足颈与袜口间接触压的有限元研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着生活水平的不断提高和健康着装观念的深入人心,人们对服装舒适性的要求也日益趋高。近年来,压力舒适性已逐渐成为除热湿舒适性和触觉舒适性外,衡量服装穿着舒适性的重要指标之一。从目前的研究情况来看,在人体的各穿着部位中,鲜见有关男短袜袜口压力的报道,对于袜口压力的相关文献,也大多是从医学角度入手,探讨静脉曲张袜对人体的压力作用,但并未从服装人体工学角度进行合理的解释,更未对压力进行量化分析。本课题以男短袜袜口为研究对象,深入探讨了袜口对人体足颈的压力作用,并提出了一种利用压力与受压后人体体表位移之间的关系进行压力研究的新方法,为袜口优化设计提供了理论基础,填补了该领域的空白。
     本研究通过对年龄在20-25岁之间标准体型的健康男性大学生50人进行三维人体扫描,首次确定了袜口处人体足颈的截面形态、截面曲线方程及曲线周长,为袜口处压力数学模型的建立提供了数据基础。在研究过程中,将人体视为弹性体,足颈与袜口之间的接触视为弹性接触,结合袜口处人体足颈的构造、骨骼的位置、形状以及皮肤、软组织的厚度、弹性模量和泊松比,首次建立了袜口处足颈部位的有限元仿真模型,该模型假设腿部皮肤、软组织、骨骼均为各向同性均匀的线弹性材料,并通过ANSYS有限元软件对袜口处压力及位移的分布情况进行了模拟分析,得到的腿截面上任意角度点压力与体表位移之间的函数关系为压力舒适性的量化研究提供了基础数据。研究表明,对于两款袜子来说,在腿截面上的同一角度点,不同短袜间压力和位移的倍数关系基本一致,即压力之间的倍数比近似等于位移之间的倍数比。本研究还将袜口处人体足颈的截面按照角度等分为四个区域,分别为[0o, 90o](区域Ι)、[90o, 180o](区域ΙΙ)、[180o, 270o](区域ΙΙΙ)和[270o, 360o](区域ΙV)。根据有限元的模拟结果,当受试者着装后处于静态时,区域ΙΙΙ为腿截面面积缩量最大的部位,区域ΙΙ为面积缩量最小的部位,区域Ι和区域ΙV面积缩量基本相等,区域ΙΙΙ面积缩量约为区域ΙΙ的3倍,约为区域Ι和区域ΙV的2倍,该结论为袜口的优化设计提供了理论依据。
     本研究还探讨了人体穿着短袜时的动态压力,并将动态压力分为随时间变化的压力以及人体在行走过程中的压力两个部分。其中,随时间变化的压力分为六个时段,分别为瞬时压力,1h,2h,4h,8h,最长时长定义为12h。行走过程分为直立状态、腿部上抬10°、腿部上抬30°以及腿部后踢四个阶段。研究表明,袜口处足颈部位的压力随短袜穿着时间的延长而逐渐减小。在着装后的1h内,压力下降幅度最大,约为总体下降幅度的三分之一,2h后,压力下降幅度基本达到整体下降幅度的二分之一,而后,压力减小的速度随时间的延长逐渐趋于缓慢,约8h后,袜口处压力趋于平衡,且压力最大值与最小值之间的差距随着时间的延长不断缩小,到最后逐渐趋于腿截面上各点压力值均处于基本近似的状态。对于袜口处面料相同的短袜,初始压力越大的短袜以及袜口处原始压力越大的点,随时间延长的压力下降幅度越大。对于本实验所用到的棉和锦纶两种面料,随着着装时间的延长,棉袜口压力下降幅度大于锦纶袜口。腿截面的面积缩量也随着时间的延长而呈现递增趋势,在这个过程中,区域ΙΙΙ面积缩量的变化最为明显,区域ΙΙ面积缩量的变化最小。着装12h以后,区域ΙΙΙ的面积缩量约增长为区域ΙΙ的5倍。人在行走过程中,腿截面上压力较小的点其压力数值变化不大。在压力值较大的位置,当袜口面料相同时,压力越大的短袜在行走过程中的压力变化幅度越大。对于棉和锦纶两种面料,棉袜口压力变化幅度要大于锦纶袜口。在行走过程中,对于腿截面的大部分区域,直立状态所受到的袜口压力最大,腿部后踢阶段所受压力最小。腿截面各区域的面积缩量在行走过程中变化不大,而直立状态的面积缩量略大于其它三个阶段。本研究还分析了影响压力水平的各因素之间的关系,并最终确定了与压力水平密切相关的四项指标,分别为袜口材料劲度系数、泊松比、袜口弹性伸长率、原始袜口宽度。通过主成分分析建立了压力与四项指标之间的函数关系,并以此为基础建立了袜口处压力预测的数学模型,经过图形检验和卡方检验,此模型与实际测量结果吻合度良好,可以对服装压力的预测提供理论依据。
With the rapidly increasing of living standards and the concept of healthy dressing deeply rooted in the hearts of the people, the requirement of clothing comfort is becoming higher and higher. In addition to heat and moisture comfort and feeling comfort, pressure comfort has gradually become one of the key indicators in measuring clothing comfort in recent years. From the present study, in various wearing parts of human body, the studying of clothing pressure on the top part of men’s socks is rare. The existing literatures about pressure on the top part of socks are mostly investigated the pressure effects of stockings for varicose vein on the human body from the angle of medicine, nevertheless, there has no reasonable interpretation and quantitative analysis of the pressure from ergonomic viewpoint. This paper regarding the top part of men’s socks as the research subject, deeply discussed the pressure effects of top part of socks on the lower leg, and then put forward a new method in studying pressure with the relationship between pressure and displacement arising therefrom. All these conclusions supply a theoretical reference for optimal design of the top part of a man’s sock, and the work fill a gap in this field.
