轻薄型毛面料加工性能主成分分析及其超喂缝缩率预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
FAST测试系统下的力学性能指标对面料的手感与服装超喂缝纫的外观质量具有重要的影响,是服装加工过程中重要的控制指标。过去基于FAST系统下的力学性能指标建立的毛面料手感客观评价式与缝纫质量的预测模型是以二十世纪80年代生产的面料为试样,用实验的方法获得。进入二十世纪90年代以来,随着毛面料的面密度大幅度下降,需要把面料性能设计与超喂缝纫设计联系起来考虑来保证服装加工质量,而目前关于面料的力学性能与超喂缝纫的关系,理论上还不够完善。轻薄型毛面料在我国处于发展期,与国外相比其加工性能尚有差距。为了分析国内外轻薄型羊毛面料加工性能的主要差距及其对服装超喂缝纫质量的影响,给我国轻薄型毛面料的生产及其服装设计提供理论参考与数据支持。本文以国内外轻薄型毛面料为研究对象,在寻找其加工性能主要差异的基础上,进一步研究其力学性能与超喂缝缩率的理论关系,获得超喂缝缩率的预测方法。论文的研究工作主要有两大部分:一是轻薄型毛面料加工性能的主成分分析;二是毛面料超喂缝缩率的预测。
     轻薄型毛面料加工性能主成分分析分述于第二、第三章和第六章第一节。选择了35只国内外轻薄型毛面料试样(国外20只,国内15只),根据FAST控制图,结合毛产品用途,选择了15个加工性能指标作为评价指标,对其进行了测试与计算,将测试的数据运用主成分分析的方法把15个性能指标通过降维压缩成了7个综合评价指标,根据载荷贡献率的大小分别定义为可成形性主成分、湿膨胀主成分、厚重主成分、松弛回缩率主成分、经向弹性主成分、剪切刚度主成分、表观厚度主成分。通过主成分值计算发现了国内外毛面料差距最大的是可成形性,其次是厚重主成分,国外面料轻薄且可成形性大。为了提高国产面料的产品质量,以可成形性和厚重主成分为改进目标,通过产品设计与工艺管理,试制了5种精纺薄花呢,经测试达到了预期的效果。
     毛面料超喂缝缩率的预测分述于第四、第五章和第六章第二节。其研究过程为分三步:首先建立毛面料超喂缝缩率预测数学模型。为了简化问题,在研究中作出了简化假设,主要有不考虑缝线对面料的作用力及与面料之间的摩擦作用力;面料的重量忽略不计;面料的弯曲模量是一常量等。在此基础上应用大变形力学方程,引入服装设计参数:面料连结长度比(含义相当于超喂量)、连结长度(相当于针距),建立了面料超喂缝缩率与织物的弯拉模量比(面料弯曲模量与拉伸弹性系数之比)以及面料连接长度、面料连接长度比等之间的数学模型,使面料性能与服装设计联系起来。通过对数学模型的数字解析可知:面料弯拉模量比越大、面料连接长度比越大、面料连接长度越小,超喂缝缩率越小。基于FAST测试系统,分析、推导了面料弯拉模量比的测试计算方法;对弯拉模量比与FAST测试指标可成形性之间的关系作了分析:面料的成形性越大,弯拉模量比越大。由于国内面料试样可成形性小,弯拉模量比小,在超喂缝纫过程中缝缩率大,容易发生起皱;根据服装设计的需要,提出了缝纫可成形性的概念,表征不同面料超喂缝缩率预测的参考指标,泛化了面料可成形性的应用。其次,进一步研究面料连结长度比、连结长度在超喂缝纫加工中的变化。由于在熨烫过程受到热、湿的作用,发生松弛收缩和湿膨胀收缩,以缩水率为尺寸稳定性指标,分析其对面料连结长度,面料连接长度比的影响,从而揭示在超喂加工中湿膨胀率、松弛回缩率对超喂缝缩率的影响;基于经纬向的缩水率分析、推导了斜向缩水率的计算方法,为快速反应提供了基础。最后为了修正模型假设中的误差,提高预测精度,选取了弯拉模量比,面料连结长度,面料连接长度比,长、短面料的湿膨胀率和松弛回缩率等七个指标作为人工神经网络的输入参数,模拟衣袖超喂缝纫,建立了超喂缝缩率的人工神经网络预测模型,并与多元线性回归模型进行了对比,结果显示人工神经网络模型优于多元线性回归模型。
     综上所述,国内外轻薄型毛面料试样的主成分分析使我们清楚了国内面料的主要差距,为我国轻薄型毛面料加工质量的提高提供了主攻方向与数据支持;建立的超喂缝缩率预测模型及其误差修正方法,不仅能定量分析超喂缝缩率的影响因素,还可以为企业进行质量管理,优化工艺参数提供指导,改进了目前采用实验方法预测缝缩率的缺陷;同时也从理论上揭示了国内外面料加工性能的差距对服装超喂缝纫的影响。
Mechanical properties tested by FAST system that is very important controlling index in apparel process have an important impact on fabric’s handle and appearance quality of apparel overfeed sewing. Based on mechanical properties tested by FAST system, the objective evaluation method for wool fabric handle and sewing quality predicting model have established by experiment method with fabrics produced in 80s of last century. Since 90s, as the decreasing of wool fabric’s unit weight it needed to connect fabric property design with overfeed sewing design to guarantee apparel process quality. And nowadays the theory of relationship between fabric mechanical property and overfeed sewing is still not perfect. Light wool fabric production in our country is still in the development period, and has obvious differences compared with abroad light wool fabric. In order to analyze the main differences of light wool fabric processing properties in home and abroad and their influence on apparel overfeed sewing quality which could supply theory reference and data support to home light wool fabric production and apparel design. This thesis took home and abroad light wool fabrics as research object to research further theoretical relationship between mechanical property and overfeed sewing shrinkage and acquire predicting method of overfeed sewing shrinkage by means of finding processing property main differences. The thesis’s work included two parts: one was principal component analysis of processing properties of home and abroad light wool fabrics; the other predicted overfeeding sewing shrinkage of light wool fabrics.
