基于变分方法的图像分割和图像恢复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人们对图像是很熟悉的,图像可由光学仪器观测客观世界得到,或者是人类视觉系统得到的客观景物在人心目中的影像。人们常说:一图值干字,可见图像中包含了它所要表达地事物的大量信息。随着计算机技术的发展,数字图像技术在科研、工业、医疗、教育、娱乐和通信等方面有着广泛的应用。因此,对图像技术的研究具有重要的意义。
     本文主要是研究基于变分方法的图像分割和图像恢复。图像分割是将图像划分为一些有意义区域,是后续的目标识别和图像理解的基础。而在图像的采集过程中,由于成像仪器的精度有限和采集过程并不完美,这使得采集到的是原图的退化图像,而图像恢复是从退化的图像中恢复出原图。我们可以看到,图像分割和图像恢复都可以看作是图像估计的过程,即对待处理的图像估计出分割的特征图或者估计出原图。本文在分析了现有算法的优缺点之后,试图得到更好的图像分割和图像恢复的算法。本文取得的主要研究成果如下:
     (1)基于变分方法的图像分割一般是指活动轮廓模型。通过研究现有的分割灰度不一致图像的算法,我们发现,现有绝大部分算法均属于非凸模型,因此,不易得到模型的全局解,并且算法易陷入局部极小点。虽然求解基于局部灰度均值的全局活动轮廓模型可以得到快速算法,但是局部均值并不能很好地提取图像中的信息,导致算法在很多时候不能正确地分割图像。因此,我们假设局部窗口中的像素点的灰度值服从高斯分布,从而基于二阶统计信息来建立一个凸模型,并利用优化算法进行求解。我们的算法可以找到模型的全局解,且计算效率较高。实验结果显示了我们的算法的优越性。并且由于二阶统计信息可以提取部分纹理信息,此算法可以用来分割纹理图像。
     (2)考虑到二阶统计信息不能充分地提取图像中的纹理信息,我们提出了一个基于局部图像特征直方图的全局活动轮廓模型。为了更好地描述纹理图像,我们利用一个半局部区域描述子来提取图像纹理特征。此外,对于图像区域,像素点的灰度值也是很重要的特征。因此,我们利用这两个特征作为纹理图像的特征,利用特征的直方图来描述图像区域。由于cross-bin的直方图距离要比bin-to-bin的距离更符合人类的感知,我们采用cross-bin的Quadratic-Chi距离来有效地计算直方图之间的距离,接着将这些信息嵌入到一个全局活动轮廓模型中。由于模型是凸的,我们采用有效的优化算法来求解,从而得到了一个纹理分割算法。
     (3)对于基于变分的图像恢复模型,我们首先研究了其中的一个TV字典模型。该模型将TV正则化项作为目标函数,利用基于小波包分解的约束项来限制解空间。由于小波具有多尺度分解的能力,这个模型可以比经典的ROF模型更有助于恢复图像中的纹理。但此模型不易求解。在此基础上,Lintner等利用Uzawa方法进行求解,得到了LM算法。LM算法的最大缺点是算法不够稳定。为了解决这个问题,我们从统计的角度出发,在模型中添加了一项保真项,分别从时域和频域对解空间进行约束,从而得到了一个性质更好的凸模型,并且我们证明了模型的解的存在性。在求解这个模型的过程中,我们分两种情况讨论:一种是直接求解带约束的模型,但是这个算法只在图像去噪时可以有效地计算;另外一种是利用拉格朗日乘子法将约束模型转换为无约束的模型,再进行有效地求解,这个算法的应用范围更广。在实验中,我们在图像去噪、图像去模糊和图像修补的应用中验证了算法的有效性。最后为了进一步提高我们模型的性能,我们利用基于图像块的非局部TV正则化项代替TV正则化项,得到了更好的恢复图像。
     (4)我们提出基于字典学习的稀疏表示的脉冲噪声背景下的图像去模糊模型。由于基于图像块的处理方式在图像去模糊问题中有时会导致图像失真,我们在模型中结合了基于像素点的TV正则化项,来局部平滑图像。考虑到脉冲噪声的特性(部分像素不含噪声),我们采用两阶段方法来恢复图像:第一个阶段中检测噪声点,第二个阶段中令模型的保真项中只利用不含噪声的点的信息,从而得到了一个算法。然而,这个算法只在椒盐噪声的情况下有效。由于随机值噪声不易检测,算法效果不佳。因此,我们将噪声点检测融入到图像恢复过程中,得到了另外一个适用于随机值噪声背景下的图像去模糊算法。实验验证了算法的有效性。
     (5)在实际图像采集中,会存在各种各样的噪声。为处理泊松噪声背景下的图像去模糊问题,我们将上面的脉冲噪声背景下的图像去模糊模型的思想应用到泊松噪声背景下,从而得到了一个适用于泊松噪声背景下的图像去模糊算法。并且由于当乘性噪声服从伽玛分布时,泊松噪声背景下的图像恢复模型同样适用于乘性噪声。因此我们将提出的算法用于处理乘性噪声背景下的图像去模糊问题。实验表明我们的算法可以得到更好的恢复图像。
Human are very familiar with images. Image can be captured by optical imaging or human vision system. There is a saying "One picture is worth a thousand words". This means that image contains much information about the things represented by it. With the development of computer technology, digital image technology has been widely used in science research, industry, medical treatment, education, entertainment and communica-tion. Therefore, the research on image technology is of great significance.
