双光子态操控及应用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子信息学就是研究用量子态来编码信息,利用其特有的相干叠加、纠缠等性质进行信息的存储、传输和处理的学科。
     纠缠(量子关联)是量子物理的核心内容之一,人们以纠缠为基础构造了各种新颖的信息处理方式,如:量子密码术、量子隐形传态、量子超密编码、量子计算等。作为量子信息的关键信息资源,纠缠的描述、制备、操控及其应用一直是量子信息学理论和实验研究中相当活跃的领域。
     光子系统作为纠缠的物理载体,在量子信息学的实验研究中一直有其独特的优势。无论是量子密钥分配、量子隐形传态等新型量子信息技术还是量子力学的非局域性检验等基本问题的实验研究都是首先在光子系统中完成的。正因为如此,本论文将光子纠缠态的操控及应用的实验研究作为主要研究内容。
     另一方面,量子信息研究中涉及到的关联并不总是纯粹的量子关联(纠缠),而往往是以混合关联的形式出现的,其中既包含了量子关联也包含了经典关联。本文的最后一章中我们进行了与经典关联有关的实验研究。
     本文的主要工作如下:
     1.设计了能够确定性实现单光子偏振态上任意正算子值测量(positiveoperator-valued measures,简记为POVM)的实验方案,搭建了完全由线性光学元件构成的实验装置。使用上述装置,在实验上首次实现了两体纯态纠缠的非平凡确定性转换。我们设计的POVM测量实现方案比前人的理论方案大大简化,能够方便的在目前实验技术水平下实现,为后续实验提供了很好的工具。在纠缠转换实验中,用POVM测量实现装置确定性执行所需的双输出POVM测量,实现了一类满足Nielsen定理的确定性纠缠转换,纠缠转换所得的双光子偏振纠缠态的平均保真度达到0.96。该实验装置原则上可以完成任意双光子纯态纠缠之间的转换,同时转换效率可以达到最优。
     2.提出了实现任意单光子偏振态远程制备的实验方案,并进行了实验验证。方案中远程制备的平均效率比前人的方案更高,成功制备单量子位纯态或混合态平均消耗√2个比特的经典信息,是目前各种实验实现中最低的。实验中得到的18个量子态(包括纯态和混合态)的保真度均高于0.99,平均保真度为0.9956。
     3.提出了任意单光子偏振纯态的确定性远程制备的实验方案,进行了原理性的实验验证;应用通过纠缠转换实现量子态远程制备的思想,提出了首个能够实现任意单光子偏振态(包括纯态和混合态)确定性远程制备的实验方案,并进行了实验验证。在前一个方案中,将所需制备的纯态编码在单光子的空间模式上,任意纯态的远程制备效率可达100%;一般混合态的远程制备效率为50%。在后一个方案中,借助确定性的POVM测量实现装置,能够实现任意单光子偏振纯态的确定性远程制备;将POVM测量与控制消相干相结合,能够实现任意单光子偏振混合态的确定性远程制备。我们对方案进行了实验验证,首次在实验上实现了任意单量子位纯态和混合态的确定性远程制备。实验中制备了12个纯态和6个混合态,所有量子态的保真度均高于0.99,平均保真度为0.9947。
     4.提出了利用自发参量下转换过程结合控制消相干制备双光子偏振经典关联态的方案,实验制备的经典关联态的保真度达0.9915。利用制备出的经典关联态,使用双光子之间的经典关联而非纠缠,实现了任意单光子偏振态的量子态远程制备,实验中制备的所有量子态保真度均高于0.99。
Exploring the rich variety of capabilities in information processing allowed by thenon-classical properties of quantum states (e.g. quantum superposition and quantum entanglement)is the subject of quantum information technology, which has become one ofthe most popular interdisciplinary fields.
     Entanglement lies at the heart of quantum mechanics. It has become a basic buildingblock for many novel quantum protocols, such as quantum key distribution, teleportation,dense coding and quantum computation. It is always a powerful tool that serves as akey resource for quantum communication and quantum computation. Then description,generation, manipulation and application of entanglement have became a very active fieldin theoretical and experimental quantum information science.
     Entangled states of various quantum systems have been investigated. To date, theirbiggest variety was observed in photonic qubit systems which is more feasible than others.So the first experiments of quantum key distribution, quantum teleportation and verificationof quantum nonlocality are realized with photonic qubits. The main part of this dissertationconcerns the experimental manipulation and applications of entangled photonsin quantum information science.
     Not all correlations between quantum systems, however, are purely quantum correlations(i.e. entanglement). People also find interests in the exciting subjects of characterizingother attractive types of correlations in quantum states. In general, there are quantumcorrelations, classical correlations and the mixture of them. In the last chapter, we makesome experimental studies about classical correlations.
     The main contents of this dissertation are as follows
     We propose a scheme which can implement arbitrary positive operator-valued measures(POVM) on single-photon polarization state and is deterministic rather than probabilistic.With more feasibility in practice than former similar schemes, this scheme maybe used as a basic tool of various quantum information protocols in future applications.
     We experimentally demonstrate a kind of deterministic entanglement transformationsof bipartite pure states, which is the first experimental realization of non-trivial deterministicentanglement transformations. The average fidelity of all output states is 0.96. The protocol employs two-outcome POVM and can transform two-photon maximally entangledstate to any two-photon entangled pure state deterministically. Moreover, in principlewe can realize any kind of entanglement transformation of two-photon entangled purestates with the optimal theoretical upper bound efficiency.
     We experimentally demonstrate a protocol of probabilistic remote state preparationby virtue of entanglement, local operation and forward classical communications. Arbitrarypolarization qubit states can be remotely prepared with this protocol. The averageclassical information cost of successful remote preparation is calculated to be cbitper qubit by integrating this state-dependent cost. To our best knowledge, it is the lowestaverage classical information cost of successful remote preparation in all remote statepreparation experiments. All 18 remotely prepared states are estimated with quantum statetomography system, with average fidelity being 0.9956 and the minimal being over 0.99.
     By encoding the desired state into the spatial mode of single-photon, 100% efficiencyis obtained for the remote preparation of arbitrary single-photon pure polarization state.For mixed states, polarization insensitive measurement is introduced and the efficiency is50%. We achieve remote preparation of 13 states with fidelities all above 0.994.
     We propose a deterministic remote state preparation scheme for arbitrary photon polarizationqubit states, where entanglement, local operations and classical communicationare used. By consuming one maximally entangled state and two classical bits, an arbitrary(either pure or mixed) qubit state can be prepared deterministically at a remote location.We experimentally demonstrate the scheme by remotely preparing 12 pure states and 6mixed states. The fidelities between the desired and achieved states are all higher than0.99 and have an average of 0.9947. The methods used in our experiment can be generalizedto other situations. The operations on the photon can be utilized to remote controlother matter systems provided that the matter system is maximally entangled with singlephoton.