     Principal component analysis of processing properties of light wool fabrics was illustrated respectively in chapter two, three and part one of chapter six. It selected thirty-five samples of home and abroad light wool fabrics (Foreign were twenty, home were fifteen). According to FAST controlling drawing, it selected fifteen processing property indexes as evaluation index by combined wool product uses. Through testing and calculating, it compressed fifteen indexes to seven comprehensive evaluation indexes. According to each index contribution rate, it defined respectively such as formability principle component, moisture expansion principal component, thick-weight principal component, relaxation shrinkage principal component, warp tensile elasticity principal component, shearing rigidity principal component, and appearance thickness principal component. Through calculating of principal component value, it could find the biggest difference of home and abroad light wool fabric was formability principal component, and then was fabric thick-weight property. Foreign fabric showed light and had bigger formability. It could take formability and thick-weight property as improved aim in order to enhance of home fabric’s quality. Five worsted fancy fabrics were developed by product design and process management. When testing, the woven fabric had reached expectation effect.
     Wool fabric overfeed sewing shrinkage was illustrated respectively in chapter four, five and part two of chapter six. Three parts were conducted in this research process. Firstly it built predicting math model of overfeed sewing shrinkage. The research made simplification premise to reduce problem that did‘t consider sewing thread apply force and friction apply force between fabrics, and ignored fabric weight, and took bending modulus as constant and so on. In base of applying big deformation mechanics equation, apparel design parameters that include fabric connection length ratio (overfeeding amount) and connection length (needle distance) were brought. It built math model of between fabric sewing shrinkage and bending–tensile modulus ratio (fabric bending modulus than tensile parameter), and fabric connection length, and fabric connection length ratio to link fabric property and apparel design. Through math analysis of math model, it could get the smaller of overfeeding sewing shrinkage when the fabric bending–tensile modulus ratio and the fabric connection length ratio were bigger, and the connection length was smaller. It derived the method for testing and calculating of fabric bending–tensile modulus ratio based on FAST testing system. It analyzed the relationship between bending–tensile modulus ratio and formability of FAST testing index which indicated that the bigger of formability, the bigger of bending–tensile modulus ratio. Because home fabric has lower formability and bending–tensile modulus, it could cause sewing shrinkage higher and produce crepe easily. The thesis provided the new sewing formability concept as a reference value to represent different fabric’s sewing shrinkage prediction in overfeeding sewing which generalized the application of formability. Secondly it further researched the change of fabric connection length ratio and connection length in overfeeding sewing process. Fabric was caused relaxation shrinkage and moisture expansion shrinkage under the moisture and hot affection. The thesis took water shrinkage as dimensional stability index to analyze its influence on fabric connection length and fabric connection length ratio, which revealed moisture expansion rate and relaxation shrinkage rate would influence overfeeding sewing shrinkage in overfeeding process.