     In this study, we selected 50 Chinese college students with a standard shape and between 20 and 25 as subjects. Through three-dimensional body scanning, we present a model of the cross-section of the lower leg where the top part of a man’s sock is located for the first time, and then solve the equation and girth of the cross section curve, these provide a data support for the building of mathematical model for forecasting pressure. In this study, the human body is regarded as an elastomer and the contact between the lower leg and the top part of the sock is considered to be an elastic contact, combined with the structure of human leg at the top part of socks, the position and shape of the bone, the thickness, modulus of elasticity and poisson's ratio of skin and soft tissue, the finite element simulation model of the lower leg cross-section at the top part of socks is set up for the first time, the model assume that skin, soft tissue and bones are all liner elastic materials, and the finite element analysis software ANSYS is successfully applied to simulate the pressure and displacement distribution at the top part of socks, the pressure-displacement quadratic equation of any point on the lower leg cross-section estimated by simulated provide basic data for quantification research of the pressure comfort. Research indicates that the multiple relations of the pressure and displacement are basically the same for two socks, that is to say, the multiple of pressure values approximately equal to the displacement ones. Meanwhile, we divide the lower leg cross section into four equal regions according to angle, which are [0o, 90o] (region I)、[90o, 180o] (region II)、[180o, 270o] (region III) and [270o, 360o] (region IV), according to the simulation and analysis results of the finite element, [180o, 270o] (region III) had the largest area shrinkage mass on the cross-section of the leg, [90o, 180o] (region II) had the smallest, and [0o, 90o] (region I) and [270o, 360o] (region IV) had roughly the same. Region III has approximately treble the area shrinkage mass of region II, and double that of region I and IV. These conclusions supply a theoretical reference for optimal design of the top part of a man’s sock.
     This paper demonstrates an analytical method for simulating dynamic pressure and displacement at the top part of men’s socks. The dynamic pressure is divided into two parts, the first is pressure with time, and the second is pressure while walking. The pressure with time is set in six periods, these are 1h , 2h , 4h , 8h , maximum 12h , respectively, and the walking process is divided into four phases, these are described as upright position, foot backward off the ground, leg lift 10°and leg lift 30°, respectively. Research indicates that the pressure values of the top part of socks gradually decreased over the course of time. The pressure values significantly decreased within the first 1h , the rate of descender is about one third of the total, and the decreasing rates arrive at one half after 2h , and then the descent rate of pressure decreased less and less as time prolonged. The pressure values were almost stable 8 hours after putting on the socks. The gap between maximum value of pressure and the minimum became smaller gradually, and the pressure values at 72 points trended to basically the same in the end. Moreover, the larger the initial pressure arising from the socks or the more a point on the lower leg cross section is subjected to pressure, the more significant the pressure descended with time for the top part of men’s socks of the same fabric. As for the two different fabrics of the socks in this study, the descender of the the cotton top part of socks is larger than those of nylon as time prolonging. The area shrinkage mass of lower leg cross section also increase as time goes by, and region III has the most evidently change, region II is least. Region III has approximately 5 times the area shrinkage mass of region II after 12h . There has little change of the pressure values at the point of lower pressure in walking. For the same fabric, the higher pressure of the socks, the larger amplitude of variation of the pressure values, and then the pressure variation of the the cotton top part of socks is larger than those of nylon. For most regions of the lower leg cross section, the pressure was highest when the subjects were in an upright position stage during the course of walking, and the minimum occurred at the foot backward off the ground stage. The total area shrinkage mass of the four regions in different phases changed little during the course of walking. Nevertheless, the total area shrinkage mass is slightly higher in the upright position than that in the other three phases.
     At last, we discuss in details with the relationship among each factor which affect the pressure values, and finally established four indices which closely related to pressure level, these are elastic coefficient of top part of socks, Poisson's ratio, elastic elongation and width of top part of socks. We obtained the regression equation among pressure and physical properties of the top part of socks though principal component regression. Chi-square and figure test indicated that the predictive values of pressure showed good agreement with the measured ones. The conclusions can provide the theory basis for the forecast of clothing pressure.
引文
1.马素琴,涂红燕.影响冬装舒适因素探讨[J].郑州纺织工学院学报, 1995, 10(增刊): 82-83.
    2. Li, Y. Clothing comfortable and its application. Textile Asia, 1998, 29(7): 29-33.
    3. Hollies, N. R. S., Goldman, R. F. Clothing comfort: interaction of thermal, ventilation, construction and assessment factors[M]. Michigan: Ann Arbor Science Publisher Inc, 1977, 1-10.
    4. Woodcock, A. H. Moisture transfer in textile systems: Part II. Textile Research Journal, 1962(32): 628-633.
    5.蒋培清,谌玉红,唐世君.服装热湿舒适性的研究方法综述[J].北京纺织, 1998, 5(10):24-26.
    6.张文斌,方方.服装人体工效学[M].上海:东华大学出版社, 2008, 9: 183-190.
    7.周彬.服装压力舒适性的测试与评价[D]: [硕士学位论文].青岛:青岛大学, 2007. 5: 51.
    8. Salim, M., Ibrahim. A psychological scale for fabric stiffness. Journal of Textile Institute, 1985, 76(6): 442-449.
    9.宋晓霞,冯勋伟.服装压力与人体舒适性之关系[J].纺织学报, 2006, 27(3): 103-105.
    10. Haruko Makabe, Hiroko Momota, Kazuo Ueda. A study of clothing pressure developed by the girdle. Journal of Japan Research Association for Textile End-Uses, 1991, 32(9): 424-438.
    11. Haruko Makabe, Hiroko Momota, Kazuo Ueda. A study of clothing pressure developed by the brassiere. Journal of Japan Research Association for Textile End-Uses, 1991, 32(9): 416-423.