     In this dissertation,we focus on two problems based on variational method:image segmentation and image restoration. Image segmentation is the preprocessing of object recognition and image understanding, its goal is to partition the image into meaningful regions. Due to imperfections in the imaging and capturing process, the recorded image invariably represents a degraded version of the original scene. Actually, both problems can be viewed as one of image estimation where the segmentation map or underlying image is to be estimated from the processing image. After analyzing the advantages and disadvantages of the existing algorithms, we try to propose some effective algorithms for image segmentation and restoration. The main contributions of this dissertation are as follows:
     (1) Image segmentation method based on variational method usually refers to active contour model. After analyzing the existing models for segmenting image with intensity inhomogeneity, we find that, most of them are non-convex. Thus, they can-not guarantee global minimizers and the corresponding algorithms may stop at local minimizers. Although the global active contour model based on local intensity means has achieved faster convergence, the local intensity means sometimes can-not provide enough information for accurate segmentation. Therefore, assume that the intensities of pixels in a window follow Gaussian distribution, we give a convex model. Then using the optimization method to solve the proposed model, we get an efficient algorithm which can find the global minimizer of the model. Numerical experiments show the good performance of the proposed algorithm. In addition, since second-order statistics contain part of the information about texture, we use the proposed algorithm to segment texture image.
     (2) Considering the second-order statistics can-not provide enough information for tex- ture segmentation, we propose a convex active contour model based on local feature histogram. To get better descriptors for texture image, we use a semi-local region descriptor to extract texture information. Moreover, the pixel intensity is also very important feature of texture image. Thus, we use those two features as features of texture image, and use feature histograms to represent regions. Since cross-bin distance matches perceptual similarity better than the bin-to-bin distance, we use a cross-bin distance, named Quadratic-Chi histogram distance, to measure the dis-tance between histograms. Finally, we get a convex model for texture segmentation. Experimental results for images show the effective of the proposed method.
     (3) For image restoration model based on variational method, we first study a TV dictionary model. It takes the TV regularization as the objective function, uses the constraints based on wavepacket decomposition to restrict the solution space. Since wavepacket decomposition algorithm provides multi-scale representation for images, TV dictionary model can achieve better preservation of texture than the classical ROF model. However, it is not easy to solve this model. Although some-one uses Uzawa method to solve it, the resulting algorithm is not stable. From the statistical view, we add a data-fidelity term to TV dictionary model. Then we can restrict the solution space from both time and frequency domain, and get a con-vex model. Then we prove the existence of the solution. To solve the proposed model, we discuss that on two cases:one approach is that we directly solve the constrained model, however, the resulting algorithm can only efficiently work on denoising problem; in the other approach, we first change the model to an uncon-strained model via Lagrange multiplier method, then solve the model, the result-ing algorithm can be applied to many applications. Experimental results show the effective of our algorithm. Furthermore, we replace the TV regularization by the nonlocal total variation regularization, and the resulting model reaches much higher restored quality.
     (4) We propose an algorithm for image deblurring under impulse noise based on sparse representation over learned dictionary. Since the patch-based approach may intro-duce some artifacts to the recovered image, and the pixel-based TV regularization term can locally smooth the recovered image, we combine this regularization to our model. Considering the special characteristics of the impulse noise:some pix-els are noise-free, we use the two-phase method to recover the image:the first phase is to identify the noise candidates which are likely to be corrupted by im- pulse noise; the second phase is to recover the image via the patch-based model in which the data-fidelity term only uses the noise-free pixels. However, the resulting algorithm just works well for image deblurring under salt-and-pepper noise. Since the detection for random-valued noise is usually unreliable, which introduces much difficulty, the two-phase method cannot work well. To get better recovered results from the blurred images with random-valued noise, we combine the two separate phases together to simultaneously detect the impulse noise positions and restore image. The numerical experiments demonstrate the good performance of the pro-posed methods.
     (5) In the image capturing process, kinds of noise appear. To tackle the image de-blurring under Poisson noise, we extend the idea of the above algorithm for image deblurring under impulse noise to get a new model for deblurring under Poisson noise. Furthermore, when the multiplicative noise follows Gamma distribution, the model for deblurring under Poisson noise can be used to deblur image with mul-tiplicative noise. Therefore, we use the proposed algorithm to deblur image with Poisson or multiplicative noise. The experimental results demonstrate the good performance of the proposed method.
引文
[1]章毓晋.图像工程(中册):图像分析(第2版).清华大学出版社,2005.
    [2]D. Comaniciu, P. Meer. Mean shift a robust approach toward feature space analysis. IEEE Trans. Pattern Anal.Mach. Intell.,2002,24(5):1-18.
    [3]Y. Boykov, G. Funka-Lea. Graph Cuts and Efficient N-D Image Segmentation. Int. J. Comput. Vis.,2006,70(2):109-131.
    [4]J. Malik, S. Belongie, T. Leung, et al. Contour and texture analysis for image segmentation. Int. J. Comput. Vis.,2001,43(1):7-27.
    [5]J. Shi, J. Malik. Normalized cuts and image segmentation. IEEE Trans. Pattern Anal.Mach. Intell.,2000,22(8):888-905.
    [6]F. Cohen, D. Cooper. Simple parallel hierarchical and relaxation algorithms for segmenting noncausal Markovian random fields. IEEE Trans. Pattern Anal.Mach. Intell.,1987,9(2):195-219.
    [7]M. Kass, A. Witkin, D. Terzopoulos. Snakes:active contour models. Int. J. Comput. Vis., 1987,1(4):321-331.
    [8]D. Donoho, I. Johnstone. Ideal spatial adaptation by wavelet shrinkage. Biometrika,1994, 81(3):425-455.
    [9]S. Geman, D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal.Mach. Intell.,1984,6(6):721-741.
    [10]S. Li. Markov Random Field Modeling in Computer Vision (Third Edition). Springer,2009.
    [11]Y. Boykov, O. Veksler, R. Zabih. Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal.Mach. Intell.,2001,23(11):1222-1239.
    [12]L. Rudin, S. Osher, E. Fatemi. Nonlinear total variation based noise removal algorithms. Phys-ica D,1992,60(l-4):259-268.
    [13]L. Cohen, I. Cohen. Finite-element methods for active contour models and balloons for 2-d and 3-d images. IEEE Trans. Pattern Anal.Mach. Intell.,1993,152(11):1131-1147.
    [14]C. Xu, J. Prince. Snakes, shapes, and gradient vector flow. IEEE Trans. Image Process.,1998, 7(3):359-369.