     Classically correlated states are experimentally prepared by introducing controlleddecoherence on the entangled photon pairs and the fidelity is 0.9915. We also proposeseveral ways to experimentally prepare classical correlated states with no entanglementinvolved at all. Then the first remote state preparation with no shared entanglement wasexperimentally demonstrated with classically correlated states. To estimate the performanceof our protocol, 42 qubit states are remotely prepared. The fidelities of all remotely prepared states are higher than 0.99.
引文
[1] Landauer R. Information Is Physical[J]. Physics Today, 1991, 44(5):23.
    [2] Landauer R. The Physical Nature of Information[J]. Phys. Lett. A, 1996,217(4):188.
    [3]李承祖,黄明球,陈平形,梁林梅.量子通信和量子计算[M].湖南长沙:国防科技大学出版社, 2000.
    [4] Shannon C E. A Mathematical Theory of Communication[J]. Bell System Tech.J., 1948, 27:379--423, 623--656.
    [5] Moore G E. Cramming More Components onto Integrated Circuits[J]. Electronics,1965, 38:114.
    [6] Bennett C H, DiVincenzo D P. Quantum Information and Computation[J]. Nature,2000, 404:247--255.
    [7] Dirac P A M. The Principles of Quantum Mechanics[M]. Oxford: Oxford Univer-sity Press, 1930.
    [8] Wootters W K, Zurek W H. A Single Quantum Cannot be Cloned[J]. Nature, 1982,299(5886):802--803.
    [9] Schr?dinger E. Die gegenw?rtige Situation in der Quantenmechanik[J]. Naturwis-senschaften, 1935, 23:807--812; 823--828; 844--849.
    [10] Schr?dinger E. The present situation in quantum mechanics: a translation ofSchr?dinger's "Cat Paradox paper"[C]. Proceedings of the American Philosophi-cal Society. 1980,124:323--38. translated by John D. Trimmer.
    [11] Wheeler J, Zurek W. Quantum Theory and Measurement[M]. Princeton, NewJersey: Princeton university Press, 1983.
    [12] Bennett C H, Brassard G, Ekert A K. Quantum cryptography[J]. Scientific Amer-ican, 1992, 267(4):50--57.
    [13] Bennett C H, Brassard G, Crépeau C, et al. Teleporting an Unknown QuantumState via Dual Classical and Einstein–Podolsky–Rosen Channels[J]. Phys. Rev.Lett., 1993, 70:1895.
    [14] Bennett C H, Wiesner S J. Communication Via One- and Two-Particle Operatorson Einstein-Podolsky-Rosen States[J]. Phys. Rev. Lett., 1992, 69(20):2881--2884.
    [15] Nielsen M A, L.Chuang I. Quantum Computation and Quantum Information[M].Cambridge, U.K.: Cambridge University Press, 2000.
    [16] Deutsch D. Quantum theory, the Church-Turing principle and the universal quantumcomputer[J]. Proc. R. Soc. London A, 1985, 400:97--117.
    [17] Ekert A, Jozsa R. Quantum computation and Shor's factoring algorithm[J]. Reviewsof Modern Physics, 1996, 68(3):733--753.
    [18] Steane A. Quantum computing[J]. Reports on Progress in Physics, 1998, 67(2):117.
    [19] Berman G P, Doolen G D, Mainieri R, et al. Introduction to Quantum Computers[M]. Singapore: World Scientific Publishing Co. Pte. Ltd., 1998.
    [20] Nielsen M A. Rules for a Complex Quantum World: An exciting new fundamentaldiscipline of research combines information science and quantum mechanics[J].Scientific American, 2002, 287(5):66--75.
    [21]冯登国,裴定一.密码学导引[M].北京:科学出版社, 1999.
    [22] Denning D E, Denning P J. Internet besieged: countering cyberspace scofflaws[M].New York: ACM Press/Addison-Wesley Publishing Co., 1998.
    [23] Rivest R L, Shamir A, Adleman L M. A Method for Obtaining Digital Signaturesand Public-Key Cryptosystems[J]. Communications of the ACM, 1978, 21(2):120.
    [24] Zbinden H, Bechman-Pasquinucci H, Gisin N, et al. Quantum cryptography[J].Appl. Phys.B, 1998, 67:743.
    [25] Shor P W. Algorithms for Quantum Computation: Discrete Logarithms and Factoring[C]. Proc of the 35th Annual Symp on Foundations of Computer ScienceNewMexico: IEEE Computer Society Press, 1994:124.
    [26] Shor P W. Polynomial-time Algorithms for Prime Factorization and Discrete Logarithmson a Quantum Computer[J]. SIAM J. on Comp., 1997, 26(5):1484.
    [27] Vernam G S. Cipher Printing Telegraph Systems for Secret Wire and Radio TelegraphicCommunications[J]. J. Am. Inst. Elec. Eng., 1926, 45:109.
    [28] Welsh D. Codes and Cryptography[M]. Oxford: Oxford University Press, 1988.
    [29] Shannon C E. Communication Theory of Secrecy Systems[J]. Bess System TechnicalJournal, 1949, 28:656--715.
    [30] Bennett C H, Brassard G, Breidbart S, et al. Quantum Cryptography, or UnforgeableSubway Tokens[C]. Advances in Cryptology: Proceedings of Crypto'82. 1982,31:267--275.
    [31] Wiesner S. Conjugate Coding[J]. Sigact News, 1983, 15(1):78--88.
    [32] Bennett C H, Brassard G. Quantum Cryptography: Public Key Distribution andCoin Tossing[C]. Proceedings of the IEEE International Conference on Computers,Systems and Signal Proceeding. Bangalore, India: IEEE, New York, 1984:175--179.
    [33] Heisenberg W. The Physical Principles of Quantum Theory[M]. Chicago: Universityof Chicago Press, 1930.
    [34] Bennett C H. Quantum Cryptography Using Any Two Nonorthogonal States[J].Phys. Rev. Lett., 1992, 68(21):3121--3124.
    [35] Bruss D. Optimal Eavesdropping in Quantum Cryptography with Six States[J].Phys. Rev. Lett., 1998, 81(14):3018--3021.
    [36] Bechmann-Pasquinucci H, Gisin N. Incoherent and coherent eavesdropping in thesix-state protocol of quantum cryptography[J]. Phys. Rev. A, 1999, 59(6):4238--4248.
    [37] Ekert A K. Quantum Cryptography Based on Bell's Ttheorem[J]. Phys. Rev. Lett.,1991, 67(6):661--663.
    [38] Lütkenhaus N. Security against individual attacks for realistic quantum key distribution[J]. Phys. Rev. A, 2000, 61(5):052304.
    [39] Gottesman D, Lo H K, Lütkenhaus N, et al. Security of quantum key distributionwith imperfect devices[J]. Quantum. Inf. Comput., 2004, 4(5):325--360.