    12. Sasaki, K., Miyashita, K., Edamura, M. et al. Evaluation of foundation comfort based on the sensory evaluation and dynamic clothing pressure measurement. Journal of the Japan Research Association for Textile End-Uses, 1997, 38(2): 109-114.
    13. Chan, A. P., Fan, J. T. Effect of clothing pressure on the tightness sensation of girdles. International Journal of Clothing Science and Technology, 2002, 14(2): 100-110.
    14. Yoshio Shimizu, Kazuya Sasaki, Keiichi Watanabe. Dynamic measurement of clothing pressure on the body in a brassiere. Sen-I Gakkaishi, 1993, 49(1): 57-62.
    15. Ashdown, S., Loker, S. Use of body scan data to design sizing systems based on target markets. National Textile Center Annual Report, 2001, 11(4): 1-5.
    16.李东平,夏涛,李俊.穿着压力舒适性的研究进展与探讨[J].纺织导报, 2007(11): 98-100.
    17. Denton, M. J. Fit, Stretch and comfort. Textiles, 1972(3): 12-17.
    18. Nakamura Noriko, Morooka Harumi, Morooka Hideo. Influence of pressure intensity and width of belt on compressive feeling and sensitivity of abdomen. Sen’i Gakkaishi, 2004, 60(12): 386-391.
    19. Okada, N. Clothing pressure and pressure sensation in waist line. Journal of the Japan Research Association for Textile End-Uses, 1995, 36(1): 146-153.
    20. Morooka, H., Nakahashi, M., Morooka, H. Compressive property of legs and clothing pressure of pantyhose from the view point of difference in age. Journal of the Japan Research Association for Textile End-Uses, 1997, 38(6): 324-332.
    21. Morooka Harumi, Fukuda Reiko, Nakahashi Miyuki, et al. Clothing pressure and wear feeling at under-bust part on a push-up type brassiere. Sen’i Gakkaishi, 2005, 61(2):55-60.
    22. Hirai, M. Changes in interface pressure under elastic and short-stretch bandages during posture changes and exercise. Phlebology. 1998, 13: 25-28.
    23. Wildin, C. J., Hui, W. A. C., Esler, C. A. N., et al. In vivo pressure profiles of thigh-length graduated compression stockings. British Journal of Surgery, 1998, 85(9): 1228-1231.
    24. Wertheim, D., Melhuish, J., Williams, R., et al. Movement-related variation in forces under compression stockings. European Journal of Vascular Endovadcular Surgery, 1999, 17(4): 334-337.
    25. Partsch, H. Compression therapy of the legs. Phlebology, 1991, 17(10): 799-805.
    26. Kirk, W., Ibrahim, S. M. Fundamental relationship of extensibility to anthropomortric requirements and garment performance. Textile Research Journal, 1996, 57: 37-47.
    27.尹玲,张文斌,夏蕾.服装压力舒适性的研究综述与剖析[J].纺织学报, 2008, 29(3): 137-142.
    28. Amano, T., Minakuchi, C., Takada, K. Spectrum analysis of clothing pressure fluctuation. Sen’I Gakkaishi, 1996, 52(1): 83-86.
    29. You, F., Wang, J. M., Luo, X. N. Garment’s pressure sensation (1): Subjective assessment and predictability for the sensation. The International Journal of Clothing Science and Technology, 2002, 14(5): 307-316.
    30. You, F., Wang, J. M., Luo, X. N. Garment’s pressure sensation (2): The psychophysical mechanism for the sensation. The International Journal of Clothing Science and Technology, 2002, 14(5): 317-327.
    31. Hafner, J., Botonakis, I., Burg, G. A comparison of multilayer bandage systems during rest, exercise, and over 2 days of wear time. Arch Dermatol, 2000, 136(7): 857-863.
    32. Ito, N., Inoue, M., Nakanishi M., et al. The relation among the biaxial extension properties of girdle cloths and wearing comfort and clothing pressure of girdles. Japan Research Association for Textile End-Uses, 1995, 36(1): 102-108.
    33. Inamura, A., Nakanishi, M., Niwa, M. Relationship between wearing comfort and physical properties of girdles. Japan Research Association for Textile End-Uses, 1995, 36(1): 109-118.
    34. Ghosh, S., Mukhopadhyay, A., Sikka, M., et al. Pressure mapping and performance of the compression bandage/garment for venous leg ulcer treatment. Journal of Tissue Viability, 2008, 17(3): 82-94.
    35. Makabe, H. A study of clothing pressure developed by the girdle. Japan Research Association Textile End-Uses, 1991, 32(9): 424-438.
    36. Makabe, H., Momota, H., Mitsuno, T., et al. A study of apparel pressure developed by thebrassiere. Japan Research Association Textile End-Uses, 1991, 32(9): 416-423.
    37. Makabe, H., Momota, H., Mitsuno, T., et al. Effect of covered area at the waist on clothing pressure. Seni Gakkaishi, 1993, 49(10): 513-521.
    38. Homata, H., Makabe, H., Mitsuno T., et al. A study of clothing pressure caused by Janpanese men's socks. Journal of the Japan Research Association for Textile End-Uses, 1993, 34(4): 175-186.
    39. Uchiyama, S., Tsuchida, K., Harada, T. The transfer properties of moisture and heat through clothing materials, Part 2: Wear sensation of socks and analysis of the microclimate within clothing on the simulator. Journal of the Textile Machinery Society of Japan. 1982, 35(5): 210-218.
    40. Sano, J. Hygienic studies on summer socks. Journal of Home Economics, 1959, 10: 240-245.
    41. Mizunoue, Y. Hygienic of socks. I-seikatsu Kenkyu. 1977, 4(3): 46-51.
    42. Emmanuel, A. A device for objectively measuring the force to stretch socks. Textile Institute and Industry, 1979, 11: 175.