    [15]A. Amini, S. Tehran, T. Weymouth. Using dynamic programming for minimizing the energy of active contours in the presence of hard constrains. Proceedings of ICCV,1988.95-99.
    [16]S. Osher, J. Sethian. Fronts propagation with curvature dependent speed:Algorithms based on Hamilton-Jacobi formulations. J. of Comp. Phys.,1998,79(1):12-49.
    [17]V. Caselles, R. Kimmel, G. Sapiro. Geodesic active contours. Int. J. Comput. Vis.,1997, 22(1):61-79.
    [18]J. S. R. Malladi, B. Vemuri. Shape modeling with front propagation:a level set approach. IEEE Trans. Pattern Anal.Mach. Intell.,1995,17(2):158-175.
    [19]S. Kichenassamy, A. Kumar, P. Olver, et al. Gradient flows and geometric active contour models. Proceedings of ICCV,1995.810-815.
    [20]A. Yezzi, S. Kichenassamy, A. Kumar. A geometric snake model for segmentation of medical imagery. IEEE Trans. Medical Imaging,1997,16(2):199-209.
    [21]K. Siddiqui, Y. Lauriere, A. Tannenbaum. Area and length minimizing flows for shape seg-mentation. IEEE Trans. Image Process.,1998,7(3):433-443.
    [22]N. Paragios, O. Mellina-Gottardo, V. Ramesh. Gradient vector flow geometric active contours. IEEE Trans. Pattern Anal.Mach. Intell.,2004,26(3):402-407.
    [23]D. Mumford, J. Shah. Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math.,1989,42(5):577-685.
    [24]T. Chan, L. Vese. Active contours without edges. IEEE Trans. Image Process.,2001, 10(2):266-277.
    [25]T. Brox, D. Cremers. On the Statistical Interpretation of the Piecewise Smooth Mumford-Shah Functional. Proceedings of Scale Space and Variational Methods in Computer Vision, volume 4485,2007.203-213.
    [26]S. Zhu, A. Yuille. Region competition:Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Trans. Pattern Anal.Mach. Intell.,1996,18(9):884-900.
    [27]M. Heiler, C. Schnoerr. Natural image statistics for natural image segmentation. Proceedings of ICCV,2003.1259-1266.
    [28]D. Cremers, S. Osher, S. Soatto. Kernel density estimation and intrinsic alignment for shape priors in level set segmentation. Int. J. Comput. Vis.,2006,69(3):335-351.
    [29]S. Jehan-Besson, M. Barlaud, G. Aubert. DREAM2S:Deformable regions driven by an eu-lerian accurate minimization method for image and video segmentation. Int. J. Comput. Vis., 2003,53(1):45-70.
    [30]J. Kim, J. Fisher, A. Yezzi, et al. Nonparametric methods for image segmentation using infor-mation theory and curve evolution. Proceedings of ICIP, volume 3,2002.797-800.
    [31]N. Paragios, R. Derich. Geodesic active regions:a new paradigm to deal with frame partition problems in computer vision. J. Vis. Commun. Image R.,2002,13(1-2):249-268.
    [32]N. Paragios, R. Derich. Geodesic active regions and level set methods for supervised texture segmentation. Int. J. Comput. Vis.,2002,46(3):223-247.
    [33]D. Cremers, M. Rousson, R. Deriche. A review of statistical approaches to level set segmenta-tion:integrating color, texture, motion and shape. Int. J. Comput. Vis.,2007,72(2):195-215.
    [34]T. F. Chan, B. Sandberg, L. Vese. Active contours without edges for vector-valued images. J. Visual.Commun. Image Representation,2000,11(2):130-141.
    [35]B. Sandberg, T. Chan, L. Vese. A Level-Set and Gabor Based Active Contour Algorithm for Segmenting Textured Images. Technical report, UCLA Computational and Applied Mathemat-ics,02-39,2002.
    [36]C. Sagiv, N. Sochen, I. Zeevi. Integrated active contours for texture segmentation. IEEE Trans. Image Process.,2006,15(6):1633-1645.
    [37]M. Rousson, T. Brox, R. Deriche. Active unsupervised texture segmentation on a diffusion based feature space. Proceedings of CVPR,2003.699-704.
    [38]N. Houhou, J. Thiran, X. Bresson. Fast texture segmentation based on semi-local region de-scriptor and active contour. Numer. Math. Theor. Meth. Appl.,2009,2(4):445-468.
    [39]T. Brox, M. Rousson, R. Deriche, et al. Colour, texture, and motion in level set based segmen-tation and tracking. Image and Vision Computing,2010,28(3):376-390.
    [40]Y. Rubner, C. Tomasi, L. Guibas. The earth mover's distance as a metric for image retrieval. Int. J. Comput. Vis.,2000,40(2):99-121.
    [41]I. Ayed, A. Mitiche, Z. Belhadj. Multiregion Level-Set Partitioning of Synthetic Aperture Radar Images. IEEE Trans. Pattern Anal.Mach. Intell.,2005,27(5):793-800.
    [42]I. Ayed, N. Hennane, A. Mitiche. Unsupervised Variational Image Segmentation/Classification Using a Weibull Observation Model. IEEE Trans. Signal Process.,2006,15(11):3431-3439.
    [43]C. Li, C.-Y. Kao, J. C. Gore, et al. Implicit active contours driven by local binary fitting energy. Proceedings of CVPR, Minnesota, USA,2007.1-7.
    [44]C. Darolti, A. Mertins, C. Bodensteiner, et al. Local region descriptors for active contour evolution. IEEE Trans. Image Process.,2008,17(12):2275-2288.
    [45]J. Piovano, T. Papadopoulo. Local statistic based region segmentation with automatic scale selection. Proceedings of ECCV, volume 5303,2008.486-499.
    [46]L. Wang, L. He, C. Li. Active contours driven by local Gaussian distribution fitting energy. Signal Processing,2009,89(12):2435-2447.
    [47]D. Cremers, T. Kohlberger, C. Schnorr. Nonlinear shape statistics in Mumford-Shah based segmentation. Proceedings of ECCV, volume 2351,2002.93-108.