     It deduced calculating method of oblique shrinkage based on warp and weft shrinkage which supplied the base for fast reaction. Lastly in order to revise error of model premise and raise predicting accuracy, it selected seven indexes such as bending–tensile modulus ratio, fabric connection length, fabric connection length ratio, moisture expansion rate & relaxation shrinkage rate of long and short fabrics, as input parameters of artificial neural network. By simulating arm overfeed sewing it founded predicting model of artificial neural network of overfeeding sewing, and compared with multiple linear regression model. The result showed artificial neural network model had an advantage over multiple linear regression model.
     Summary, principal component analysis of home and abroad light wool fabric sample made us know clearly the main differences of home light wool fabric which indicted the research direction and supplied data supporting for enhancing process quality of home light wool fabric. The founded predicting model of overfeeding sewing and method of error correction were not only to analyze the influence factors of overfeeding sewing quantitatively, but also could go on company quality management, supply guide for process reference’s optimization, and improve imperfection of predicting sewing shrinkage through experiment method at present. Meanwhile on theoretically it revealed an influence on apparel overfeeding sewing caused by process property differences of home and abroad fabrics.
引文
[1]姚穆,纺织面料的发展趋势与新材料技术的应用[J],棉纺织技术,2002,30(3):133-137
    [2]谢方明,毛纺织产品的发展趋势[J],毛纺科技2009,38(8)59-60
    [3]姜淑梅,张银花,Solospun单纱轻薄毛织品的研制与开发[J],毛纺科技,2004,(3):5-7
    [4]高丽忠,超高支OPTIM丝毛绒混纺轻薄织物的开发[J],毛纺科技,2006,(8): 34-36
    [5]张慧,超薄丝毛交织花呢的设计与性能对比[J],毛纺科技,2006,(8):34-36
    [6]唐静,毛纺面料向轻薄舒适时装化发展的途径[J],毛纺科技,2005,(9):54-55
    [7]白锦,大麻/毛/柞蚕丝混纺产品的设计与生产[J],毛纺科技,2007,(1):45-46
    [8]邱晓忠,水溶性维纶生产超细轻薄精纺呢绒[J],毛纺科技,2003,(4):41-43
    [9]杨锁廷,刘建中,姚金波,拉伸改性羊毛性能的研究[J],纺织学报,2002,23(3):32–33
    [10]王府梅,服装面料的性能设计[M],中国纺织大学出版社(第一版)2002
    [11] Masako Niwa and Sueo Kawabata, Prediction of the Appearance of Men’s Suit Mechanical Properties and Fabric Hand (Part1) [J],纤维机械学会志,1981,34,(1):112-121
    [12] F ,T,Pierce,The geometry of cloths tructure[J], Text,Inst,1937,( 28):45-96
    [13] KES说明书
    [14] FAST使用说明书
    [15]服装起拱与力学工程设计[M],香港理工大学纺织与制衣系、香港服装产品开发与营销中心编著,中国纺织出版社,2002,10
    [16] Mituso Matsudaira and Masahiko Kubo,Objective Evaluation of Hand of Futon Cloth[J],纤维机械学会志1993(1):18-25
    [17] Masako Niwa and Sueo Kawabata, Prediction of the Appearance of Men’s Suit Mechanical Properties and Fabric Hand(Part2) [J],纤维机械学会志,1981,34,(4):51-65
    [18] Mitsuo Matsudaira,Fumiko Kiuchi,Masahiko Kubo,Objective Evalration of Hand of Futon cloth(Part1) [J]纤维机械学会志,1993,46,(9):49-56
    [19]Mitsuo Matsudaira, Masahiko Kubo, ObjectiveEvalration of Hand of Futon cloth(Part2) [J],纤维机械学会志,1993,46,(1):102-110
    [20] LUDOVIC K,ZHOU B,ZENG X Y,eta1,Sensory Evaluation in Characterization of Fabric Hand[J].Journal of Donghua University,2004,21(3):76-81.