    43. Merrit E. Measuring fabric tension in socks while testing for size. Knitting Technique. 1989, 11(4): 284-286.
    44. Momota, H, Makabe, H., Mitsuno, T. et al. A study of clothing pressure caused by Japanese men's socks. Journal of the Japan Research Association for Textile End-Uses, 1993a, 34(4): 175-186.
    45. Momota, H., Makabe, H., Mitsuno, T. A study of clothing pressure caused by Japanese women's high socks. Journal of the Japanese Research Association for Textile End-Uses, 1993b, 34(11): 603-614.
    46. Inoue, M., Sukigara S., Niwa, M. Prediction of wearing pressure by linearizing method. Journal of the Japan Research Association for Textile End-Uses, 1992, 33(5): 254-260.
    47. Tsujisaka, Toshiyuki, Azuma, et al. Comfort Pressure of the Top Part of Men's Socks. Textile Research Journal, 2004, 74(7): 598-602.
    48. Maccracken, R., Joy, K. I. Free-form Deformation with Lattice of Arbitrary Topology, ACM Cmoputer Graphics, 1996, 30(3): 181-188.
    49. Nakahashi, M., Morooka, H., Morooka H., et al. Sen'i Seihin Shohi Kagaku, Effect of Clothing Pressure on Front and Back of Lower Leg on Compressive Feeling. Journal of the Japan Research Association for Textile End-Uses, 1999, 40(10): 661-668.
    50. Kawabata, H., Tanaka, Y., Sakai, T., et al. Sen'i Gakkaishi, Measurement of Garment Pressure:1, Pressure Estimation From Local Strain of Fabric. Journal of the Society of Fiber Science and Technology, Japan, 1988, 44(3): 142-148.
    51. Makabe, H., Momota, H., Mitsuno, T., Ueta, K. Effect of Covered Area at the Waist on Clothing Pressure, Seni-Gakkaishi, 1993, 49(10): 513-521.
    52.徐军,周晴.运动内衣压力分布的主观评定[J].纺织学报, 2005, 26(2): 77-81.
    53. Tae Jin Kang, Chung Hee Park, Youngmin Jun, et al. Development of a Tool to Evaluate the Comfort of a Baseball Cap from Objective Pressure Measurement: (1) Holding Power and Pressure Distribution. Textile Research Journal, 2007, 77(9): 653-660.
    54. Verillo, R. T. Cutaneous sensations. Experimental Sensory Psychology. Glenview: Scott Foresman. 1975: 1-10.
    55.程选生,张少波.弹性力学与有限元法教程[M].北京:中国计量出版社, 2008, 3.
    56.钟安华,张强.弹力女内衣压力舒适性研究[J].针织工业, 2006, 4: 27-28.
    57.庄燕子.人体压力分布测量及其传感技术[J].传感技术学报, 2005, 18(2): 313-317.
    58.占辉,徐军.测量服装压力Flexiforce传感器的评价[J].陕西纺织, 2004, 62(2): 41-43.
    59.钱振明,段文江,张希谊.用影像云纹法测量人足底的压力分布[J].重庆大学学报, 1992, 15(1): 121-124.
    60.陈红娟,李炜.服装压力测试研究[J].纺织科技进展, 2005(6): 75-77.
    61.成秀光.服装环境学[M].北京:中国纺织出版社, 1999, 10: 112-118.
    62.李显波,王希.氨纶弹性针织服装压力的测试[J].针织工业, 2003(6): 90-91.
    63.崔立明,陈东生.服装压力测试技术的现状[J].国际纺织导报, 2007(4): 75-77.
    64.段杏元.服装压力测定方法的研究[J].针织工业, 2006(11): 53-55.
    65.陈东生,崔立明.服装压测试系统的开发[J].纺织学报, 2008, 29(3): 72-75.
    66.徐杰,钱晓明,徐先林,李利娜.服装压力测试方法的探讨[J].针织工业, 2008(9): 35-39.
    67. Toyonori Nishimatsu, Akaenichi Ohmura, Sadmu Sekiguchi, et al. Comfort pressure evaluation of man′s socks using elastic optical fiber. Textile Research Journal, 1998, 68(6): 435-440.
    68.邓众,王磊. LabVIEW7.1测试技术与仪器应用[M].北京:机械出版社, 2004.
    69. Ju, J. I., Ko, J. M., Kim, S. H., et al. Soft materia-based microculture system having air permeable cover sheet for the protoplast culture of nicotiana tabacum. Bioprocess and Biosystems Engineering, 2006, 29(3): 163-168.
    70. Ren, X. J., Smith, C. W., Evans, K. E., et al. Experimental and numerical investigations of the deformation of soft materials under tangential loading. International Journal of Solids and Structures, 2006, 43(7): 2364-2377.
    71.杨凯,焦明立,陈益松,李俊,张渭源.暖体假人软质模拟皮肤的研究及其应用[J].纺织学报, 2008, 29(12): 74-82.
    72. Barbara, J. B., Barry V. H., Mariette P. A. A human perception Analysis approach to Clothing comfort, Textile Research Journal, 1979, 47(10): 557-564.
    73. Ramkumar S. S., Wood D. J., Fox K., et al. Developing a polymeric human finger sensor to study the frictional properties of textiles, part I: artificial finger development. Textile Research Journal, 2003, 73(7): 469-473.
    74. Ramkumar S. S., Wood D. J., Fox K., et al. Developing a polymeric human finger sensor to study the frictional properties of textiles, part II: experimental results. Textile Research Journal, 2003, 73(7): 606-610.
    75. Setyabudhy, R. H., Ali, A., Hubbard, R.P., et al. Measuring and modeling of human soft tissue and seat interaction, SAE Conference 1997, SAE no 970593.
    76. Bosboom, E. M. H., Hesselink, M. K. C., Oomens, C. W. J., et al. Passive transverse mechanical properties of skeletal muscle under in vivo compression. Journal of Biomechanics, 2001, 34(10): 1365-1368.