    [48]D. Cremers, F. Tischhauser, J. Weickert, et al. Diffusion Snakes:Introducing statistical shape knowledge into the Mumford-Shah functional. Int. J. Comput. Vis.,2002,50(3):295-313.
    [49]M. Rousson, N. Paragios. Shape priors for level set representations. Proceedings of ECCV, volume 2351,2002.78-92.
    [50]H.-K. Zhao, T. Chan, B. Merriman, et al. A variational level set approach to multiphase motion. IEEE Trans. Image Process.,1996,127(1):179-195.
    [51]C. Samson, L. Blanc-Feraud, G. Aubert, et al. A variational model for image classification and restorations. IEEE Trans. Pattern Anal.Mach. Intell.,2000,22(5):460-472.
    [52]L. Vese, T. Chan. A multiphase level set framework for image segmentation using the mumford and shah model. Int. J. Comput. Vis.,2002,50(3):271-293.
    [53]A. Tsai, A. Yezzi, A. Willsky. Curve evolution implementation of the Mumford-Shah func-tional for image segmentation, denoising, interpolation, and magnification. IEEE Trans. Image Process.,2001,10(8):1169-1186.
    [54]G. Chung, L. Vese. Image segmentation using a multilayer level-set approach. Computing and Visualization in Science,2009,12(6):267-285.
    [55]J. Lie, M. Lysaker, X.-C.Tai. A variant of the level set method and applications to image segmentation. Math. Comp.,2006,75(255):1155-1174.
    [56]T. Brox, J. Weickert. Level set segmentation with multiple regions. IEEE Trans. Image Pro-cess.,2006,15(10):3213-3218.
    [57]B. Sandberg, S. Kang, T. Chan. Unsupervised Multiphase Segmentation:A Phase Balancing Model. IEEE Trans. Image Process.,2010,19(1):119-130.
    [58]D. Adalsteinsson, J. Sethian. A fast level set method for propagating interfaces. Journal of Computational Physics,1995,118(2):269-277.
    [59]J. Sethian. A fast marching level set method for monotonically advancing fronts. Proceedings of National Academic Science,1996,93(4):1591-1595.
    [60]R. Goldenberg, R. Kimmel, E. Rivlin, et al. Fast geodesic active contours. IEEE Trans. Image Process.,2001,10(10):1467-1475.
    [61]J. Weickert, G. Kuhne. Fast methods for implicit active contour models. In:S.Osher, N.Paragios, (eds.). Proceedings of Geometric Level Set Methods in Imaging,Vision and Graph-ics.2003:397-405.
    [62]A. Kenigsberg, R. Kimmel, I. Yavneh. A multigrid approach for fast geodesic active contours. Proceedings of Cop. Mnt. Conf. on Multigrid Methods,2001.1-10.
    [63]G. Papandreou, P. Maragos. A fast multigrid implicit algorithm for the evolution of geodesic active contours. Proceedings of CVPR, volume 2,2004.689-694.
    [64]G. Papandreou, P. Maragos. Multigrid geometric active contour models. IEEE Trans. Image Process.,2007,16(1):229-240.
    [65]C. Li, C. Xu, C. Gui, et al. Level set evolution without re-initialization:A new variational formulation. Proceedings of CVPR,2005.430-436.
    [66]T. Chan, S. Esedoglu, M. Nikolova. Algorithms for finding global minimizers of image seg-mentation and denoising models. Journal of Applied Mathematics,2006,66(5):1632-1648.
    [67]X. Bresson, S. Esedoglu, P. Vandergheynst, et al. Fast global minimization of the active con-tour/snake model. Journal of Mathematical Imaging and Vision,2007,28(2):151-167.
    [68]A. Chambolle. An algorithm for total variation minimization and applications. J. Math. Imag. Vis.,2004,20(1-2):89-97.
    [69]T. Pock, A. Chambolle, H. Bischof, et al. A convex relaxation approach for computing minimal partitions. Proceedings of CVPR, Miami, Florida,2009.810-817.
    [70]M. Unger, T. Pock, H. Bischof. Continuous Globally Optimal Image Segmentation with Local Constraints. Proceedings of Computer Vision Winter Workshop,2008.1-8.
    [71]T. Goldstein, X. Bresson, S. Osher. Geometric applications of the split Bregman method: Segmentation and surface reconstruction. Journal of Scientific Computing,2010,45(1-3):272-293.
    [72]D. Gabor. Information theory in electron microscopy. Laboratory Investigation,1965,14:801-807.
    [73]A. Jain. Partial differential equations and finite-difference methods in image processing, part 1:Image representation. Optimization Theory and Applications,1977,23:65-91.
    [74]A. Witkin. Scale-space filtering. Proceedings of Int. Joint Conf. Art. Intell., volume 2,1983. 1019-1021.
    [75]R. Hummel. Representations based on zero-crossing in scale-space. Proceedings of CVPR, 1986.204-209.
    [76]P. Perona, J. Malik. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal.Mach. Intell.,1990,12(7):629-639.
    [77]L. Alvarez, P. Lions, J. Morel. Image selective smoothing and edge detection by nonlinear diffusion. SIAM Journal on numerical analysis,1992,29(3):845-866.
    [78]B. Romeny. Geometry driven diffusion in computer Vision. Dordrecht:Kluwer Academic Publishers,1994.
    [79]A. Tikhonov, V. Arsenin. Solution of Ill-Poised Problems. PWinston, Washington, DC,1977.
    [80]C. Vogel, M. Oman. Iterative methods for total variation denoising. SIAM J. Sci. Stat. Comput., 1996,17(1):227-238.
    [81]T. Chan, H. Zhou, R. Chan. Continuation Method for Total Variation Denoising Problems. Technical report, UCLA Computational and Applied Mathematics,95-28,1995.
    [82]M. Ng, L. Qi, Y. Yang, et al. On Semismooth Newtons Methods for Total Variation Minimiza-tion. J. Math. Imag. Vis.,2007,27(3):265-276.