    [40] Inamori H, Lütkenhaus N, Mayers D. Unconditional security of practical quantumkey distribution[J]. Eur. Phys. J. D, 2007, 41(3):599--627.
    [41] Hwang W Y. Quantum Key Distribution with High Loss: Toward Global SecureCommunication[J]. Phys. Rev. Lett., 2003, 91(5):057901.
    [42] Lo H K, Ma X, Chen K. Decoy State Quantum Key Distribution[J]. Phys. Rev.Lett., 2005, 94(23):230504.
    [43] Wang X B. Beating the Photon-Number-Splitting Attack in Practical QuantumCryptography[J]. Phys. Rev. Lett., 2005, 94(23):230503.
    [44] Bennett C H, Bessett F, Brassard G, et al. Experimental Quantum Cryptography[J].Journal of Cryptology, 1992, 5(1):3--28.
    [45] Smolin J A. The early days of experimental quantum cryptography[J]. IBM J. Res.Dev., 2004, 48(1):47--52.
    [46] Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography[J]. Reviews of ModernPhysics, 2002, 74(1):145--195.
    [47] Gisin N, Thew R. Quantum communication[J]. Nature Photonics, 2007, 1(3):165--171.
    [48] Sergienko A V. Quantum Communications and Cryptography[M]. Boca Raton,FL, USA: CRC Press, Inc., 2005.
    [49] Scarani V, Bechmann-Pasquinucci H, Cerf N J, et al. The security of practicalquantum key distribution[J]. Reviews of Modern Physics, 2009, 81(3):1301.
    [50] Chen T Y, Wang J, Liu Y, et al. 200km Decoy-state quantum key distribution withphoton polarization[DB/OL]. arXiv:0908.4063.
    [51] Stucki D, Walenta N, Vannel F, et al. High rate, long-distance quantum key distributionover 250 km of ultra low loss fibres[J]. New Journal of Physics, 2009,11(7):075003.
    [52] Ursin R, Tiefenbacher F, Schmitt-Manderbach T, et al. Entanglement-basedquantum communication over 144 km[J]. Nature Physics, 2007, 3(7):481--486.10.1038/nphys629.
    [53] Fedrizzi A, Ursin R, Herbst T, et al. High-fidelity transmission of entanglementover a high-loss free-space channel[J]. Nature Physics, 2009, 5(6):389--392.
    [54] Dynes J F, Takesue H, Yuan Z L, et al. Efficient entanglement distribution over 200kilometers[J]. Opt. Express, 2009, 17(14):11440--11449.
    [55] Zhang Q, Takesue H, Honjo T, et al. Megabits secure key rate quantum key distribution[J]. New Journal of Physics, 2009, 11(4):045010.
    [56] Elliott C. Building the quantum network[J]. New Journal of Physics, 2002, 4:46.
    [57] Elliott C, Colvin A, Pearson D, et al. Current status of the DARPA QuantumNetwork[C]. Quantum Information and Computation III (Proceedings of the SPIE).Bellingham, WA: SPIE, 2005,5815:138--149. (arXiv:quant-ph/0503058).
    [58] Peev M, Pacher C, Alleaume R, et al. The SECOQC quantum key distributionnetwork in Vienna[J]. New Journal of Physics, 2009, 11(7):075001.
    [59] Poppe A, Peev M, Maurhart O. Outline of the SECOQC quantum-key-distributionnetwork in Vienna[J]. Int. J. Quan. Info., 2008, 6(2):209--218.
    [60] Chen T Y, Liang H, Liu Y, et al. Field test of a practical secure communication networkwith decoy-state quantum cryptography[J]. Opt. Express, 2009, 17(8):6540--6549.
    [61] Xu F, Chen W, Wang S, et al. Field experiment on a robust hierarchical metropolitanquantum cryptography network[J]. Chinese Science Bulletin, 2009, 54(17):2991--2997.
    [62] Li C. Real applications of quantum communications in China[J]. Chinese ScienceBulletin, 2009, 54(17):2976--2977.
    [63] Terhal B M, Wolf M M, Doherty A C. Quantum entanglement: A modern perspective[J]. Physics Today, 2003, 56(4):46--52.
    [64] Alber G, Beth T, Horodecki M, et al. Quantum Information: An Introduction toBasic Theoretical Concepts and Experiments[M]. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2001.
    [65] Aczel A D. Entanglement the greatest mystery in physics[M]. New York: FourWalls Eight WIndows, 2001.
    [66] Landauer R. Irreversibility and heat generation in the computing process[J]. IBMJ. Res. Dev., 1961, 5:183--191.
    [67] Landauer R. The physical nature of information[J]. Phys. Lett. A, 1996, 217:188--193.
    [68] Leff H S, Rex A F. Maxwell's Demon 2: Entropy, Classical and Quantum Information,Computing[M]. Bristol: Institute of Physics, 2003.
    [69] Bennett C H. Logical reversibility of computation[J]. IBM J. Res. Dev., 1973,17:525--532.
    [70] Benioff P. Models of Quantum Turing Machines[J]. Fortschritte der Physik, 1998,46(4-5):423--441.
    [71] Feynman R P. Simulating Physics with Computers[J]. Int. J. Theor. Phys., 1982,21(6):467.
    [72] Feynman R P. Feynman Lectures on Computation[M]. Cambridge, MA, USA:Perseus Books, 2000.
    [73] Grover L K. A Fast Quantum Mechanical Algorithm for Database Search[C]. Proc.28th Annual ACM Symp. on Theory of Computation. Philadelphia: ACM, NewYork, 1996:212--219.
    [74] Grover L K. Quantum Mechanics Helps in Searching for a Needle in a Haystack[J].Phys. Rev. Lett., 1997, 79(2):325--328.
    [75] DiVincenzo D P. Two-bit gates are universal for quantum computation[J]. Phys.Rev. A, 1995, 51(2):1015--1022.
    [76] Sohn L L, Kowenhoven L P, Sch?n G. Mesoscopic Electron Transport[M]. Dordrecht:Kluwer Academic Publishers, 1997.
    [77] DiVincenzo D P. The Physical Implementation of Quantum Computation[J].Fortschritte der Physik, 2000, 48(9-11):771--783.
    [78] Vandersypen L M K, Chuang I L. NMR techniques for quantum control and computation[J]. Reviews of Modern Physics, 2004, 76(4):1037--1069.
    [79] Blatt R, Wineland D. Entangled states of trapped atomic ions[J]. Nature, 2008,453(7198):1008--1015.
    [80] H?ffner H, Roos C, Blatt R. Quantum computing with trapped ions[J]. PhysicsReports, 2008, 469(4):155--203.
    [81] Kielpinski D. Ion-trap quantum information processing: Experimental status[J].Frontiers of Physics in China, 2008, 3(4):365--381.
    [82] Everitt H O. Experimental Aspects of Quantum Computing[M]. Secaucus, NJ,USA: Springer-Verlag New York, Inc., 2005.