    77. Oomens, C. W. J., Bosboom, E. M. H., Bressers, O. F. J. T., et al. Can loaded interface characteristics influence strain distribution in muscle adjacent to body prominences? Computer Methods in Biomechanics and Biomedical Engineering, 2003, 6(3): 171-180.
    78. Verver, M. M., Van H. J., Oomens, C. W. J., et al. A finite element model of the human buttocks for prediction of seat pressure distributions. Computer Methods in Biomechanics and Biomedical Engineering, 2004, 7(4): 193-203.
    79. Serup, J., Jemec, B. E., Grove G. L. Handbook of Non-invasive Methods and the Skin. Boca Raton: CRC Talor and Franics, 2006: 233-236.
    80. Derler, S., Schrade, U., Gerhardt, L. C. Tribology of human skin and mechanical skin equivalents in contact with textiles. Wear, 2007, 263: 1112-1116.
    81. Lagarde, J. M., Rouvrais, C., Black, D. Topography and anisotropy of the skin surface with ageing, Skin Research and Technology, 2005, 11(2): 110-119.
    82. Saur, R., Schramm, U., Steinhoff, R., et al. Struktur analyse der hautoberflache durch computer gestutzte laser-profilometrie. Neues Verfahren zur Quantitativen Bestimmung der Rauheitsstruktur der Haut Hautarzt, 1991, 42: 499-506.
    83. Chen D. S., Zhao Q. A study on clothing pressure for men′s suit comfort evaluation. International Journal of Clothing Science and Technology, 2003, 15(5): 320-334.
    84. Fan, J. T., Chan, A. P. Prediction of girdle′s pressure on human body from the pressure measurement on a dummy. International Journal of Clothing Science and Technology, 2005, 17(1): 6-12.
    85. Kathlyn Swantko. High Tech Performer In Sport Specific Apparel. American Sportswearand Knitting Time. 1998, 67(1): 9-12.
    86. Kirk, W. J., Ibrahim, S. M., Fundamental relationship of fabric extensibility of anthropometric requirements and garment performance. Textile Research Journal, 1966, 36: 37-47.
    87. Buffer, H., Stuttgart. The biot stresses in nonlinear elasticity and the associated generalized variational principles. Ingenieur Archiv, 1985, 55(6): 450-462.
    88. Reissner, E. Some aspects of the variational principles problem in elasticity. Computational Mechanics, 1986(1): 3-9.
    89.陈东生.服装卫生学[M].北京:中国纺织出版社. 2000, 9: 9-18.
    90. Zhang, X., Li, Y., Yeung, K. W., et al. Subjective evaluation of wool fabric bagging[C]. The 2nd China International Wool Textile Conference. [s. l.]: 1998.
    91.沈大齐,竺素丹.医用弹力袜的压力设计[J].西北纺织工学报, 1996, 10(2): 161-164.
    92.由芳,张欣.紧身服的宽裕量与弹性模量与服装压感的关系[J].西北纺织工学院报,2000, 14(2): 133-136.
    93. Li, Y. Clothing comfort and its application. Textile Asia, 1998, 29(7): 29-33.
    94. Li, Y. Wool′s sensory properties and products development[C]. The 2nd China International Wool Textile Conference. [s. l.]: 1998.
    95. Li, Y., Holcombe, B. V. Mathematical simulation of heat and moisture transfer in a human-clothing environment system. Textile Research Journal, 1995, 68(6): 389-397.
    96. Li, Y., Keighley, J. H., Meintyre, J. E., et al. Predictability between objective physical factors of fabrics and subjective preference votes for derived garments. The Journal of Textile Institute, 1991, 82(3): 277-284.
    97. Wong, A. S. W., Li Y., Zhang, X. Influence of Fabric Mechanical Property on Clothing Dynamic Pressure Distribution and Pressure Comfort. 2004, 60(10): 293-299.
    98.罗笑南,曾龙,聂卉.三维紧身内衣的压力分布计算模型[J].中山大学学报:自然科学版, 2001, 40(6): 99-101.
    99. Zhang, X., Yeung, K. W., Li, Y. Numerical simulation of 3D dynamic garment pressure. Textile Research Journal, 2002, 72(3): 245-252.
    100. Wang, J. M,, Luo, X. N., Li, Y., et al. The application of the volumetric subdivision scheme in the simulation of elastic human body deformation and garment pressure. Journal of the Society of Fiber Science and Technology, 2005, 61(11): 313-314.
    101. Bigaud, D., Szostkiewicz, C., Hamelin, P. Tearing analysis for textile reinforced soft composites under mono-axial and bi-axial tensile stresses. Composite Structure, 2003, 62(2): 129-137.
    102. Li, Y., Zhang, X., Yeung, K. W. A 3D biomechanical model for numerical simulation of dynamic mechanical interactions of bra and breast during wear. Sen′I Gakkaishi, 2003, 59(1): 46-55.
    103. Zhang, X., Li, Y., Yeung, K. W. et al. Fabric bagging: distribution of stresses in isotropic and anisotropic fabric. Journal of the Textile Institute, 2000, 91(4): 563-576.
    104. Zhang, X., Li, Y., Yeung, K. W. et al. A finite element study of stress distribution in textiles with bagging[M]. Computational Mechanics: Techniques and Development. Edinburgh. Civil-Comp Press, 2000: 235-242.
    105. Mirjalili, Seyed Abbas, Rafeeyan, et al. The analytical study of garment pressure on the human body using finite elements. Fibres and Textiles in Eastern Europe, 2008, 16(3): 69-73.
    106. Ebe, K. Griffin, M. J. Factors effecting static and seat cushion comfort. Ergonomics, 2001, 41(10): 901-992.
    107. Inagaki, H., Taguchi, T., Yasuda. E. et al. Evaluation foriding comfort from the viewpoint of interaction of human body and seat for static, dynamic and long time driving. SAE Conference, SAE no 2000-01-0643.