    [21]庄鄂,王府梅,崔爱峰,新合纤织物表面手感及摩擦性能的研究[J],纺织学报, 2002(2):103-105,
    [22]严灏景,赵书经,织物风格的客观评定[J],纺织学报,1984,(4):45-48
    [23]严灏景,潘宁,织物风格的客观评价模式识别方法[J],纺织学报,1984,(4):45-48
    [24]潘宁,严灏景,织物风格研究中模糊聚类方法[J],华东纺织工学院学报,1985
    [25]张瑞林,人工神经网络评价丝织物织物风格研究,纺织学报,1999,(3):46-48
    [26]陈东生,阎良敏,赵书经,织物物理力学性能及其与风格关系研究的现状[J],吉林工学院学报, 1998,(12):50-58
    [27]潘宁,织物触觉风格的客观评价:[博士论文],上海:中国纺织大学, 1985
    [28]母景红,细且涤纶混纺织物手感的模糊综合评判.天津纺织工学院学报.1999(4):88~92
    [29]曹建达,棉织物手感主观评定的模糊综合评判[J],纺织学报, 2003,24 (1) :27-29
    [30]黄新林,李汝勤,织物悬垂性图像测试方法[J],纺织学报,2006,(11):14-17
    [31]周详,周静,织物悬垂性影响因素分析[J],上海纺织科技, 2006,(10):16-17
    [32]于学成,涤纶织物悬垂性的研究[J],国外丝绸,2005,(02):17-18
    [33]张辉,范立红,朱华,织物静态悬垂性能的分析[J],现代纺织技术2003,(01):3-7
    [34]纪峰,李汝勤,郭永平等,织物悬垂性研究的追踪与展望[J],纺织学报2003(01):72-74
    [35]王玉清,纪峰,织物悬垂性能理论研究综述[J],山东纺织科技2004,(05):50-52
    [36]郭永平,李长龙,李汝勤,织物悬垂性理论及测试方法研究综述[J],中国纺织大学学报1999(03):32-38
    [37]蒋艳凤,织物的悬垂性能比较[J],丝绸2001,(07):28-29
    [38]郭宇鹏,余序芬,织物悬垂性能研究综述[J],现代纺织技术,2001,(03):49-51
    [39]川口春马等,纤维便览[M],丸善株式会社,2004,(446-449)
    [40]李栋高,丝绸材料学[M],纺织出版社(第三版)1994
    [41]佐藤明義,背広用毛織物の風合いと仕立て性〔J〕繊維機械学会誌2002,(7):(257-264)
    [42] J,Amirbayat,Seams of different ply Properties,Part I:Seam Appearance,Part2 :Seam Strength[J],Text,Inst,1992,(2):211
    [43]王家俊,张怀珠,织物缝纫皱缩评价[J],丝绸1998(7):43-44
    [44] Chang K,Park and Tae JinKang, Objective rating of seam pucker using neural networks,Text,Res,[ J], 1997,67,(7):494-502
    [45] Masako Niwa,新合繊の可縫性について[J], Jpn Res,Assn,Text,End-Uses 1994, 35(1):20-29
    [46] Lindberg,J,Waesterberg,and Svenson,R,Wool fabrics as garment construction materials,Journal of the TextileInstitute,1960,(51):1415-1492
    [47] Masasko S Kawabata and Kimiko Ishizuka, Recent developments in research correlating basic fabric mechanical properties and the appearance of men's suits, in "Proc.Japan-Australia Symposium,on objective Evaluation of Appear Fabrics,Parkville,A ustralia",1983,pp67
    [48] M,Y,Kwong,Enginering princiqles in man’s jacket pattern construction,in“proc,of 1st china International wool Textile Conference,Xian,1994,214
    [49]刘侃,服装缝纫平整度客观评价系统的建立[D],东华大学博士论文2005
    [50] YOKO Yanada, A study on seam pucking[J],Jpn Res,Assn, Text, End-Uses, 1993, 34 (3): 37-45,
    [51]李艳梅,张渭源,基于灰色模型的服装面料缝纫皱缩预测[J],纺织学报, 2008,6: 92-95
    [52]唐虹,雪纺面料性能与缝缩方向性研究[J],纺织学报,2008,29(10):87-91
    [53] KEITE Tasaki, Seam pucker prediction from fabric properties and its preventive method[J],繊維機械学会誌,1998,51 (1): 46-53