    [83] Schleich W P, Walther H. Elements of Quantum Information[M]. Weinheim, Germany:Wiley-VCH, 2007.
    [84] Einstein A, Born M, Born H. The Born-Einstein letters: correspondence betweenAlbert Einstein and Max and Hedwig Born from 1916 to 1955 / With commentariesby Max Born (Translated by Irene Born)[M]. New York,USA: Walker, 1971.
    [85] Mermin N D. Is the Moon There When Nobody Looks? Reality and the QuantumTheory[J]. Physics Today, 1985, 38(4):38--47.
    [86] Audretsch J. Entangled World: The Fascination of Quantum Information and Computation[M]. Weinheim, Germany: Wiley-VCH, 2006.
    [87] Home D, Whitaker A. Einstein's Struggles with Quantum Theory: A Reappraisal[M]. New York, USA: Springer, 2007.
    [88] Bouwmeester D, Ekert A, Zeilinger A. The physics of quantum information[M].New York: Springer-Verlag, 2000.
    [89] Einstein A, Podolsky P, Rosen N. Can Quantum-Mechanical Description of PhysicalReality Be Considered Complete?[J]. Phys. Rev., 1935, 47:777.
    [90] Bohm D, Aharonov Y. Discussion of Experimental Proof for the Paradox of Ein-stein, Rosen, and Podolsky[J]. Phys. Rev., 1957, 108(4):1070--1076.
    [91] Bohm D. Quantum Theory[M]. New York: Prentice Hall, 1951.
    [92] Bohm D. A Suggested Interpretation of the Quantum Theory in Terms of "Hidden"Variables. I[J]. Phys. Rev., 1952, 85(2):166--179.
    [93] Bohm D. A Suggested Interpretation of the Quantum Theory in Terms of "Hidden"Variables. II[J]. Phys. Rev., 1952, 85(2):180--193.
    [94] Bohm D. Causality and Chance in Modern Physics[M]. New York: Harper, 1957.
    [95] BELL J S. On the Problem of Hidden Variables in Quantum Mechanics[J]. Reviewsof Modern Physics, 1966, 38(3):447--452.
    [96] Bell J S. On the Einstein-Podolsky-Rosen paradox[J]. Physics, 1964, 1:195--200.
    [97] Bell J S. Speakable and Unspeakable in Quantum Mechanics[M]. New York:Cambridge University Press, 1987.
    [98] Clauser J F, Horne M A, Shimony A, et al. Proposed Experiment to Test LocalHidden-Variable Theories[J]. Phys. Rev. Lett., 1969, 23(15):880--884.
    [99]张永德.量子力学[M].北京:科学出版社, 2002.
    [100] Kocher C A, Commins E D. Polarization Correlation of Photons Emitted in anAtomic Cascade[J]. Phys. Rev. Lett., 1967, 18(15):575.
    [101] Clauser J F, Shimony A. Bell's theorem. Experimental tests and implications[J].Rep. Prog. Phys., 1978, 41(12):1881--1927.
    [102] Freedman S J, Clauser J F. Experimental Test of Local Hidden-Variable Theories[J].Phys. Rev. Lett., 1972, 28(14):938.
    [103] Aspect A, Grangier P, Roger G. Experimental Tests of Realistic Local Theories viaBell's Theorem[J]. Phys. Rev. Lett., 1981, 47(7):460.
    [104] Aspect A, Grangier P, Roger G. Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell's Inequalities[J].Phys. Rev. Lett., 1982, 49(2):91--94.
    [105] Aspect A, Dalibard J, Roger G. Experimental Test of Bell's Inequalities UsingTime- Varying Analyzers[J]. Phys. Rev. Lett., 1982, 49(25):1804--1807.
    [106] Ou Z Y, Mandel L. Violation of Bell's Inequality and Classical Probability in aTwo-Photon Correlation Experiment[J]. Phys. Rev. Lett., 1988, 61(1):50.
    [107] Tittel W, Brendel J, Zbinden H, et al. Violation of Bell Inequalities by PhotonsMore Than 10 km Apart[J]. Phys. Rev. Lett., 1998, 81(17):3563.
    [108] Weihs G, Jennewein T, Simon C, et al. Violation of Bell's Inequality under StrictEinstein Locality Conditions[J]. Phys. Rev. Lett., 1998, 81(23):5039.
    [109] Tittel W, Brendel J, Gisin N, et al. Long-distance Bell-type tests using energy-timeentangled photons[J]. Phys. Rev. A, 1999, 59(6):4150.
    [110] Hasegawa Y, Loidl R, Badurek G, et al. Violation of a Bell-like inequality in neutronoptical experiments: quantum contextuality[J]. J. Opt. B, 2004, 6(3):S7--S12.
    [111] Bovino F A, Castagnoli G, Cabello A, et al. Experimental noise-resistant Bellinequalityviolations for polarization-entangled photons[J]. Phys. Rev. A, 2006,73(6):062110.
    [112] Ma X S, Qarry A, Kofler J, et al. Experimental violation of a Bell inequality withtwo different degrees of freedom of entangled particle pairs[J]. Phys. Rev. A, 2009,79(4):042101.
    [113] Feynman R P, Leighton R, Sands M. The Feynman Lectures on Physics: VolumeIII[M]. Boston: Addison-Wesley, 1963.
    [114] Horodecki R, Horodecki P, Horodecki M, et al. Quantum entanglement[J]. Reviewsof Modern Physics, 2009, 81(2):865--942.
    [115] Peres A. Separability Criterion for Density Matrices[J]. Phys. Rev. Lett., 1996,77(8):1413.
    [116] Horodecki M, Horodecki P, Horodecki R. Separability of mixed states: necessaryand sufficient conditions[J]. Phys. Lett. A, 1996, 223(1-2):1--8.
    [117] Terhal B M. Bell inequalities and the separability criterion[J]. Phys. Lett. A, 2000,271(5-6):319--326.
    [118] Terhal B M. Detecting quantum entanglement[J]. Theoretical Computer Science,2002, 287(1):313--335.
    [119] Lewenstein M, Kraus B, Cirac J I, et al. Optimization of entanglement witnesses[J].Phys. Rev. A, 2000, 62(5):052310.
    [120] Von Neumann J. Mathematical Foundation of Quantum Mechanics[M]. Princeton,NJ: Princeton University Press, 1955.
    [121] Bennett C H, DiVincenzo D P, Smolin J A, et al. Mixed-state entanglement andquantum error correction[J]. Phys. Rev. A, 1996, 54(5):3824--3851.
    [122] Wootters W K. Entanglement of Formation of an Arbitrary State of Two Qubits[J].Phys. Rev. Lett., 1998, 80(10):2245--2248.
    [123] Bennett C H, Brassard G, Popescu S, et al. Purification of Noisy Entanglement andFaithful Teleportation via Noisy Channels[J]. Phys. Rev. Lett., 1996, 76(5):722--725.