    108. Milvojevich, A., Stanciu, R., Russ, A., et al. Investigating psychometric and body pressure distribution responses to automotive seating comfort. SAE Conference 2000, SAE no 2000-01-0626.
    109. Thakurta, K., Koester, D., Bush, N., et al. Evaluating short and long term seating comfort. Conferrence 1995, SAE no 950144.
    110. Tewari, V. K., Prasad, N., Optimum seat pan and backrest parameters for a comfortable tractor seat. Ergonomics, 2000, 43(2):167-186.
    111. Uenishi, K., Fujihashi, K., Imai, H. A seat ride evaluation method for transient vibrations. SAE Conferrence 2000, SAE no 2000-01-0641.
    112. Yun, M. H., Donges, L., Freivalds, A. Using force sensitive resistors to evaluate the driver seating comfort, Advances in Industrial Ergonomics and Safety IV. 1992. 403-410.
    113. Hatakeyyama, A study on a measuring system for human body by image pressing. Graphics Study, 1963, 45(7): 41-43.
    114.胡建鹏.基于服装款式平面图的三维款式效果显示研究[J].微计算机信息, 2001, 22(1-3): 95-97.
    1. Ng S. F., Hui C. L., Pressure model of elastic fabric for producing pressure garments. Textile Research Journal, 2001, 71(3): 275-279.
    2. Gerhardt, L. C., Mattle, N., Schrade, G. U., et al. Study of skin–fabric interactions of relevance to decubitus: friction and contact-pressure measurements, Skin Research and Technology, 2008, 14(1): 77-88.
    3. Gustafsson, S. L. Finite element modelling versus reality for birch chairs. Holz als Roh-und Workstoff. 1996, 54(5): 355-359.
    4. Jaroslav Maekerle. Finite element analyses in wood research: a bibliography. Wood Science and Technology, 2005, 39(7): 579-600.
    5. Svetlana Vasic, Ian Smith, Eric Landis. Finite element techniques and models for wood fracture mechanies. Wood Science and Technology, 2005, 39(1): 3-17.
    6.邢福生.结构有限元技术及其发展[J].水科学与工程技术, 2005(增刊): 46-47.
    7.董梅.有限元法在结构件强度分析中的应用[J].指挥控制与仿真, 2007, 29(4): 49-51.
    8.谭建国.使用ANSYS 6.0进行有限元分析[M].北京大学出版社, 2002, 5.
    9.赵经文,王宏钰.结构有限元分析[M].第二版.北京:科学出版社, 2001, 5.
    10.商跃进.有限元原理与Ansys应用指南[M].北京:清华大学出版社, 2005, 6: 28.
    11.薛守义.有限单元法[M].北京:中国建材工业出版社, 2005, 2: 1.
    12. Christensen, G. E., Rabbitt, R. D., Miller, M. I. Deformable templates using large deformation kinematics. IEEE Transaction on Image Processing. 1996, 5(10): 1435-1447.
    13. Etzmuss, O., Gross, J., Strasser, W. Deriving a particle system from continuum mechanics for the animation of deformable objects. IEEE Transaction on Visualization and Computer Graphics 2003, 9(4): 538-550.
    14. Miehe, C. Numerical computation of algorithmic (consistent) tangent moduli in large-strain computational inelasticity. Computer Methods in Applied Mechanics and Engineering, 1996, 134(3/4): 223-240.
    15. Provot, X. Deformation constraints in a mass-spring model to describe rigid cloth behavior, Proceedings of Graphics Interface Conference’95, Vancouver, Canadian Human-Computer Communication Society, 1995, 147-154.
    16.程选生,张少波.弹性力学与有限元法教程[M].北京:中国计量出版社, 2008, 3.
    1. Veraart, J. C., Pronk, G., Neumann, H. A. Pressure differences of elastic compression stockings at the ankle region. Dermatologic Surgery, 1997, 23(10): 935-939.
    2. Stolk, R. A quick pressure determination of the counterpressure of air filled leg segments. Swiss Medical, 1988, 10: 91-96.
    3. Finnie, A. Interface pressure measurements in leg ulcer management. British Journal of Nursing, 2000, 9(6): 8-18.
    4. Hatakeyyama. A study on a measuring system for human body by image pressing. Graphics Study, 1963, 45(7): 41-43.
    5.李静.短袜袜口压力舒适性研究[D].上海:东华大学. 2007, 1.
    6. Nanthawichit C., Natatsuj I. T., Suzuki H. Application of Probe-vehicle data for real-time traffic state estimation and short-term travel-time prediction on a freeway[C]. Transportation Research Record, Transportation Research Board of the National Academics, Washington, D. C.: [ s. n.], 2003: 49-59.
    7. Rueyl C., Chi X., Derohorngl. Probe vehicle population and sample size for arterial speed estimation[J]. Computer-Aided Civil and Infrastructure Engineering, 2002, 14(5): 53-60.
    8. Chris D., Jeanoluc Y. Cellular telecommunication and transportation convergence: A case study of a research conducted in California and in France on cellular positioning techniques and transportation issues[C]. Proceedings of IEEE Intelligent Transportation Systems Conference1Oakland, USA: [ s. n.], 2001.
    9.王作成,高玉兰.满意度调查中样本数量的确定[J].市场研究, 2005, 4: 31-33.
    10.郑艳,张欣. Techmath三维人体扫描系统应用评价[J].现代服装纺织高科技发展研讨会, 2005: 63-73.
    11.王玉秀.非接触式人体测量系统的研究[D].天津:天津工业大学, 2003, 2.
    12.丁丽娟,程杞元.数值计算方法[M].北京:北京理工大学出版社, 2005, 8: 143-300.
    13.吴家麒,杨东英,沈林勇,陈建军.基于曲率数据的曲线拟合方法研究[J].应用科学学报, 2003, 21(3): 259-262.