    [83]T. Chan, G. Golub, P. Mulet. A nonlinear primal dual method for total variation based image restoration. SIAM J. Sci. Comput.,1999,20(6):1964-1977.
    [84]A. Chambolle, T. Pock. A First-Order Primal-Dual Algorithm for Convex Problems with Ap-plications to Imaging. J. Math. Imaging Vis.,2011,40(1):120-145.
    [85]D. Goldfarb, W. Yin. Second-order cone programming methods for total variation-based image restoration. SIAM J. Sci. Comput.,2005,27(2):622-645.
    [86]S. Acton. Multigrid anisotropic difustion. IEEE Trans. Image Process.,1998,7(3):280-291.
    [87]T. Chan, K. Chen, X. Tai. Nonlinear multilevel scheme for solving the total variation image minimization problem. Proceedings of Image Processing Based on Partial Differential Equa-tions. Springer Berlin Heidelberg,2005:397-405.
    [88]T. Chan, K. Chen. On a nonlinear multigrid algorithm with primal relaxation for the image total variation minimisation. Numerical Algorithms,2006,41(4):387-411.
    [89]T. Chan, K. Chen. An optimization based total variation image denoising. SIAM J. Multiscale Modeling and Simulation,2006,5(2):615-645.
    [90]C. Vogel. A multigrid method for total variation-based image denoising. Proceedings of Com-putation and control IV,20, Progress in systems and control theory. Birkhauser,1995:323-331.
    [91]A. Chambolle. Total Variation minimization and a class of binary MRF models. Proceedings of EMMCVPR, volume 3757,2005.136-152.
    [92]J. Darbon, M. Sigelle. Exact optimization of discrete constrained total variation minimization problems. Proceedings of International Workshop on Combinatorial Image Analysis, volume 3322,2004.548-557.
    [93]J. Darbon, M. Sigelle. A fast and exact algorithm for total variation minimization. Proceedings of Iberian Conference on Pattern Recognition and Image Analysis, volume 3522,2005.351-359.
    [94]H. Ishikawa. Exact optimization for Markov random fields with convex priors. IEEE Trans. Pattern Anal.Mach. Intell.,2003,25(10):1333-1336.
    [95]B. Zalesky. Network Flow Optimization for Restoration of Images. Journal of Applied Math-ematics,2002,2(4):199-218.
    [96]M. Afonso, J. Bioucas-Dias, M. Figueiredo. Fast image.recovery using variable splitting and constrained optimization. IEEE Trans. Image Process.,2010,19(9):2345-2356.
    [97]T. Goldstein, S. Osher. The Split Bregman method for L1-regularized problems. SIAM J. Imag. Sci.,2009,2(2):323-343.
    [98]W. Zuo, Z. Lin. A generalized accelerated proximal gradient approach for total variation-based image restoration. IEEE Trans. Image Process.,2011,20(10):2748-2759.
    [99]F. Malgouyres. Mathematical analysis of a model which combines total variation and wavelets for image restoration. Journal of information processes,2002,2(1):1-10.
    [100]E. Candes, F. Guo. A New multiscale transforms, minimum total variation syn-thesis:application to edge-preserving image reconstruction. Signal Processing,2002, 82(11):1519-1543.
    [101]A. Chambolle, R. DeVore, N.-Y. Lee, et al. Nonlinear wavelet image processing:Variational problems, compression, and noise removal through wavelet shrinkage. IEEE Trans. Image Process.,1998,7(3):319-335.
    [102]G. Steidl, J.Weickert, T. Brox, et al. On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and sides. SIAM J. Numer. Anal.,2004, 42(2):686-713.
    [103]T. Zeng, X. Li, M. Ng. Alternating Minimization Method for Total Variation Based Wavelet Shrinkage Model. Commun. Comput. Phys.,2010,8(5):976-994.
    [104]M. Nikolova. A variational approach to remove outliers and impulse noise. J. Math. Imag. Vis.,2004,20(1-2):99-120.
    [105]M. Nikolova. Minimizers of cost-functions involving nonsmooth data-fidelity terms. Applica-tion to the processing of outliers. SIAM J. Numer. Anal.,2002,40(3):965-994.
    [106]L. Bar, N. Sochen, N. Kiryati. Deblurring of color images corrupted by Impulsive noise. IEEE Trans. Image Process.,2007,16(4):1101-1111.
    [107]L. Bar, N. Sochen, N. Kiryati. Image deblurring in the presence of salt-and-pepper noise. Proceedings of Int. Conf. Scale Space and PDE Methods in Computer Vision, volume 3459, 2005.107-118.
    [108]L. Bar, N. Sochen, N. Kiryati. Image deblurring in the presence of salt-and-pepper noise. Int. J. Comput. Vis.,2006,70(3):279-298.
    [109]J. Yang, Y. Zhang, W. Yin. An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise. SIAM J. Sci. Comput.,2009,31(4):2842-2865.
    [110]X. Guo, F. Li, M. Ng. A Fastl1-TV Algorithm for Image Restoration. SIAM J. Sci. Comput., 2009,31(3):2322-2341.
    [111]Y. Dong, M. Hintermuiler, M. Neri. An Efficient Primal-Dual Method For l1 TV Image Restora-tion. SIAM J. Imag. Sci.,2009,2(4):1168-1189.
    [112]C. Wu, J. Zhang, X. Tai. Augmented lagrangian method for total variation restoration with non-quadratic fidelity. Inverse Probl. Imag.,2011,5(1):237-261.
    [113]R. C. J. Cai, M. Nikolova. Two-phase approach for deblurring images corrupted by impulse plus gaussian noise. Int. J. Comput. Vis.,2008,2(2):187-204.
    [114]R. C. J. Cai, M. Nikolova. Fast two-phase image deblurring under impulse noise. J. Math. Imag. Vis.,2010,36(1):46-53.
    [115]R. Chan, Y. Dong, M. Hintermuller. An efficient two-phase l1-TV method for restoring blurred images with impulse noise. IEEE Trans. Imag. Process.,2010,19(7):1731-1739.