    [124] Vedral V, Plenio M B. Entanglement measures and purification procedures[J]. Phys.Rev. A, 1998, 57(3):1619--1633.
    [125] Vedral V, Plenio M B, Rippin M A, et al. Quantifying Entanglement[J]. Phys. Rev.Lett., 1997, 78(12):2275--2279.
    [126] Raimond J M, Brune M, Haroche S. Manipulating quantum entanglement withatoms and photons in a cavity[J]. Reviews of Modern Physics, 2001, 73(3):565--582.
    [127] Mabuchi H, Doherty A. Cavity quantum electrodynamics: Coherence in context[J].Science, 2002, 298:1372--1377.
    [128] Steffen M, Ansmann M, Bialczak R C, et al. Measurement of the Entanglement ofTwo Superconducting Qubits via State Tomography[J]. Science, 2006, 313:1423--1425.
    [129] Clarke J, Wilhelm F K. Superconducting quantum bits[J]. Nature, 2008, 453:1031--1042.
    [130] Zeilinger A, Weihs G, Jennewein T, et al. Happy Centenary, Photon[J]. nature,2005, 433:230--238.
    [131] Julsgaard B, Kozhekin A, Polzik E S. Experimental long-lived entanglement oftwo macroscopic objects[J]. Nature, 2001, 413(6854):400--403.
    [132] Wu C S, Shaknov I. The Angular Correlation of Scattered Annihilation Radiation[J]. Phys. Rev., 1950, 77(1):136--136.
    [133] Magde D, Mahr H. Study in Ammonium Dihydrogen Phosphate of SpontaneousParametric Interaction Tunable from 4400 to 16000 ?[J]. Phys. Rev. Lett., 1967,18(21):905--907.
    [134] Burnham D C, Weinberg D L. Observation of Simultaneity in Parametric Productionof Optical Photon Pairs[J]. Phys. Rev. Lett., 1970, 25(2):84--87.
    [135] Friberg S, Hong C K, Mandel L. Measurement of Time Delays in the ParametricProduction of Photon Pairs[J]. Phys. Rev. Lett., 1985, 54(18):2011--2013.
    [136] Abram I, Raj R K, Oudar J L, et al. Direct Observation of the Second-Order Coherenceof Parametrically Generated Light[J]. Phys. Rev. Lett., 1986, 57(20):2516-2519.
    [137] Hong C K, Ou Z Y, Mandel L. Measurement of subpicosecond time intervals betweentwo photons by interference[J]. Phys. Rev. Lett., 1987, 59(18):2044--2046.
    [138] Shih Y H, Alley C O. New Type of Einstein-Podolsky-Rosen-Bohm ExperimentUsing Pairs of Light Quanta Produced by Optical Parametric Down Conversion[J].Phys. Rev. Lett., 1988, 61(26):2921--2924.
    [139] Shih Y H, Sergienko A V, Rubin M H, et al. Two-photon entanglement in type-IIparametric down-conversion[J]. Phys. Rev. A, 1994, 50(1):23--28.
    [140] Shih Y H, Sergienko A V. Observation of quantum beating in a simple beamsplittingexperiment: Two-particle entanglement in spin and space-time[J]. Phys.Rev. A, 1994, 50(3):2564--2568.
    [141] Shih Y, Sergienko A. Two-photon anti-correlation in a Hanbury Brown-Twiss typeexperiment[J]. Phys. Lett. A, 1994, 186(1-2):29--34.
    [142] Shih Y, Sergienko A. A two-photon interference experiment using type II opticalparametric down conversion[J]. Phys. Lett. A, 1994, 191(3-4):201--207.
    [143] Sergienko A V, Shih Y H, Rubin M H. Experimental evaluation of a two-photonwave packet in type-II parametric downconversion[J]. J. Opt. Soc. Am. B, 1995,12(5):859--862.
    [144] Kwiat P G, Mattle K, Weinfurter H, et al. New High-Intensity Source ofPolarization-Entangled Photon Pairs[J]. Phys. Rev. Lett., 1995, 75(24):4337--4341.
    [145] Kwiat P G, Waks E, White A G, et al. Ultrabright source of polarization-entangledphotons[J]. Phys. Rev. A, 1999, 60(2):R773--R776.
    [146] White A G, James D F V, Eberhard P H, et al. Nonmaximally Entangled States: Production,Characterization, and Utilization[J]. Phys. Rev. Lett., 1999, 83(16):3103--3107.
    [147] Yariv A. Quantum Electronics[M]. New York: Wiley, 1967.
    [148] Klyshko D N. Photon and Nonlinear Optics[M]. New York: Gordon and BreachScience, 1988.
    [149] Ou Z Y, Wang L J, Mandel L. Vacuum effects on interference in two-photon downconversion[J]. Phys. Rev. A, 1989, 40(3):1428--1435.
    [150] Shih Y. Entangled biphoton source - property and preparation[J]. Rep. Prog. Phys.,2003, 66(6):1009--1044.
    [151] Ou Z Y. Multi-Photon Quantum Interference[M]. New York: Springer, 2007.
    [152] Barreiro-Guerrero J T. Hyperentanglement for Quantum Information[D]. Urbana,Illinois: University of Illinois at Urbana-Champaign, 2008.
    [153] Peters N A. One- and Two-Photon States for Quantum Information[D]. Urbana,Illinois: University of Illinois at Urbana-Champaign, 2006.
    [154] Kiess T E, Shih Y H, Sergienko A V, et al. Einstein-Podolsky-Rosen-Bohmexperiment using pairs of light quanta produced by type-II parametric downconversion[J]. Phys. Rev. Lett., 1993, 71(24):3893--3897.
    [155] Kiesel N. Experiments on Multiphoton Entanglement[D]. München: Ludwig-Maximilians-Universit?t München, 2007.
    [156] Rubin M H, Klyshko D N, Shih Y H, et al. Theory of two-photon entanglement intype-II optical parametric down-conversion[J]. Phys. Rev. A, 1994, 50(6):5122--5133.
    [157] Wu W, Liu W T, Ou B Q, et al. Remote state preparation with classically correlatedstate[J]. Optics Communications, 2008, 281(6):1751--1754.
    [158] Wu W, Liu W T, Han Y, et al. Experimental realization of deterministic entanglementtransformations of bipartite pure states[J]. Optics Communications, 2009,282(10):2093--2096.
    [159] Wu W, Liu W T, Chen P X, et al. Experimental Realization of Probabilistic RemoteState Preparation[J]. Int. J. Quan. Info., 2009, 7(6):1233--1240.
    [160] Wu W, Liu W T, Chen P X, et al. Deterministic remote preparation of arbitraryphoton polarization states[DB/OL]. arXiv:0909.2570, submitted to Phys. Rev. A.