    1.谭磊,潘伯荣,汤振民.橡筋袜口服装压的探讨[J].纺织学报, 1992,13(6): 30-32.
    2.中国纺织工业协会, FZ/T70006-2004.针织物拉伸弹性回复试验方法.
    3.陈红娟.针织物服装压力测试系统研究与开发[D]: [硕士学位论文].上海:东华大学, 2005, 12.
    4.李汝勤,宋钧才.纤维和纺织品的测试与仪器[M],上海:中国纺织大学出版社, 1995.
    5.姚穆.纺织材料学(第二版)[M].北京:中国纺织出版社, 1990, 6: 518-532.
    6.王戎戎.针织物的变形与服用性能的研究[D]: [博士学位论文].上海:东华大学, 2001, 12.
    7.于伟东,储才元.纺织物理[M].上海:中国纺织大学出版社, 2001, 12: 346-366.
    8.王吉会,郑俊萍,刘家臣.材料力学性能[M].天津:天津大学出版社, 2006, 9.
    9.单桂芳,杨伟,冯建民.材料泊松比测试方法的研究进展[J].材料导报, 2006, 20(3): 15-20.
    10. ASTM E 132-04, Standard test method for poisson ratio at room temperature[S].
    11. GB 2105-1980,金属材料切变模量及泊松比测量方法[S]. 1981, 10, 01.
    12. GB/T 3820-1997,中华人民共和国国家标准,纺织品和纺织制品厚度的测定.
    13.朱进忠,纺织材料学实验(第二版) [M].北京:中国纺织出版社, 2008, 7.
    14. Makhsous, M., Rowles, D. W., Rymer, W. Z., et al. Periodically relieving ischial sitting load to decrease the risk of pressure ulcers. Archives of Physical Medicine and Rehabilitation, 2007, 88(7): 862-870.
    15. Palevski, A., Glaich, I., Portnoy, S., et al. Stress relaxation of porcine gluteus muscle subjected to sudden transverse deformation as related to pressure sore modeling. Journal of Biomechanical Engineering, 2006, 128(5): 782-787.
    16. Todd, B. A., Thacker, J. G. Three-dimensional computer momdel of the human buttocks, in vivo. Journal of Rehabilitation Research and Development, 1994, 31(2): 111-119.
    17. Ito, N., Measurements of clothing pressure on the human body, Sen’i Gakkaishi, 1998, 54: 209-213.
    18. Ito, N., Method of measuring clothing pressure and contact pressure. Japan Research Association Textile End-Uses, 1999, 40: 781-786.
    19. Komimami, Y. Air-pack type contact pressure measuring method. Patent References, 1999.
    20. Komimami, Y. Contact pressure measurement and a method of calibration. Japan Research Association Textile End-Uses, 2002, 43: 348-355.
    1.任学平,高耀东.弹性力学基础及有限单元法[M].华中科技大学出版社, 2007, 10.
    2.易日.使用ANSY6.1进行结构力学分析[M].北京:北京大学出版, 2002, 11.
    3.陈精一,蔡国忠. Ansys工程分析使用指南[M].中国铁道出版社, 2001, 3.
    4.博弈创作室. ANSYS7.0基础教程与实例详解[M].北京:中国水利水电出版社, 2004, 8.
    5. Korioth, T. W., Versluis, A. Modeling of the mechanical behavior of the jaws and their related structures by finite element (FE) analysis. Critical Reviews in Oral Biology and Medicine, 1997, 8(1): 90-104.
    6.张万仁,孙亚臣.皮肤厚度调查[J].解刻学杂志, 1992, 15(4): 294-297.
    7.高学书,何清廉,章惠兰.我国成年男性30个不同部位的皮肤厚度[J].第二军医大学学报, 1980(3): 96-98.
    8. Hendriks, F. M., Brokken, D. A numerical experimental method to characterize the non-linear mechanical behavior of human skin. Skin Research and Technology, 2003, 9(3): 274-283.
    9. Lizee, E., Robin, S., Song, E. Development of a 3D finite element (FE) model of the human body. Proceedings of the 42nd Stapp Car Crash Conference. 1998, SAE no 983152.
    10. Nakamura, S., Crowninshield, R. D., Cooper, R. R. An analysis of soft tissue loading in the foot preliminary report. Bulletin of Prosthetics Research. 1981, 10(35): 27-34.
    11.刘展,樊瑜波,张明.一体化小腿假肢的三维有限元应力分析[J].生物医学工程学杂志, 2003, 20(4): 622-625.
    12. Dai X. Q., Li Y., Zhang M., et al. Effect of sock on biomechanical responses of foot during walking. Clinical Biomechanics, 2006, 21(3): 314-321.
    13.周昌玉,贺小华.有限元分析的基本方法及工程应用[M].北京:化学工业出版社, 2006, 8: 2-31.
    14.尚晓江,邱峰,赵海峰. ANSYS结构有限元高级分析方法与范例应用[M].北京:中国水利水电出版社, 2006.
    15. Denton, M. J. Fit, Stretch and Comfort. Textiles, 1972 (3): 12-17.
    16.同济大学计算数学教研室.现代数值计算[M].北京:人民邮电出版社, 2009.
    1. Zhang, M., Mak, A. F. T., Roberts, V. C. Finite element modeling of a residual lower-limb in a prosthetic socket: A survey of the development in the first decade. Medical Engineering and Physics, 1998, 20(5): 360-373.
    2. Zachariah, S. G., Sanders, J. E. Interface mechanics in lower-limb external prosthetics: A review of finite element models. IEEE Transactions on Rehabilitation Engineering, 1996, 4(4): 288-302.
    3. Silver-Thron, M. B., Childress, D. S., Generic. Geometric finite element analysis of the transtibial residual limb and prosthetic socket. Journal of Rehabilitation Research and Development, 1997, 34(2): 171-186.