    [54] A,M,Manich, Relationships between fabric sewability and stuctural[J],Text,Inst,1998(3):579-591
    [55] Kozo Shimazaki,A Study on Machine Sewing [J],Jpn,Res,Assn,Text,End-Uses,1979,(6) :234-239
    [56]丁锡强,衬衫缝份抗皱防缩技术研究[J],上海纺织科技2008(9):29-31
    「57杨建忠,王善元,轻薄府绸织物斜向强伸性能与接缝强力的关系〔J〕,西安科技工程学院学报,2002,16(2):95-99
    [58]杨建忠,王善元,轻薄织物斜向力学性能与缝纫起皱关系的研究〔J〕,西北纺织工学院学报,2001,15(3):15-20
    [59]杨建忠,王善元,轻薄织物屈曲变形与缝纫起皱关系的研究「J],西北纺织工学院学报,2001,15(l):5-10
    [60]唐虹,弹力素绉缎缝缩的方向性研究[J],丝绸,2008,(7): 56-51
    [61]倪红,潘永惠,基于BP神经网络的织物斜向弯曲性能的预测[J],纺织学报2009(2):48-51
    [62]姚穆,周锦芳,黄淑珍等,丝绸材料学[M],中国纺织出版社(第二版)574-576
    [63]董侠,军用织物手感评价系统的研究[D],东华大学博士论文,2001
    [64]顾平,织物结构与设计学,上海:东华大学出版社,2004
    [65]潘永惠,基于神经计算的服装缝纫性能模糊评价研究[D],江南大学博士论文,2008
    [66]刘侃,用模糊聚类分析法评价服装加工性能[J],西安工程科技学院学报,2002,16(2):116-120
    [67]罗纪华,马艺华,黄海珍等,竺麻织物服用性能的模糊综合评定[J],北京纺织,2001,22(5):45-47
    [68]甘应进,陈东生等,灰色系统理论及其在纺织上的应用[J],吉林工学院学报,1996,17(1):65-74
    [69]张瑞林,蒋静坪,人工神经网络识别丝织物的研究[J]纺织学报,2003,23(2):58-6
    [70]陈雁,人工神经网络在织物的服装加工性能预测中的应用[J],苏州丝绸工学院学报,1999,19(1):32-39
    [71]林洪芹,王府梅,纺织面料性能预测的相关理论及优缺点评述[J],东华大学学报自然科学版,2004(8):126- 129
    [72]丁春,盛周君,基于主成分分析法的南淝河水质综合评价[J],安徽农业科学,2007,35(36)11583-11584
    [73] PAN Ru-liang,Dental Variation Among Asian Colobines, with Specific Reference to the Macaques on the Same Continent [J],动物学研究2007,Dec,28(6):569-579
    [74]唐步龙,江苏林农购买苗木决策因素的主成分分析[J],安徽农业科学, 2007,35(36):12098 - 12099
    [75]陈永高,孙文建,基于主成分分析法的建筑企业竞争力评价研究[J],施工技术, 2007,(12):35-36
    [76]方必和,宣以霞,郭卫东,改进的主成分分析法在大型施工内部评优中的应用研究[J],工业技术经济2007, (12):81-84
    [77]刘艳君,李素英,毛针织服装风格综合评价中主因子的确定[J],毛纺科技,2005(7):5-8
    [78] Masako Niwa,Optimum Silhouette Design for Ladies’Garments Based on the Mechanical Properties of a Fabric[J],Textile Research journal, 1998(8): 578~588
    [79] MORINO Hitomi,YAMAOKA Akiyoshi,FURUTANI Minoru,Effects of Weave Structure on the Mechanical Properties and Handle of Fabric k[J],纤维机械学会志,2003,(8):43-51
    [80]井上尚子,婦人服地の品質の客観的評価[J],纤维机械学会志2003,(10):404-408
    [81] Mitsuo MATSUDAIRA,Compressional Proterties of Fiber Assemblies[J],繊維学会誌 1993,(10):226-231
    [82] Michiko Ohtsuka and Yukio Mitsuishi Classification of Charaacteristics of Shingohsen Mateuials by Multivariate analysis[J],繊維学会誌 2003,(5):173-176
    [83] Mituso Matsudaira and Masahiko Kubo,Difference of Subjective Evaluation between Expers and Consumers[J],纤维机械学会志1993(9):207-214