    [161] Liu W T, Wu W, Ou B Q, et al. Experimental remote preparation of arbitrary photonpolarization states[J]. Phys. Rev. A, 2007, 76(2):022308.
    [162] Liu W T, Wu W, Chen P X, et al. Direct characterization of quantum dynamics withsingle-photon two-qubit states[J]. Phys. Rev. A, 2008, 77(3):032328.
    [163] James D F V, Kwiat P G, Munro W J, et al. Measurement of qubits[J]. Phys. Rev.A, 2001, 64(5):052312.
    [164] Jozsa R. Fidelity for Mixed Quantum States[J]. J. Mod. Opt., 1994, 41(12):2315--2323.
    [165] Cerf N J, Adami C, Kwiat P G. Optical simulation of quantum logic[J]. Phys. Rev.A, 1998, 57(3):R1477--R1480.
    [166] Brassard G, Braunstein S L, Cleve R. Teleportation as a quantum computation[J].Physica D, 1998, 120(1-2):43--47.
    [167] Lloyd S. Quantum Search Without Entanglement[J]. Phys. Rev. A, 1999,61(1):010301.
    [168] Knight P. Quantum Information Processing Without Entanglement[J]. Science,2000, 287(5452):441--442.
    [169] Howell J C, Yeazell J A. Reducing the complexity of linear optics quantum circuits[J]. Phys. Rev. A, 2000, 61(5):052303.
    [170] Englert B G, Kurtsiefer C, Weinfurter H. Universal unitary gate for single-photontwo-qubit states[J]. Phys. Rev. A, 2001, 63(3):032303.
    [171] Kwiat P G, Mitchell J R, Schwindt P D D, et al. Grover's search algorithm: Anoptical approach[J]. J. Mod. Opt., 2000, 47(2):257 -- 266.
    [172] Mitsumori Y, Vaccaro J A, Barnett S M, et al. Experimental Demonstration ofQuantum Source Coding[J]. Phys. Rev. Lett., 2003, 91(21):217902.
    [173] Bhattacharya N, van Linden van den Heuvell H B, Spreeuw R J C. Implementationof Quantum Search Algorithm using Classical Fourier Optics[J]. Phys. Rev. Lett.,2002, 88(13):137901.
    [174] Chen Z B, Pan J W, Zhang Y D, et al. All-Versus-Nothing Violation of LocalRealism for Two Entangled Photons[J]. Phys. Rev. Lett., 2003, 90(16):160408.
    [175] Yang T, Zhang Q, Zhang J, et al. All-Versus-Nothing Violation of Local Realismby Two-Photon, Four-Dimensional Entanglement[J]. Phys. Rev. Lett., 2005,95(24):240406.
    [176] Walborn S P, Pádua S, Monken C H. Hyperentanglement-assisted Bell-state analysis[J]. Phys. Rev. A, 2003, 68(4):042313.
    [177] Chen K Y, Hogg T, Beausoleil R. A Quantum Treatment of Public Goods Economics[J]. Quant. Info. Proc., 2002, 1(6):449--469.
    [178] Genovese M, Novero C. Double entanglement and quantum cryptography[J]. Eur.Phys. J. D, 2002, 21(1):109--113.
    [179] Aolita L, Walborn S P. Quantum Communication without Alignment usingMultiple-Qubit Single-Photon States[J]. Phys. Rev. Lett., 2007, 98(10):100501.
    [180] Beige A, Englert B G, Kurtsiefer C, et al. Secure communication with single-photontwo-qubit states[J]. J. Phys. A, 2002, 35(28):L407--L413.第128页
    [181] Kim T, genannt Wersborg I S, Wong F N C, et al. Complete physical simulation ofthe entangling-probe attack on the Bennett-Brassard 1984 protocol[J]. Phys. Rev.A, 2007, 75(4):042327.
    [182] Shapiro J H, Wong F N C. Attacking quantum key distribution with single-photontwo-qubit quantum logic[J]. Phys. Rev. A, 2006, 73(1):012315.
    [183] Kim Y H. Single-photon two-qubit entangled states: Preparation and measurement[J]. Phys. Rev. A, 2003, 67(4):040301.
    [184] Fiorentino M, Wong F N C. Deterministic Controlled-NOT Gate For Single-PhotonTwo-Qubit Quantum Logic[J]. Phys. Rev. Lett., 2004, 93(7):070502.
    [185] Fiorentino M, Kim T, Wong F N C. Single-photon two-qubit SWAP gate for entanglementmanipulation[J]. Phys. Rev. A, 2005, 72(1):012318.
    [186] Bennett C H, Bernstein H J, Popescu S, et al. Concentrating partial entanglementby local operations[J]. Phys. Rev. A, 1996, 53(4):2046--2052.
    [187] Lo H K, Popescu S. Concentrating entanglement by local actions: Beyond meanvalues[J]. Phys. Rev. A, 2001, 63(2):022301.
    [188] Nielsen M A. Conditions for a Class of Entanglement Transformations[J]. Phys.Rev. Lett., 1999, 83(2):436--439.
    [189] Jonathan D, Plenio M B. Entanglement-Assisted Local Manipulation of Pure QuantumStates[J]. Phys. Rev. Lett., 1999, 83(17):3566--3569.
    [190] Eisert J, Wilkens M. Catalysis of Entanglement Manipulation for Mixed States[J].Phys. Rev. Lett., 2000, 85(2):437--440.
    [191] Vidal G. Entanglement of Pure States for a Single Copy[J]. Phys. Rev. Lett., 1999,83(5):1046--1049.
    [192] Dür W, Vidal G, Cirac J I. Three qubits can be entangled in two inequivalentways[J]. Phys. Rev. A, 2000, 62(6):062314.
    [193] Eisert J. Entanglement in Quantum Information Theory[D]. Potsdam, Germany:University of Potsdam, 2008.
    [194] Duan R Y, Ji Z F, Feng Y, et al. Some Issues in Quantum Information Theory[J].J. Comput. Sci. Tech., 2006, 21(5):776--789.
    [195] Marshall A W, Olkin I. Inequalities: Theory of Majorization and Its Applications[M]. New York: Academic Press, 1979.
    [196] Alberti P M, Uhlmann A. Stochasticity and Partial Order: Doubly Stochastic Mapsand Unitary Mixing[M]. Boston: Springer, 1982.
    [197] Daftuar S, Klimesh M. Mathematical structure of entanglement catalysis[J]. Phys.Rev. A, 2001, 64(4):042314.
    [198] Vidal G, Cirac J I. Catalysis in Nonlocal Quantum Operations[J]. Phys. Rev. Lett.,2002, 88(16):167903.
    [199] Pan J W, Gasparoni S, Ursin R, et al. Experimental entanglement purification ofarbitrary unknown states[J]. Nature, 2003, 423(6938):417--422.