    4. Shimizu, H.,Totsuka, U.,Shimizu, Y. Dynamic Behavior of Clothing Presure on the Body in Slacks. Part 1. Dynamic Measurement of the Distributions of the Clothing Pressures. Journal of the Society of Fiber Science and Technology, 1988, 44(10): 477-482.
    5. Toshiyuki Tsujisaka, Yoshiaki Azuma, Yo-Ichi Matsumoto, et al. Comfort pressure of the top part of men’s socks. Textile Research Journal. 2004, 74(7): 598-602.
    6. Nishimatsu, T., Hananouchi, T., Matsumoto, Y., et al. Influence of fiber material on wearing comfort of casual socks. Sen’i Gakkaishi, 2001, 57(10): 285-290.
    7. Cheng, J. C. Y., Evans, J. H., Leung, K. S., et al. Pressure Therapy in the Treatment ofPost-bum Hypertrophic Scar - A Critical Look into its Usefulness and Fallacies by Pressure Monitoring. Burns, 1983, 10: 154-163.
    8. Li, J. Study on the Pressure Comfort of the Top Part of Socks. Shanghai, China: Dong Hua University, 2007, 1.
    9. Liu, R., Kwok, Y. L., Li, Y., et al. Skin pressure profiles and variations with body postural changes beneath medical elastic compression stockings. International Journal of Dermatology, 2007, 46(5): 514-523.
    10. Hirai, M. Changes in interface pressure under elastic and short-stretch bandages during posture changes and exercise. Pblebology, 1998, 13: 25-28.
    11. Wildin, C. J., Hui, W. A. C., Esler, C. A. N., et al. In vivo pressure profiles of thigh-length graduated compression stockings. The British Journal of Surgery, 1998, 85(9): 1228-1231.
    12. Wertheim, D., Melhuish, J., Williams, R., et al. Movement-related variation in forces under compression stockings. European Journal Vascular Endovadcular Surgery, 1999, 17(4): 334-337.
    13.刘丹.基于视频的人体运动分析研究[D].北京:北京工业大学, 2007, 5.
    14.尹玲,张文斌,夏蕾.服装压力舒适性的研究综述与剖析[J].纺织学报, 2008, 29(3): 137-141.
    15.马和中.生物力学导论[M].北京:北京航空学院出版社, 1986, 12.
    16.石欣.基于压力感知步态的运动人体行为识别研究[D]: [硕士学位论文],重庆:重庆大学, 2010, 9.
    17.戴红,人体运动学[M].北京:人民卫生出版社, 2008, 3.
    18.刘延柱.运动生物力学的力学模型问题[J].力学与实践, 1983(3): 6-9.
    19. Bruderlin Armin. Calvert Tom Goal-Directed. Dynamic Animation of Human walking[C]. Proceedings of Siggraph 89. In ACM Computer Graphics, 1989, 23(3): 233-242.
    20. Badler, N. I., Phillips, C. B., Webber, B. L.Simulating Humans. Computer Graphics Animation and Control, Oxford University Press, 1993.
    21.刘小明,庄越挺,潘云鹤.基于模型的人体运动跟踪[J].计算机研究与发展, 1999, 36(10): 1268-1273.
    22. Zeltzer. Motor control Techniques for Figure Animation. IEEE Computer Graphics and Applications, 1982, 2(9): 53-59.
    23.张瑞红,金德闻,张济川等.不同路况下正常步态特征的研究[J].清华大学学报(自然科学版), 2000, 40(8): 77-80.
    1. Hanfner, J., Botonakis, I., Burg, G. A comparison of multilayer bandage systems during rest, exercise, and over two days of wear time. Arch Dermatol. 2000, 136(7): 857-863.
    2. Noriko Ito,Mari Inoue,Masae Nakanishi, et al. The Relation Among the Biaxial Extension Properties of Girdle Cloths and Wearing Comfort and Clofhing Pressure of Girdles. Japan Research Association for Textile End-Uses, 1995, 36(1): 102-108.
    3. Harumi Morooka,Miyuki Nakahashi, Hideo Morooka. Compressive Property of Legs and Clothing Pressure of Panthhose from the Viewpoint of Diference in Age. Japan Research Association for Textile End-Uses, 1997, 38(6): 44-52.
    4.王花娥.基于MTM的女性形体细分及类别原型研究[D]: [硕士学位论文].上海:东华大学, 2003, 12.
    5.王苏斌,郑海涛,邵谦谦. SPSS统计分析[M].北京:机械工业出版社, 2003, 6.
    6.卢纹岱. SPSS for windows统计分析[M].北京:电子工业出版社, 2000, 6.
    7.何晓群,刘文卿.应用回归分析[M].北京:中国人民大学出版社, 2001, 6.
    8.王学民.应用多元分析[M].上海:上海财经大学出版社, 1999.
    9.王学仁,王松桂.实用多元统计分析[M].上海:上海科学技术出版社, 1990.
    10.何晓群.现代统计分析方法与应用[M].北京:中国人民大学出版社, 2007, 8.
    11.马虹.主成分分析法在水质综合评价中的应用[J].南昌工程学院学报, 2006, 25(1): 65-67.
    12.郭天印,李海良.主成分分析在湖泊富营养化污染程度综合评价中的应用[J].陕西工学院学报, 2002, 18(3): 1-4.
    13.宇传华. SPSS与统计分析[M].北京:电子工业出版社, 2007, 2.
    14.苏金明,傅荣华,周建斌,张莲花.统计软件SPSS系列应用实战篇[M].北京:电子工业出版社,2002, 10.
    15.邱东.多指标综合评价方法的系统分析[M].北京:中国统计出版社, 1991, 12.
    16.张文霖.主成分分析在SPSS中的操作应用[J].市场研究, 2005, (12): 31-34.
    17.刘国祥.概率论与数理统计[M].兰州:甘肃教育出版社, 2002, 12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700