    [84] WANG Guo-he ,LIANG Yan-fang , GU Ping,Study and Application of Objective Evaluation Model on Fabric Style,Journal of Donghua University, No, 2 (2007):187-196
    [85]方开泰,实用多元统计分析[M],上海:华东师范大学出版社,1986
    [86]汪荣鑫,数理统计[M],西安:西安交通大学出版社,2005
    [87]卢盛中,管理心理学[M] ,浙江:浙江教育出版社,2006(第四版),57-59
    [88]吕逸华,易曙辉,邵壮,关于毛织物缝纫性能的研究[J]北京服装学院学报,1989,(4) :50–56
    [89] CLAYTON Kopp,CHRISTOPHER D Rahn.AND.FRANK W Paul,Measuring Deformations of Limp Fabrics for Matetial Handling[J],Textile Research journal, 2000(10):920-932
    [90]尾田十八等著,材料力学[M]森北出版株式会社
    [91]单祖辉编,材料力学教程[M]北京航空大学
    [92] C F Zorowski, Cantilever bending behavior of plain weave fabrics continuous filament cords [J], Textile Research Jjournal 1966 (2): 119-123
    [93] Masayuki Takatera and Akira Shinohara , A Unified Analysis to Compare Conventional Methods for Estimating Bending Regidity of Fabric [J],纤维机械学会志,1994,(10):66-72
    [94] F.T.Peirce,the geometry of cloth structure, Text,Inst,1937,(28):45-96
    [95] Cooper,D,N,E ,The effect of twist upon bending properties[J], Text,Inst,1960,(51): 150-151
    [96] Cooper,D,N ,E,The stifness of woven textile[J], Text,Inst,1960,(51): 317-335
    [97] R.L.Shishoo and M .Choroszy,Analysis of mechanical and dimensional properties of wool fabrics relevant to garment making,in" proc.Japan-Australia Symposium on Objective Evaluation of Appear Fabrics,P arkville,A ustralia,"T extile Machinery Sciety of Japan,Osaka,1990,pp316
    [98] P.G.Cookson,Relationships between hygralex pansion,Relaxation shrinkage,and Extensibility in Woven wool fabrics,Text.Res.J.1992,Vol.62,No.l,pp44-51
    [99] N G Ly, E F D Enby, B N Hoschke, A Quick for measuring fabric dimensional stability[J], Textile Research Journal 1988 (8): 463-468
    [100]董丽华,陈东生,杨洪光,织物缩水规律的研究[J],吉林工学院学报,1993,14(3):64-73
    [101]空间解析几何引论[M],南开大学数学系《空间解析几何引论编写组》编,人民教育出版社,1979年,北京
    [102]董长虹编著,Matlab神经网络与应用[M],北京,国防工业出版社,2005年1月第1版
    [103]高隽编著,人工神经网络原理及仿真实例[M],机械工业出版社,2002年2月第2版
    [104]钟珞,饶文碧,邹承明著,人工神经网络与其融合应用技术[M],北京,科学出版社,2007年1月第1版
    [105] Zhifeng SU,Mingzhang YANG,Jian HAN and Mitsuo MATSUDAIRA,Prediction of Wrinkle of Cotton Fabrics Using Neural Network[J],纤维机械学会志,2004,(4):56-61
    [106]张一心,基于BP神经网络的国毛毛条质量预测模型[J],毛纺科技,2004,(12):9-13
    [107]赵书林,王恩清,郭会勇,基于因子分析的纺纱工艺优化[J],纺织学报,2007,(8):35-38
    [108]丁雪荣,宋广礼,计算机图像处理技术在纺织品测试中的应用[J],上海纺织科技,2005,33(6):59-61
    [109]葛哲学,孙志强.神经网络理论与MatlabR2007实现[M],北京:电子工业出版社,2007:101-198

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700