    [200] Kwiat P G, Barraza-Lopez S, Stefanov A, et al. Experimental entanglement distillationand 'hidden' non-locality[J]. Nature, 2001, 409(6823):1014--1017.
    [201] Wang Z W, Zhou X F, Huang Y F, et al. Experimental Entanglement Distillationof Two-Qubit Mixed States under Local Operations[J]. Phys. Rev. Lett., 2006,96(22):220505.
    [202] Zhao Z, Yang T, Chen Y A, et al. Experimental Realization of Entanglement Concentrationand a Quantum Repeater[J]. Phys. Rev. Lett., 2003, 90(20):207901.
    [203] Uhlmann A. Endlich-dimensionale dichtematrizen I[J]. Wiss. Z. Karl-Marx-Univ.,1972, 21:421.
    [204] Uhlmann A. Endlich-dimensionale dichtematrizen II[J]. Wiss. Z. Karl-Marx-Univ.,1973, 22:139.
    [205] Kraus K, Bohm A, Dollard J D, et al. Lecture Notes: States, effects, and operations:fundamental notions of quantum theory[M]. Berlin; New York: Springer-Verlag,1983.
    [206] Busch P, Grabowski M, Lahti P J. Operational Quantum Physics[M]. New York:Springer-Verlag, 1998.
    [207] Brandt H E, Myers J M, Lomonaco S J. Aspects of entangled translucent eavesdroppingin quantum cryptography[J]. Phys. Rev. A, 1997, 56(6):4456--4465.
    [208] Mosley P J, Croke S, Walmsley I A, et al. Experimental Realization of MaximumConfidence Quantum State Discrimination for the Extraction of Quantum Information[J]. Phys. Rev. Lett., 2006, 97(19):193601.
    [209] Ahnert S E, Payne M C. Nonorthogonal projective positive-operator-value measurementof photon polarization states with unit probability of success[J]. Phys.Rev. A, 2004, 69(1):012312.
    [210] Ahnert S E, Payne M C. General implementation of all possible positive-operator-value measurements of single-photon polarization states[J]. Phys. Rev. A, 2005,71(1):012330.
    [211] Ahnert S E, Payne M C. All possible bipartite positive-operator-value measurementsof two-photon polarization states[J]. Phys. Rev. A, 2006, 73(2):022333.
    [212] Andersson E, Oi D K L. Binary search trees for generalized measurements[J]. Phys.Rev. A, 2008, 77(5):052104.
    [213] Rosenfeld W. Experiments with an Entangled System of a Single Atom and a SinglePhoton[D]. München: Ludwig-Maximilians-Universit?t München, 2008.
    [214] Jensen J G, Schack R. Simple algorithm for local conversion of pure states[J]. Phys.Rev. A, 2001, 63(6):062303.
    [215] D'Ariano G M, Sacchi M F. Protocols for entanglement transformations of bipartitepure states[J]. Phys. Rev. A, 2003, 67(4):042312.
    [216] Wu C W, Chen P X, Li C Z. Simple Procedure for Entanglement Transformationof Bipartite Pure States[J]. Commun. Theor. Phys., 2008, 49(3):652--654.
    [217] Lo H K. Classical-communication cost in distributed quantum-information processing:A generalization of quantum-communication complexity[J]. Phys. Rev.A, 2000, 62(1):012313.
    [218] Pati A K. Minimum classical bit for remote preparation and measurement of aqubit[J]. Phys. Rev. A, 2000, 63(1):014302.
    [219] Bennett C H, DiVincenzo D P, Shor P W, et al. Remote State Preparation[J]. Phys.Rev. Lett., 2001, 87(7):077902.
    [220] Bennett C H, Hayden P M, Leung D W, et al. Remote preparation of quantumstates[J]. IEEE Transactions on Information Theory, 2005, 51(1):56--74.
    [221] Kuhr S, Alt W, Schrader D, et al. Deterministic Delivery of a Single Atom[J].Science, 2001, 293(5528):278--280.
    [222] Kuhr S, Alt W, Schrader D, et al. Coherence Properties and Quantum State Transportationin an Optical Conveyor Belt[J]. Phys. Rev. Lett., 2003, 91(21):213002.
    [223] ?ukowski M, Zeilinger A, Horne M A, et al. "Event-ready-detectors" Bell experimentvia entanglement swapping[J]. Phys. Rev. Lett., 1993, 71(26):4287--4290.
    [224] Bouwmeester D, Pan J W, Mattle K, et al. Experimental Quantum Teleportation[J].Nature, 1997, 390(6660):575.
    [225] Boschi D, Branca S, Martini F D, et al. Experimental Realization of Teleportingan Unknown Pure Quantum State via Dual Classical and Einstein-Podolsky-RosenChannels[J]. Phys. Rev. Lett., 1998, 80(6):1121--1125.
    [226] Furusawa A, S?ensen J, Braunstein S, et al. Unconditional Quantum Teleportation[J]. Science, 1998, 282(5389):706--709.
    [227] Nielsen M A, Knill E, Laflamme R. Complete quantum teleportation using nuclearmagnetic resonance[J]. Nature, 1998, 396(6706):52--55.
    [228] Riebe M, Haffner H, Roos C F, et al. Deterministic quantum teleportation withatoms[J]. Nature, 2004, 429(6993):734--737.
    [229] Barrett M D, Chiaverini J, Schaetz T, et al. Deterministic quantum teleportation ofatomic qubits[J]. Nature, 2004, 429(6993):737--739.
    [230] Sherson J F, Krauter H, Olsson R K, et al. Quantum teleportation between light andmatter[J]. Nature, 2006, 443(7111):557--560.
    [231] Weinfurter H. Experimental Bell-State Analysis[J]. Europhys. Lett., 1994,25(8):559--564.
    [232] Braunstein S L, Mann A. Measurement of the Bell operator and quantum teleportation[J]. Phys. Rev. A, 1995, 51(3):R1727--R1730.
    [233] Lütkenhaus N, Calsamiglia J, Suominen K A. Bell measurements for teleportation[J]. Phys. Rev. A, 1999, 59(5):3295--3300.
    [234] Vaidman L, Yoran N. Methods for reliable teleportation[J]. Phys. Rev. A, 1999,59(1):116--125.
    [235] Schuck C, Huber G, Kurtsiefer C, et al. Complete Deterministic Linear Optics BellState Analysis[J]. Phys. Rev. Lett., 2006, 96(19):190501.
    [236] Schmid C, Kiesel N, Weber U K, et al. Quantum teleportation and entanglementswapping with linear optics logic gates[J]. New J. Phys., 2009, 11(3):033008.
    [237] van Houwelingen J A W, Brunner N, Beveratos A, et al. Quantum Teleportationwith a Three-Bell-State Analyzer[J]. Phys. Rev. Lett., 2006, 96(13):130502.
    [238] Kim Y H, Kulik S P, Shih Y H. Quantum Teleportation of a Polarization State witha Complete Bell State Measurement[J]. Phys. Rev. Lett., 2001, 86:1370--1373.