    [116]B. Dong, H. Ji, J. Li, et al. Wavelet frame based blind image inpainting. Appl. Comput. Harmon. A.,2012,32(2):268-279.
    [117]M. Yan. Restoration of images corrupted by impulse noise using blind inpainting and l0 norm. Technical report, UCLA Computational and Applied Mathematics,11-72,2011.
    [118]Y. Li, D. D. L. Shen and, B. Suter. Framelet algorithms for de-blurring images corrupted by impulse plus Gaussian noise. IEEE Trans. Imag. Process.,2011,20(7):123-139.
    [119]J. Boulanger, C. Kervrann, P. Bouthemy, et al. Patch-Based Nonlocal Functional for Denoising Fluorescence Microscopy Image Sequences. IEEE Trans. Medical Imaging,2010,29(2):442-454.
    [120]R. Chan, K. Chen. Multilevel algorithms for a Poisson noise removal model with total variation regularization. Int. J. Comput. Math.,2007,84(8):1183-1198.
    [121]G. Hagberg, G. Zito, F. Patria, et al. Improved detection of event-related functional mri signals using probability functions. Neurolmage,2001,14(5):1193-1205.
    [122]J. Ollinger, J. Fessler. Positron emission tomography. IEEE Signal Processing Magazine,1997, 14(1):43-55.
    [123]T. Le, R. Chartran, T. Asaki. A variational approach to reconstructing images corrupted by Poisson noise. J. Math. Imaging Vis.,2007,27(3):257-263.
    [124]A. Sawatzky, C. Brune, F. Wubbeling, et al. Accurate EM-TV algorithm in PET with low SNR. Proceedings of Proc. IEEE Nuclear Science Symposium Conference Record,2008. 5133-5137.
    [125]S. Setzer, G. Steidl, T. Teuber. Deblurring Poissonian images by split Bregman techniques. J. Vis. Commun. Image R.,2010,21(3):193-199.
    [126]M. Figueiredo, J. Bioucas-Dias. Restoration of Poissonian images using alternating direction optimization. IEEE Trans. Image Process.,2010,19(12):3133-3145.
    [127]L. Rudin, P. Lions, S. Osher. Geometric Level Set Methods in Imaging, Vision, and Graphics. Springer,2003:103-119.
    [128]G. Aubert, J. Aujol. A variational approach to remove multiplicative noise. SIAM J. Appl. Math.,2008,68(4):925-946.
    [129]Y. Huang, M. Ng, Y. Wen. A new total variation method for multiplicative noise removal. SIAM J. Imag. Sci.,2009,2(l):20-40.
    [130]J. Shi, S. Osher. A Nonlinear Inverse Scale Space Method for a Convex Multiplicative Noise Model. SIAM J. Imag. Sci.,2008,1(3):294-321.
    [131]G. Steidl, T. Teuber. Removing multiplicative noise by Douglas-Rachford splitting methods. J. Math. Imaging Vis.,2010,36(2):168-184.
    [132]S. Durand, J. Fadili, M. Nikolova. Multiplicative noise removal using L1 fidelity on frame coefficients. J. Math. Imaging Vis.,2010,36:201-226.
    [133]F. Li, M. Ng, C. Shen. Multiplicative noise removal with spatially varying regularization pa-rameters. SLAM J. Imag. Sci.,2010,3(1):1-20.
    [134]G. Gilboa, S. Osher. Nonlocal operators with applications to image processing. Multiscale Model. Simul.,2008,7(3):1005-1028.
    [135]X. Zhang, M. Burger, X. Bresson, et al. Bregmanized Nonlocal Regularization for Deconvolu-tion and Sparse Reconstruction. SIAM J. Imag. Sci.,2010,3(3):253-276.
    [136]M. Elad, M. Aharon. Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries. IEEE Trans. Image Process.,2006,15(12):3736-3745.
    [137]J. Mairal, M. Elad, G. Sapiro. Sparse representation for color image eestoration. IEEE Trans. Image Process.,2008,17(1):53-69.
    [138]J. Mairal, G. Sapiro, M. Elad. Learning multiscale sparse representations for image and video restoration. SIAM Multiscale Modeling and Simulation,2008,7(1):214-241.
    [139]Y. Xiao, T. Zeng, J. Yu, et al. Restoration of images corrupted by mixed Gaussian-impulse noise via l1-l0 minimization. Pattern Recongn.,2011,44(8):1708-1720.
    [140]Y. Xiao, T. Zeng. Poisson noise removal via learned dictionary. Proceedings of ICIP. IEEE, 2010.1177-1180.
    [141]M. Bertalmio, G. Sapiro, V. Caselles, et al. Image inpainting. Proceedings of SIGGRAPH, 2000. 4177-424.
    [142]A. Bugeau, M. Bertalmio, V. Caselles, et al. A Comprehensive Framework for Image Inpaint-ing. IEEE Trans. Image Process.,2010,19(10):2634-2645.
    [143]J. Huang, D. Mumford. Statistics of natural images and models. Proceedings of CVPR,1999. 541-547.
    [144]W. Gibbs. Elementary Principles of Statistical Mechanics. Yale University Press,1902.
    [145]D. Gabay. Applications of the method of multipliers to variational inequalities. In:M. Fortin, R. Glowinski, (eds.). Proceedings of Augmented Lagrangian Methods:Applications to the Solution of Boundary-Valued Problems. North-Holland, Amsterdam,1983:397-405.
    [146]M. Ng, W. Fan, X. Yuan. Inexact alternating direction methods for image recovery. SIAM J. Sci. Comput.,2011,33(4):1643-1668.
    [147]M. Zhu. Fast Numerical Algorithms for Total Variation Based Image Restoration[D]. UCLA.
    [148]S. Setzer. Operator splittings, bregman methods and frame shrinkage in image processing. Int. J. Comput. Vis.,2011,92(3):265-280.
    [149]X.-C.Tai, C.Wu. Augmented Lagrangian method, dual methods and split Bregman iteration for ROF model. Proceedings of SSVM, volume 42,2009.502-513.
