):28~31
    81.栾晓燕,陈怡,等.不同抗性大豆品种(系)感染SMV后可溶性糖和游离氨基酸的研究[J].大豆科学,2000,19(4):356~361
    82.周博如,李永镐,等.不同抗性的大豆品种接种大豆细菌性疫病菌后可溶性蛋白、总糖含量变化的研究[J].大豆科学,2000,19(2):111~114
    83.匡传富,罗宽.烟草品种对青枯病抗病性及抗性机制的研究[J].湖南农业大学学报(自然科学版),2002,28(5):395~398
    84.吴俊江.大豆接种细菌性斑点病菌后叶片中SOD、POD活性和可溶性糖含量的变化[J].黑龙江农业科学,2006,(2):32~34
    85.王建明,郭春绒,等.西瓜不同品种苗期感染枯萎病菌后的生理生化变化[J].中国农业科学,2002,35(11):1343~1348
    86.倪春梅,郝丽珍.辣椒植株茎组织中可溶性糖含量与辣椒抗疫病关系的研究[J].内蒙古科技与经济,2001,(1):74~75
    87.张建军,李祥,等.小麦植株内可溶性糖含量与对梭条斑花叶病毒抗性的关系[J].植物保护,1997,23(5):16~18
    88.马奇祥.不同小麦品种感染根腐叶斑菌前后生化特性的研究[J].河南农业大学学报,1992,26(l):38~43
    89.曾永三,杨寿坚,等.番木瓜感染环斑花叶病毒后蛋白质和还原糖的变化[J].亚热带植物科学,2005,34(4):10~13
    90.袁忠林,罗兰.花椒品种对流胶病的抗性差异及抗性机制的研究初报[J].莱阳农学院学报,1998,15(3):201~204
    91.赵军营,常永义,等.杏不同品种叶片抗嗜果刀孢菌生化特性的初步研究[J].甘肃农业科技,2000,(10):35~37
    92.刘天明,李华.葡萄对霜霉病抗性机理初探[J].植物保护,1995,21(6):12~15
    93.郑翠明,滕冰,等.不同种粒抗性大豆品种感染SMV后可溶性蛋白和游离氨基酸的研究[J].植物病理学报,1998,28(3):227~231
    94.罗玉明,张晓燕,等.大麦黄花叶病抗性机理的初步研究[J].南京师大学报(自然科学版),2000,23(4):93~96
    95.朱荷琴,宋晓轩,等.棉花的抗氧化系统与其抗黄萎病的关系[J].华北农学报,1995,10(增刊):130~133
    96.李妙,裴宝琦,等.病害胁迫下不同抗病性棉花品种(系)叶片组分内生化指标的差异比较[J].中国农学通报,1993,9(2):28~31
    97.代红军,邱永祥.甘薯抗蔓割病生理生化机制的研究[J].宁夏农林科技,2002,(2):5~6
    98.张宪政,谭桂茹,等.植物生理学实验技术[M].沈阳:辽宁科学技术出版社,1989,99~100
    99. Hinsinge P, Jaillard B, et al. Rapid weathering of a trioctahedral mica by the roots of ryegrass[J]. Soil Science Society of America Journal,1992,56:977~982
    100.张福锁,曹一平.根际动态过程和植物营养[J].土壤学报,1992,29(3):239~250
    101.Halliwell, B. Chloroplast metabolism, the structure and function of chloroplasts in green leaf cells[J]. Charendon Press. Oxford,1981,186
    102.葛秀春,宋凤鸣,等.膜脂过氧化与水稻对稻瘟病抗性的关系[J].浙江大学学报:农业与生命科学版,2000,26(3):254~258
    103.江彤,杨建卿,等.不同抗病性烟草罹黑胫病后几种酶的活性及丙二醛含量的变化[J].安徽农业大学学报,2006,33(2):218~221
    104.王建明,张作刚,等.枯萎病菌对西瓜不同抗感品种丙二醛含量及某些保护酶活性的影响[J].植物病理学报,2001,31(2):152~156
    105.柯玉琴,潘廷国,等.青枯菌侵染对烟草叶片H2O2代谢、叶绿素荧光参数的影响及其与抗病性的关系[J].中国生态农业学报,2002,10(2):36~39
    106.Halliwell B. Toxic effects of oxygen on plant tissue. In Chloroplasts Metabolism[J]. Clarendon Press. Oxford,1981,179~201
    107.Rebinson J. M., Smith M.G., et al. Influence of hydrogen peroxide upon carbon dioxide photoassimilation in spinach chloroplast[J]. Plant Physiology,1980, 65:775~779
    108.曾韶西,王以柔.低温对黄瓜幼苗子叶光合强度和叶绿素荧光的影响[J].植物生理通讯,1989,(4):12~15
    109.Fridovich I. The biology of oxygen radical[J]. Science,1978,201:875~880
    110.梁炫强,潘瑞炽,等.活性氧及膜质过氧化与花生抗黄曲霉侵染的关系[J].中国油料作物学报,2002,24(4):19~23
