基于空间—频率域的织物组织识别新技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
织物组织识别是纺织测试分析及设计领域的前沿课题,具有重要的现实意义。旨在通过分析织物的外观纹理结构、纹理走向及色调分布提取纱线组织结构参数并识别织物的纹理组织规律。对各种织物面料类别及不同的组织结构进行正确的识别与分析,可以为面料设计、仿样和创新提供科学依据。织物组织结构识别的研究对于纺织及面料行业的产品生产、设计创意和仿样改样进而提升我国纺织产业的国际竞争力具有重要意义。
     纺织品CAD技术的出现在很大程度上简化了产品的设计和织造过程。但由于织物组织结构复杂多样,生产过程受纺织工艺的影响,最终形成的纺织品具有许多不确定性,从而增加了织物组织自动识别的难度。传统织物组织识别方法无论是统计方法、几何方法,还是谱方法和模型方法都假定织物图像为平稳信号,即经纬纱线排列理想,水平方向和垂直方向上的灰度信号能很好的体现纱线的间隙位置。然而实际织物图像为非平稳信号,纱线排列与理想模型存在较大差异。传统的织物组织识别方法很难适应实际织物图像的非平稳性特点。结合织物图像的非平稳性特点,突破现有织物组织识别技术瓶颈,发展新的织物参数分析与识别技术成为织物组织智能分析与设计领域的前沿核心问题。
     本文研究基于图像的空间-频率域分析理论,针对织物的组织类型与结构参数进行了深入的研究,主要工作包括:
     (1)研究了Hilbert边际谱、Hilbert-Huang Hough变换在织物结构参数估计中的应用,分别基于Hilbert边际谱和Hilbert-Huang Hough变换提出了平纹组织纱线密度和斜纹组织纱线密度估计算法。将织物图像转换为一维信号,对一维信号分别求取Hilbert边际谱和Hilbert-Huang Hough变换,据此求得织物图像在经向、纬向和斜纹方向的主频率,并将主频率换算为织物纱线密度。仿真实验表明,该方法能精确估计纱线密度。
     (2)提出了一种新的基于B样条小波变换极大模的织物多组织识别算法。由B样条小波对织物图像进行分解,利用分解后的纬向和经向的子图像建立正常织物图像和待检测织物图像的极大模边缘图像;然后由二者的差分结果提取检验织物组织识别准确性的判定参数;最后由组织矩阵绘制织物的组织图。仿真结果表明:本文方法能够精细准确的刻画织物组织点位置并具有效率高,稳定性能好等优点。
     (3)提出了一种基于四元数-Gabor滤波和四元数-PCA彩色织物组织识别新方法。将彩色织物图像表示为四元数形式,并应用四元数-Gabor滤波器进行滤波处理,对滤波后的图像进行聚类处理实现初始分割,在初始分割的基础上运用四元数-PCA建立彩色织物组织结构的精确纹理分割模型。
Recognition for fabric weave pattern is one of the key issues in fabric analysis and design field. The parameters of yarn can be extracted and fabric weave pattern can be recognized by analyzing the surface, weave pattern and color distribution of the fabric sample. Scientific basis of fabric innovative design is established with the accurate weave pattern recognition, which will promote competitiveness of textile industry.
     Although the emergence of textile CAD system greatly simplifies the product design and weaving, automatic recognition for weave pattern has a great of difficulty. Due to the complexity of manufacturing, the final form of the fabric has much uncertain information. The recognition performances of classical methods aren’t satisfying. No matter the statistical method, geometric method or spectral method and models method are all assume the fabric images are the ideal arrangement of warp and weft yarns, that the yarn gap position can be well represented. These methods are presented in condition of stationary and spatial-invariance signals. In practice, real fabric images are mostly non-stationary and spatial-variance. Considering the disadvantages of classical methods, this dissertation focuses on the key part of parameters of yarn and recognition of weave pattern.
     In this dissertation, several theoretical issues based on space-frequency domain are focused. The main contributions are given as follows:
     (1) On the study of the marginal spectrum of Hilbert-Huang transform a method is proposed to calculate fabric yarn density of tabby by analyzing Hilbert marginal spectrum of fabric sample image, and the yarn density of twill will be calculated by analyzing the Hilbert-Huang Hough transform. Experiments results show that this method is infinitely close to the value measured by manual.
     (2) A new fabric multi-pattern recognition proposed based on B-spline wavelet transform modulus maximum theory to recognize fabric sample point effectively, and capture gray-scale changes accurately in the fabric image. Therefore, the exact position of the yarns achieved clearly. This method is proposed to help simplify the implementation, and improve the robustness of the pattern detection, whether the fabric is single or multi-pattern.