    [239] Ye M Y, Zhang Y S, Guo G C. Faithful remote state preparation using finite classicalbits and a nonmaximally entangled state[J]. Phys. Rev. A, 2004, 69(2):022310.
    [240] Devetak I, Berger T. Low-Entanglement Remote State Preparation[J]. Phys. Rev.Lett., 2001, 87(19):197901.
    [241] Berry D W, Sanders B C. Optimal Remote State Preparation[J]. Phys. Rev. Lett.,2003, 90(5):057901.
    [242] Peng X, Zhu X, Fang X, et al. Experimental implementation of remote state preparationby nuclear magnetic resonance[J]. Phys. Lett. A, 2003, 306(5-6):271--276.
    [243] Babichev S A, Brezger B, Lvovsky A I. Remote Preparation of a Single-ModePhotonic Qubit by Measuring Field Quadrature Noise[J]. Phys. Rev. Lett., 2004,92(4):047903.
    [244] Ericsson M, Achilles D, Barreiro J T, et al. Measurement of Geometric Phasefor Mixed States Using Single Photon Interferometry[J]. Phys. Rev. Lett., 2005,94(5):050401.
    [245] Peters N A, Barreiro J T, Goggin M E, et al. Remote State Preparation: ArbitraryRemote Control of Photon Polarization[J]. Phys. Rev. Lett., 2005, 94(15):150502.
    [246] Buzek V, Hillery M, Werner R F. Optimal manipulations with qubits: Universal-notgate[J]. Phys. Rev. A, 1999, 60:R2626.
    [247] Leung D W, Shor P W. Oblivious Remote State Preparation[J]. Phys. Rev. Lett.,2003, 90(12):127905.
    [248] Hayashi A, Hashimoto T, Horibe M. Remote state preparation without obliviousconditions[J]. Phys. Rev. A, 2003, 67(5):052302.
    [249] Rosenfeld W, Berner S, Volz J, et al. Remote Preparation of an Atomic QuantumMemory[J]. Phys. Rev. Lett, 2007, 98(5):050504.
    [250] Barrow J D, Davies P C W, Harper C L. Science and ultimate reality : quantumtheory, cosmology, and complexity[M]. New York: Cambridge University Press,2004.
    [251] Zurek W H. Einselection and decoherence from an information theory perspective[J]. Ann. Phys. (Leipzig), 2000, 9(11-12):855--864.
    [252] Henderson L, Vedral V. Classical, quantum and total correlations[J]. J. Phys. A,2001, 34(35):6899.
    [253] Ollivier H, Zurek W H. Quantum Discord: A Measure of the Quantumness ofCorrelations[J]. Phys. Rev. Lett., 2001, 88(1):017901.
    [254] Oppenheim J, Horodecki M, Horodecki P, et al. Thermodynamical Approach toQuantifying Quantum Correlations[J]. Phys. Rev. Lett., 2002, 89(18):180402.
    [255] Terhal B M, Horodecki M, Leung D W, et al. The entanglement of purification[J].J. Math. Phys. (N.Y.), 2002, 43(9):4286--4298.
    [256] Vedral V. Classical Correlations and Entanglement in Quantum Measurements[J].Phys. Rev. Lett., 2003, 90(5):050401.
    [257] DiVincenzo D P, Horodecki M, Leung D W, et al. Locking Classical Correlationsin Quantum States[J]. Phys. Rev. Lett., 2004, 92(6):067902.
    [258] Gogo A, Snyder W D, Beck M. Comparing quantum and classical correlations ina quantum eraser[J]. Phys. Rev. A, 2005, 71(5):052103.
    [259] Hamieh S, Qi J, Siminovitch D, et al. Extracting classical correlations from a bipartitequantum system[J]. Phys. Rev. A, 2003, 67(1):014301.
    [260] Hamieh S, Kobes R, Zaraket H. Positive-operator-valued measure optimization ofclassical correlations[J]. Phys. Rev. A, 2004, 70(5):052325.
    [261] Groisman B, Popescu S, Winter A. Quantum, classical, and total amount of correlationsin a quantum state[J]. Phys. Rev. A, 2005, 72(3):032317.
    [262] Huang J H, Zhu S Y. Measure of classical correlation in a two-qubit state[J]. J.Phys. A, 2008, 41(12):125301.
    [263] Collins D, Popescu S. Classical analog of entanglement[J]. Phys. Rev. A, 2002,65(3):032321.
    [264] Brassard G, Cleve R, Tapp A. Cost of Exactly Simulating Quantum Entanglementwith Classical Communication[J]. Phys. Rev. Lett., 1999, 83(9):1874--1877.
    [265] Steiner M. Towards quantifying non-local information transfer: finite-bit nonlocality[J]. Phys. Lett. A, 2000, 270(5):239--244.
    [266] Rubin M H. Simulating entangled sources by classically correlated sources andquantum imaging[DB/OL]. arXiv:0303188.
    [267] Cerf N J, Gisin N, Massar S. Classical Teleportation of a Quantum Bit[J]. Phys.Rev. Lett., 2000, 84(11):2521--2524.
    [268] Ghosh S, Kar G, Roy A, et al. Entanglement versus noncommutativity in teleportation[J]. Phys. Rev. A, 2002, 65(3):032309.
    [269] Koashi M, Winter A. Monogamy of quantum entanglement and other correlations[J]. Phys. Rev. A, 2004, 69(2):022309.
    [270] Abouraddy A F, Saleh B E A, Sergienko A V, et al. Role of Entanglement in Two-Photon Imaging[J]. Phys. Rev. Lett., 2001, 87(12):123602.
    [271] Gatti A, Brambilla E, Bache M, et al. Ghost Imaging with Thermal Light:Comparing Entanglement and Classical Correlation[J]. Phys. Rev. Lett., 2004,93(9):093602.
    [272] Gatti A, Brambilla E, Bache M, et al. Correlated imaging, quantum and classical[J].Phys. Rev. A, 2004, 70(1):013802.
    [273] Wang K, Cao D Z. Subwavelength coincidence interference with classical thermallight[J]. Phys. Rev. A, 2004, 70(4):041801.
    [274] Valencia A, Scarcelli G, D'Angelo M, et al. Two-Photon Imaging with ThermalLight[J]. Phys. Rev. Lett., 2005, 94(6):063601.
    [275] Zhang D, Zhai Y H, Wu L A, et al. Correlated two-photon imaging with true thermallight[J]. Opt. Lett., 2005, 30(18):2354--2356.
    [276] Basano L, Ottonello P. Experiment in lensless ghost imaging with thermal light[J].Appl. Phys. Lett., 2006, 89(9):091109.
    [277] Zhang C. Preparation of polarization-entangled mixed states of two photons[J].Phys. Rev. A, 2004, 69(1):014304.第135页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700