    111.石延霞,张楠,等.细菌性角斑病病菌诱导黄瓜产生系统抗病性机理的研究[J].园艺学报,2008,35(2):221~226
    112.沙爱华,黄俊斌,等.水稻白叶枯病成株抗性与过氧化氢含量及几种酶活性变化的关系[J].植物病理学报,2004,34(4):340~345
    113.Salwa Jebara. Changes in Ascorbate Peroxidase, Catalase, Guaiacol Peroxidase and Superoxide Dismutase Activities in Common Bean (Phaseolus Vulgaris) Nodules under Salt Stress[J]. Journal of Plant Physiology,2005,162:929~936
    114.Elzbieta Kuzniak, Maria Skodowska. Compartment-specific Role of the Ascorbate-glutathione Cycle in the Response of Tomato Leaf Cells to Botrytis Cinerea Infection[J]. Journal of Experimental Botany,2005,413:921~933
    115.Elzbieta Kuzniak, Maria Skodowska. The Effect of Botrytis Cinerea Infection on the Antioxidant Profile of Mitochondria from Tomato Leaves[J]. Journal of Experimental Botany,2004,397:605~612
    116.Ron Mittler. Post-transcriptional Suppression of Cytosolic Ascorbate Peroxidase Expression during Pathogen-induced Programmed Cell Death in Tobacco[J]. The Plant Cell,1998,10:461~473
    117.薛惠明,詹海燕,等.抗坏血酸与植物病理反应调控[J].农机化研究,2007,(2):15~21
    118.陈利锋,叶茂炳,等.抗坏血酸与小麦抗赤霉病性的关系[J].植物病理学报,1997,27(2):113~118
    119.杨艳芳,梁永超,等.硅对小麦过氧化物酶、超氧化物歧化酶和木质素的影响及与抗白粉病的关系[J].中国农业科学,2003,36(7):813~817
    120.刘会宁,朱建强,等.几个欧亚种葡萄品种对霜霉病的抗性鉴定[J].上海农业学报,2001,17(3):64~67
    121.罗玉明,张晓燕,等.大麦黄花叶病抗性机理的初步研究[J].南京师大学报(自然科学版),2000,23(4):93~96
    122.顾振芳,王卫青,等.黄瓜对霜霉病的抗性与叶绿素含量、气孔密度的相关性[J].上海交通大学学报(农业科学版),2004,22(4):381~384
    123.刘庆元,朱燕民,等.黄瓜不同品种抗霜霉病机理的初步研究[J].河南农学院学报,1984,(3):56~59
    124.王惠哲,李淑菊,等.黄瓜感染白粉病菌后的生理变化[J].华北农学报,2006,21(1):105~109
    125.李淑菊,吕淑珍,等.黄瓜对黑星病的抗性机理[J].华北农学报,1997,12(2):121~124
    126.刘亚光,李丽清,等.感染大豆灰斑病菌后不同抗性的大豆品种叶绿素动态变化的研究[J].大豆科学,2001,20(1):49~53
    127.阚光锋,张广民,等.烟草野火病菌对烟草细胞内5种防御酶系统的影响[J].山东农业大学学报(自然科学版),2002,33(1):28~31
    128.汪红,刘辉,等.棉花黄萎病不同抗性品种接菌前后体内酶活性及酚类物质含量的变化[J].华北农学报,2001,16(3):46~51
    129.铃木直治.近代植物病理化学(张际中,齐显章,等译)[M].上海:上海科学技术出版社,1985,38~134
    130.官春云,李方球,等.双低油菜湘油15(B.napus)对菌核病抗性的研究[J].作物学报,2003,29(5):715~718
    131.蔡新忠,郑重.水杨酸诱导水稻幼苗抗瘟性的生化机制[J].植物病理学报,1997,27(3):231~236
    132.龚国淑,冷怀琼.梨树感染茎痘病毒后对内源激素及其生长的影响[J].四川农业大学学报,2000,18(3):243~245
    133.龚国淑,张庆,等.梨树感染茎沟病毒后生长速度与内源激素的变化[J].西南农业学报,2002,15(2):62~64
    134.李淑菊,霍振荣,等.黄瓜感染黑星病菌后呼吸强度的变化[J].华北农学报,2000,15(2):143~144
    135.朱宏波,腾冰,等.不同抗性大豆品种感染SMV1后若干生化变化[J].西北农业学报,2001,10(3):38~40
    136.黄学跃,赵立红.黄瓜花叶病毒诱导烟草抗病性的生化研究[J].云南大学学报(自然科学版),1999,21(3):236~238