     (3)A method of recognition for color fabric weave pattern is proposed based on the theory of Quaternion-Gabor and Quaternion-PCA. The color fabric weave pattern image is pre-processed using Quaternion-Gabor filter firstly, and clustering method is applied to approach initial segmentation, then color fabric weave pattern segmentation is build based on Quaternion-PCA method to implement accurate segmentation of different weave patterns and different color models.
引文
[1]李凯华,方晓初等.织物组织计算机图像分析系统的开发[J].武汉科技学院学报,2003,16(2):85—88.
    [2] JEON Boong Soo, BAE Ji Hyun, SUH Moon W. Automatic recognition of woven fabric patterns by an artificial neural network [J]. Textile Research Journal, 2003 (73):645-650.
    [3] C J Kuo, C Tsai. Automatic recognition of fabric nature by using the approach of texture analysis [J]. Textile Res J, 2006, 76 (5):375-382.
    [4] CHAN C H, GRANTHAM K H P. Fabric defect detection by Fourier analysis [J]. IEEE Transaction on Industry Application, 2000, 36 (5):1267 - 1276.
    [5]马天宾,李立轻.机织物组织点的自动识别研究[J].纺织科技进展,2009(02):24.
    [6]王欣.机织物的几种密度测定方法简介[J].棉纺织技术,1988,16( 12):44~ 46.
    [7]张森林,姜位洪.纹织CAD技术的应用及其发展方向[J].纺织学报.vol.25,no.3,pp.126-129,2004.
    [8]王志东,颜钢锋.织物模拟CAD系统的开发与实现[J].东华大学学报(自然科学版),vol.30,no.5,pp.60-64,2004.
    [9]潘如如,高卫东.基于图像处理的机织物密度的高精度识别[J].纺织学报,2008,9(11):128~131.
    [10]李艳梅,徐伯俊,高卫东等.织物组织结构参数自动识别系统的研究.北京纺织,vol.23,no.2,pp.54-57,2002.
    [11]吴海虹,张明敏,潘志庚.织物图像的倾斜纠正与纬纱密度识别[J].中国图像图形学报,vol.11,no.5,PP.640-645,2006.
    [12]庄国瑜,孙悦.小波基的选择与织物图像处理[J].天津纺织工学院学报,1999,18(5):6-9.
    [13]周淼.纺织品中纱线密度的测量方法[J].化纤与纺织技术,2004,9(3):29-31.
    [14] Rovandi S.A.H, Toriumi K. Fourier transform analysis of plain woven fabric appearance [J]. T.R.J, 1995, 65 (11):678~683.
    [15]潘如如,高卫东,张星烨.机织物图像的高精度纠偏及效果验证[J].纺织学报,2008,29(4):51-53,57.
    [16]徐造坤,邓中民,赵燕,陈立亭.织物经纬密度自动测量的研究现状及其展望[J].纺织科技进展,2005年06期.
    [17]孙亚峰,陈霞,王新厚.机织物密度的计算机自动识别[J].东华大学学报(自然科学版),2006,32(2):83~88.
    [18]陈莉,宋广礼.二维傅里叶变换在针织物的密度测量中的应用[J].东华大学学报(自然科学版),2009,12(5):63~68.
    [19]周利兵,刘莉.织物经纬纱线密度的自动测量[J].科技信息报,2010.
    [20]辛斌杰,余序芬,吴兆平.机织物经纬密测量的图像处理技术[J].中国纺织大学学报,vol.25,no.3,pp.34-37,1999.
    [21]陈莉.数字图像在针织行业的应用[J].针织工业学报,vol.23,no.7,PP.59-61,2005.
    [22] ?. Candan, M.A. Kutay, and H.M. Ozaktas. The discrete Fractional Fourier Transform. IEEE Trans. Sig. Proc., 48:1329-1337, 2000.
    [23]陈雨红,杨长春,曹齐放.几种时频分析方法比较[J].地球物理学进展,vol.21,no.4,PP.1180-1185,2006.
    [24]马艳,张治辉.几种边缘检测算子的比较[J].工矿自动化. no.1,PP.54-57,2004
    [25] Norden E. Huang, Zheng Shen, Steven R Long. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. The royal society.
    [26] Gabriel Rilling, Patrick Flandrin and Paulo Goncalves. On Empirical Mode Decomposition and Algorithms and its Algorithms. IEEE Sig. Proc. Lett, 2003.
    [27]瞿洋,杨利平.Hough变换OCR图像倾斜矫正方法.中国图像图形学报,vol.6,no.2,pp.178一181,2001.