    [150]T. Chan, J. Shen. Variational Image Inpainting. Communications on Pure and Applied Mathe-matics,2005, LVⅢ:0579-0619.
    [151]T. Chan, A. Yip, F. Park. Simultaneous total variation image inpainting and blind deconvolu-tion. International Journal of Imaging Systems and Technology,2005,15(1):92-102.
    [152]S. Boyd, L. Vandenberghe. Convex Optimization. Cambridge University Press,2004.
    [153]X. Xie. Active contouring based on gradient vector interaction and constrained level set diffu-sion. IEEE Trans. Image Process.,2010,19(1):154-164.
    [154]R. Ronfard. Region-based strategies for active contour models. Int. J. Comput. Vis.,1994, 13(2):229-251.
    [155]S. Lankton, A. Tannenbaum. Localizing Region-Based Active Contours. IEEE Trans. Imag. Process.,2008,17(11):2029-2039.
    [156]C. Li, C. Gatenby, L. Wang, et al. A Robust Parametric Method for Bias Field Estimation and Segmentation of MR Images. Proceedings of CVPR,2009.218-223.
    [157]J. Piovano, M. Rousson, T. Papadopoulo. Efficient segmentation of piecewise smooth images. Proceedings of the Scale Space and Variational Methods in Computer Vision,2007.709-720.
    [158]Y. Yang, C. Li, C. Kao, et al. Split Bregman Method for Minimization of Region-Scalable Fitting Energy for Image Segmentation. Proceedings of International Symposium on Visual Computing, volume 6454,2010.117-128.
    [159]A. Yezzi, A. Tsai, A. Willsky. A Fully Global Approach to Image Segmentation via Coupled Curve Evolution Equations. J. Vis. Commun. Image R.,2002,13(1-2):195-216.
    [160]N. Sochen, R. Kimmel, R. Malladi. A general framework for low level vision. IEEE Trans. Image Process.,1998,7(3):310-318.
    [161]J. Hafner, H. Sawhney, W. Equitz, et al. Efficient color histogram indexing for quadratic form distance functions. IEEE Trans. Pattern Anal.Mach. Intell.,1995,17(7):729-736.
    [162]O. Pele, M. Werman. The Quadratic-Chi Histogram Distance Family. Proceedings of ECCV, volume 6312. Springer,2010.749-762.
    [163]K. Ni, X. Bresson, T. Chan, et al. Local histogram based segmentation using the Wasserstein distance. Int. J. Comput. Vis.,2009,84:97-111.
    [164]P. Arbelaez, M. Maire, C. Fowlkes, et al. Contour detection and hierarchical image segmenta-tion. IEEE Trans. Pattern Anal. Machine Intell.,2011,33(5):898-916.
    [165]I. Daubechies. Ten Lectures on Wavelets. SIAM Publ., Philadelphia,1992.
    [166]D. Donoho, I. Johnstone. Adapting to unknown smoothness via wavelet shrinkage. Biometrika, 1995,90(432):1200-1224.
    [167]I. Daubechies, M. Defriese, C. Mol. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun.Pure Appl. Math.,2004,57(11):1413-1457.
    [168]F. Malgouyres. A framework for image deblurring using wavelet packet bases. Applied and Computational Harmonic Analysis,2002,12(3):309-331.
    [169]F. Malgouyres. Minimizing the total variation under a general convex constraint for image restoration. IEEE Trans. Image Process.,2002,11 (12):1450-1456.
    [170]T. Zeng, F. Malgouyre. Using Gabor dictionaries in a TV L-inifinity model for denoising. Proceedings of ICASSP,2006.865-868.
    [171]T. Zeng. Incorporating known features into a total variation dictionay model for source sepa-ration. Proceedings of ICEP,2008.577-580.
    [172]T. Zeng, M. Ng. On the total variation dictionary model. IEEE Trans. Image Process.,2010, 19(3):821-825.
    [173]S. Lintner, F.Malgouyres. Solving a variational image restoration model which involves con-traints. Inverse. Probl.,2004,20(3):815-831.
    [174]N. F. L. Ambrosio, D. Pallara. Functions of bounded variation and free doscontinuity problem. Oxford, U.K.:Oxford Univ. Press,2000.
    [175]I. Ekeland, R. Temam. Convex Analysis and Variational Problems. Studies Math. Appl., American Elsevier, Amsterdam, New York,1976.
    [176]P. L. Combettes, V. R.Wajs. Signal recovery by proximal forward backward splitting. Multi-scale Modeling & Simulation,2005,4(4):1168-1200.
    [177]C. Micchelli, L. Shen, Y. Xu. Proximity Algorithms for Image Models:Denoising. Inverse Probl.,2011,27(4):045009.
    [178]J. Moreau. Fonctions convexes duales et points proximaux dans un espace hilbertien. C.R. Acad. Sci. Paris Ser. A Math,1962,255:1897-2899.
    [179]J. Moreau. Proximite et dualite dans un espace hilbertien. Bull. Soc. Math. France,1965, 93:273-299.
    [180]C. Chaux, J. Pesquet, N. Pustelnik. Nested iterative algorithms for convex constrained image recovery problems. SIAM J. Imag. Sci.,2009,2(2):730-762.
    [181]A. Beck, M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci.,2009,2(1):183-202.
    [182]Y. Nesterov. A method of solving a convex programming problem with convergence rate ). Soviet Mathematics Doklady,1983,27(2):372-376.
    [183]J. Boyle, R. Dykstra. A method for finding projections onto the intersection of convex sets in Hilbert spaces. Lecture Notes in Statistics,1986,37:28-47.
    [184]X. Bresson, T. F. Chan. Fast dual minimization of the vectorial total variation norm and appli-cations to color image processing. Inverse Problems and Imaging,2008,2:455-484.
    [185]A. Buades, B. Coll, J. Morel. A review of image denoising algorithms, with a new one. Multi-scale Model. Simul.,2005,4(2):490-530.