    137.宋凤鸣,郑重,等.富含羟脯氨酸糖蛋白在植物-病原物相互作用中的积累及调控[J].植物生理学通讯,1992,28(2):141~145
    138.胡景江,朱玮,等.杨树细胞壁HRGP和木质素的诱导积累与其对溃疡病抗性的关系[J].植物病理学报,1999,29(2):151~156
    139.肖用森,王正直,等.白叶枯病菌对杂交稻幼苗叶片中活性氧清除剂的影响[J].作物学报,1998,24(1):118~122
    140.叶华智,万永芳,等.胆碱与小麦品种抗赤霉病关系的研究[J].西南农业大学学报,2001,23(6):544~546
    141.Rubin B. A. , et al. Biochemistry and Physiology of Plant Immunity[M]. Pergamon Press, Oxford London,1963
    142.李明远.瓜类白粉病的识别与防治[J].当代蔬菜,2004,(6):36~37
    143.Kable P F, Ballantyne B. Observations on the cucurbit powdery mildew in the Ithaca district[J]. Plant Distribution Reptr,1963,47:482
    144.Khan M. W, Khan A M. Studies on the cucurbit powdery mildew. I. Perithecial production in cucurbit powdery mildew in northern India[J]. Indian Phytopathology,1970,23:497~501
    145.陈利锋,徐敬友,等.农业植物病理学(南方本)[M].中国农业出版社,2001,329~331
    146.冯东昕,李宝栋.主要瓜类作物抗白粉病育种研究进展[J].中国蔬菜,1996,(1):55~59
    147.屈振淙.长春地区黄瓜白粉病菌的鉴定[J].吉林农业大学学报,1981,(2):32~34
    148.徐志豪,寿伟林,等.白粉病菌的生理小种及其对不同基因型甜瓜的致病性(英文)[J].浙江农业学报,1999,11(5):245~248
    149.Hosoya K, Kuzuya M, et a1. Impace of resistant cultivars of melon on Sphaerotheca fuliginea[J]. Plant Breeding,2000,119:286~288
    150.王连荣主编.园艺植物病理学[M].中国农业出版社,2000,231
    151.陈萍,黄向荣,等.40%百可得可湿性粉剂防治黄瓜白粉病药效试验[J].广西植保,2003,16(3):19~20
    152.王文兰.25%嘧菌酯悬浮剂防治黄瓜白粉病田间药效试验[J].农药科学与管理,2005,26(12):20~23
    153.马建华,吴晓燕,等.黄瓜白粉病的化学防治现状及新防治药剂筛选[J].北方园艺,2007,(1):172~173
    154.李青青,李继平.几种杀菌剂防治黄瓜白粉病田间药效试验[J].甘肃农业科技,2006,(6):25~26
    155.贾忠明,刘峰,等.己唑醇微乳剂的研制及其在黄瓜白粉病防治上的应用[J].农药,2006,45(5):320~322
    156.王彦杰,金辉.几种杀菌剂防治黄瓜白粉病田间药效试验分析[J].农药科学与管理,2006,25(9):21~22
    157.Jeong Jun Kim, Mark S. Goettel, et a1. Evaluation of Lecanicillium longisporum, Vertalec? for simultaneous suppression of cotton aphid, Aphis gossypii, and cucumber powdery mildew, Sphaerotheca fuliginea, on potted cucumbers[J]. Biological Control,2008,2:1~6
    158.Jeong Jun Kim, Mark S. Goettel, et a1. Potential of Lecanicillium species for dual microbial control of aphids and the cucumber powdery mildew fungus, Sphaerotheca fuliginea[J]. Biological Control,2007,40:327~332
    159.Abraham Sztejnberg, Zahi Paz, et a1. A new fungus with dual biocontrol capabilities:reducing the numbers of phytophagous mites and powdery mildew disease damage[J]. Crop Protection,2004,23:1125~1129
    160.Z. Y. Zhang, G. H. Dai, et a1. Protective effect of Robinia pseudoacacia Linnl extracts against cucumber powdery mildew fungus, Sphaerotheca fuliginea[J]. Crop Protection,2008,27:920~925