    [28] Yuan Ye, Mei Wen-bo, Wu Si-liang. Performance assessment of HHT marginal spectrum based on resolution measure.1st International Congress on Image and Signal Processing, CISP 2008, 5:291-294.
    [29]袁晔,梅文博,吴嗣亮等.基于Hilbert Huang-Hough变换的线性调频信号检测与参数估计[J].北京理工大学学报(自然科学版),2007,27(SUPPL.1):10-13.
    [30] Computer Vision Group, Uni-Freiburg. C3R1E0N7, Textile Texture Database TILDA Version 1.0[DB/OL],?http://lmb.informatik.uni-freiburg.de/resources/datasets/tilda.en.html, 1996.
    [31] T.J. Kang and C.H. Kim. Automatic recognition of fabric weave pattern by digital image analysis. Textile Research journal, vol.69, no.2, pp.77-83, 1999.
    [32]高卫东,刘基宏,徐伯俊,等.织物组织结构的自动识别[J].棉纺织技术,2002(4):26-29.
    [33] XU Bu gao. Identifying fabric structures with fast Fourier transform techniques [J].Textile Research Journal,1996(66):96-506.
    [34]李鹏,杨康.Gabor滤波算法在指纹识别中的应用[J].沈阳理工大学学报,vol.20,no.1,pp.26-30,2004.
    [35]马云芳,王小华.基于小波理论的织物纹理特征提取[J].vol.34,no.3,pp.51-56,2002.
    [36] UNSER M, ALDROUBI A, EDEN M. B-spline signal processing part II - efficient design and application [J]. IEEE Trans. on SP, 1993, 41 (2): 834- 848.
    [37] JASPER WJ , GARNIER S J , POTLAPALL I H. Texture characterization and defect detection using adaptive wavelets[J] .Optical Engineering ,1996 ,35 (11) :3140 -3149.
    [38]崔月平,韩润萍.基于Log-Gabor滤波器组的织物疵点检测算法[J].北京服装学院学报(自然科学版),vol.31,no.3,pp.47-52,2011.
    [39] Jun Li. A Wavelet Approach to Edge Detection.Masters thesis [M]. Texas: Mathematics of Sam Houston State University, Huntsville, 2003.
    [40] GANG F. Data smoothing by cubic spline filters [J].IEEE Trans. on SP, 1998, 46(10): 2 790- 2 796.
    [41]顾平.织物组织与结构学[M/CD].东华大学出版社, 2010-01-01
    [42]吴海虹,张明敏,潘志庚,等.彩色图像的织物组织自动识别[J].计算机辅助设计与图形学学报,2005,l7(8):1710-1716.
    [43] Zhu S.C and A. Yuille.Region Competition:Unifying Snakes,Region Growing,and Bayesian/MDL for Multiband Image Segmentation:IEEE Transaction on Pattern Analysis and Machine Intelligence, 1996, 18 (9):884-900.
    [44] Weeks A R, Hague G E.Color segmentation in the HIS color space using the K- means algorithm[A].In:Proceedings of SPIE Conference on Nonlinear Image Processing VIII. San Jose. 1997. 143-154.
    [45]王婷婷.彩色图像分割方法的研究与实现[D].山东:山东科技大学,2005.
    [46] Plataniotis K N, Venetsanopoulos A N. Color Image Processing and Applications. Berlin: Springer, 2000.
    [47]金良海.彩色图像滤波与基于四元数的彩色图像处理方法[D].武汉:华中科技大学,2008.
    [48] Hamilton W R. Elements of Quaternion. BOSTON: GINN & COMPANY, 1887.
    [49] Le Bihan N, Sang wine S J. Color image decomposition using quaternion singular value decomposition. In: Proceedings of the International Conference on Visual Information Engineering, 2003, Guildford, UK, pp. 113-116.
    [50] Farebrother R W, Gross J, Troschke S-O. Matrix representation of quaternion. LinearAlgebra and Its Applications, 2003, 362(15): 251-255.
    [51] Foucherot I, Gouton P, Devaux J C, Truchetet F. New methods for analyzing color texture based on the Karhunen-Loeve transform and quantification. Pattern Recognition, 2004, 37(8): 1661– 1674.
    [52] Chang Fu, Chen Chunjen, Lu Chijen. A linear time component labeling algorithm using contour tracing technique [J]. Computer Vision and Image Understanding, 2004, 93 (2):206 -220.
    [53]吴海虹.织物组织识别系统中关键技术的研究[D].浙江:浙江大学,2009.
    [54]北京服装学院.复合斜纹面料,北京服装学院服装材料加工特色资源库[DB/OL],http://211.71.99.36/drms/portal/ beifu/index109.115.jsp,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700