    [186]A. Buades, B. Coll, J. Morel. Nonlocal Image and Movie Denoising. Int. J. Comput. Vis., 2008,76(2):123-139.
    [187]X. Bresson. A short note for nonlocal tv minimization. technical report,2009..
    [188]N. Hurley, S. Rickard. Comparing measures of sparsity. IEEE Trans. Inf. Theory,2009, 55(10):4723-4741.
    [189]G. Peyre, S. Bougleux, L. Cohen. Non-local regularization of inverse problems. Inverse Probl. Imag.,2011,5(2):511-530.
    [190]F. Luisier, T. Blu, M. Unser. Image Denoising in Mixed Poisson-Gaussian Noise. IEEE Trans. Image Process.,2011,20(3):696-708.
    [191]T. Cho, N. Joshi, C. Zitnick, et al. A content-aware image prior. Proceedings of CVPR, San Francisco,USA:IEEE,2010.169-176.
    [192]K. Dabov, A. Foi, V. Katkovnik, et al. Image denoising by sparse 3D transform-domain col-laborative filtering. IEEE Trans. Image Process.,2007,16(8):2080-2095.
    [193]D. Zoran, Y. Weiss. From learning models of natural image patches to whole image restoration. Proceedings of ICCV, Barcelona, Spain,2011.479-486.
    [194]B. Olshausen, D. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature,1996,381(6583):607-609.
    [195]M. Aharon, M. Elad, A. Bruckstein. K-SVD:An algorithm for designing of overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process.,2006,54(11):4311-4322.
    [196]M. Protter, M. Elad. Image sequence denoising via sparse and redundant representations. IEEE Trans. Image Process.,2009,18(1):27-35.
    [197]W. Pratt. Median filtering. Technical report, Image Proc. Inst., Univ. Southern California, Los Angeles,1975.
    [198]D. Brownrigg. The weighted median filter. Commun. ACM.,1984,27(8):807-818.
    [199]H. Hwang, R. Haddad. Adaptive median filters:new algorithms and results. IEEE Trans. Image Process.,1995,4(4):499-502.
    [200]T. Chen, H. Wu. Space variant median filters for the restoration of the impulse noise corrupted images. IEEE Transactions on Circuits and Systems-Ⅱ:Analog and Digital Signal Processing, 2001,48(8):784-789.
    [201]S. Ko, Y. Lee. Center weighted median filters and their applications to image enhancement. IEEE Trans. Circuits Syst.,1991,38(9):984-993.
    [202]G. Pok, J. Liu, A. Nair. Selective removal of impulse noise based on homogeneity level infor-mation. IEEE Trans. Image Process.,2003,12(1):85-92.
    [203]W. Dong, L. Zhang, G. Shi, et al. Image Deblurring and Super-Resolution by Adaptive Sparse Domain Selection and Adaptive Regularization. IEEE Trans. Image Process.,2011, 20(7):1838-1857.
    [204]H. Zhang, J. Yang, Y. Zhang, et al. Sparse representation based blind image deblurring. Pro-ceedings of ICME, Barcelona, Spain,2011. IEEE.1-6.
    [205]Y. Wang, J. Yang, W. Yin, et al. A New Alternating Minimization Algorithm for Total Variation Image Reconstruction. SIAM J. Imag. Sci.,2008, 1(3):248-272.
    [206]J. Nocedal, S. Wright. Numerical Optimization,2nd Edition. Springer,2006.
    [207]T. Zeng. Etudes de modeles variatioannels et apprentissage de dictionnaires[D]. Universite Paris Nord.
    [208]J. Miao, D. Wilson. Selective evaluation of noise, blur, and aliasing artifacts in fast MRI reconstructions using a weighted perceptual difference model:Case-PDM. Proceedings of Proc. SPIE 7263,72631N,2009.
    [209]E. Rollano-Hijarrubia, R. Manniesing, W. Niessen. Selective Deblurring for Improved Calcifi-cation Visualization and Quantification in Carotid CT Angiography:Validation Using Micro-CT. IEEE Trans. Medical Imaging,2009,28(3):446-453.
    [210]G. Wang, M. Vannier, M. Skinner, et al. Spiral CT Image Deblurring for Cochlear Implantation. IEEE Trans. Medical Imaging,1998,17(2):251-262.
    [211]M. Maitalo, A. Foi. Optimal inversion of the generalized Anscombe transformation for Poisson-Gaussian noise. IEEE Trans. Image Process.,2013,22(1):91-103.
    [212]B. Zhang, M. Fadili, J. Stack. Wavelets, ridgelets, and curvelets for Poisson noise removal. IEEE Trans. Image Process.,2008,17(7):1093-1108.
    [213]M. Carlavan, L. Blanc-Feraud. Sparse Poisson Noisy Image Deblurring. IEEE Trans. Image Process.,2012,21(4):1834-1846.
    [214]Y. Lou, A. Bertozzi, S. Soatto. Direct sparse deblurring. J. Math. Imaging Vis.,2011,39(1):1-12.
    [215]Y. Dong, T. Zeng. A Convex Variational Model for Restoring Blurred Images with Multiplica-tive Noise. Technical report, UCLA Computational and Applied Mathematics,12-23,2012.
    [216]A. Effros, T. Leung. Texture synthesis by non-parametric sampling. Proceedings of 7th IEEE Int. Conf. Comput. Vis., volume 2,1999.1033-1038.
    [217]M. Jiang, G. Wang, M. Skinner, et al. Blind Deblurring of Spiral CT Images. IEEE Trans. Medical Imaging,2003,22(7):837-845.
    [218]J. Cai, H. Ji, C. Liu, et al. Blind motion deblurring from a single image using sparse approxi-mation. Proceedings of CVPR,2009.104-111.
    [219]T. Cho, S. Paris, B. Horn, et al. Blur kernel estimation using the Radon Transform. Proceedings of CVPR,2011.241-248.
    [220]R. Fergus, B. Singh, A. Hertzmann, et al. Removing camera shake from a single photograph. Proceedings of SIGGRAPH,2006.783-794.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700