    161.Gyung Ja Choi, Seon-Woo Lee, et a1. Effects of chrysophanol, parietin, and nepodin of Rumex crispus on barley and cucumber powdery mildews[J]. Crop Protection,2004,23:1215~1221
    162.Reuven Reuveni, Genia Dor, et a1. Systemic resistance against Sphaerotheca fuliginea in cucumber plants exposed to phosphate in hydroponics system , and its control by foliar spray of mono-potassium phosphate[J]. Crop Protection,2000,19:355~361
    163.Bourlaye Fofana, David J. Mcnally, et a1. Milsana-induced resistance in powdery mildew-infected cucumber plants correlates with the induction of chalcone synthase and chalcone isomerase[J]. Physiological and Molecular Plant Pathology,2002,61:121~132
    164.魏国强,朱祝军,等.硅和白粉菌诱导接种对黄瓜幼苗白粉病抗性影响的研究[J].应用生态学报,2004,15(11):2147~2151
    165.魏国强,朱祝军,等.硅对黄瓜白粉病抗性的影响及其生理机制[J].植物营养与肥料学报,2004,10(2):202~205
    166.陈喜文,郝友进,等.几种化学诱导物对黄瓜白粉病抗性的诱导作用[J].华北农学报,2000,15(4):103~107
    167.扈晓杰,朱祝军.硅对黄瓜白粉病抗性及叶片质外体抗氧化酶活性的影响[J].浙江农业学报,2008,20(1):67~71
    168.ZHANG Su-qin, GU Xing-fang, et a1. Inheritance of Powdery Mildew Resistance in Cucumber (Cucumis sativus L.) and Development of an AFLP Marker for Resistance Detection[J]. Agricultural Sciences in China,2007,6(11):1336~1342
    169.天津市黄瓜研究所.两个黄瓜良种[J].良种介绍,2000,(3):5
    170.马德华,李淑菊,等.日光温室越冬黄瓜新品种津优30号的选育[J].中国蔬菜,2002,(2):22~24
    171.邢任国.保护地专用黄瓜新泰密刺5号[J].农村百事通,2002,(16):26
    172.毛爱军,张峰,等.两个黄瓜品种对白粉病的抗性遗传分析[J].植物保护科学,2005,21(6):302~304
    173.马青,孙辉,等.寡聚糖诱抗剂诱导黄瓜抗白粉病的研究[J].西北农林科技大学学报(自然科学版),2005,(33):79~81
    174.方中达.植病研究方法[M].北京:中国农业出版社,1998,366~368
    175.方中达.植病研究方法[M].北京:中国农业出版社,1998,91~108
    176.孔凡明,许志刚.水稻不育系抗白枯病与体内酶活性变化的关系[J].安徽农业大学学报,1998,25(3):217~223
    177.邹琦.植物生理学实验指导[M].中国农业出版社,2000,163~164
    178.李清铣,朱华,等.江苏麦类禾谷镰刀菌酯酶同工酶测定[J].植物病理学报,1985,(4):217~222
    179.邹琦.植物生理学实验指导[M].中国农业出版社,2000,134
    180.张妙霞,孔祥生,等.蒽酮法测定可溶性糖显色条件的研究[J].洛阳农专学报,1997,17(4):24~28
    181.邹琦.植物生理学实验指导[M].中国农业出版社,2000,111~112
    182.邹琦.植物生理学实验指导[M].中国农业出版社,2000,112~113
    183.袁晓华,杨中汉.植物生理生化实验[M].北京:高等校育出版社,1993,108
    184.邹琦.植物生理学实验指导[M].中国农业出版社,2000,129~130
    185.X.H波钦诺克.邢家海,等译.植物生物化学分析方法[M].北京:科学出版社,1981,178~181
    186.邹琦.植物生理学实验指导[M].中国农业出版社,2000,166~167
    187.邹琦.植物生理学实验指导[M].中国农业出版社,2000,72~75
    188.吕淑珍,马德华,等.优质抗病高产黄瓜新品种-津春4号[J].中国蔬菜,1994,(2):1~3
    189.王建设,陈杭.甜瓜抗白粉病鉴定[J].华北农学报,2000,15(1):125~128

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700