量子信息处理的原理和光学实现的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着信息技术和量子力学的发展,以量子力学为基本规律的量子信息学逐渐形成。由于量子力学的叠加原理大幅度的提高了计算效率,而且量子力学的非经典相关使得真正的保密通讯(永远不会被破译)成为可能,量子信息学倍受关注,并成为当今学术界非常关心的热门领域。量子信息的核心旨在巧妙地利用量子相干性(对多粒子系统表现为量子纠缠)对信息的新型载体——量子比特进行操纵控制,以非常规的方式进行信息的编码、存储和传递。如今理论上对量子信息处理的探讨进行得如火如荼,为了证明在信息操纵和信息传输上量子力学具有着非常巨大的潜力,人们也急切的寻找着能实现量子信息处理的物理系统。过去几十年中,由于光学系统在量子工程上的深厚基础以及光学探测技术的发展,光学系统早已成为检验量子力学基本原理的重要系统,如今又自然的成为了实现量子信息处理的首选系统。
     本文研究典型纠缠态的产生与制备、纠缠的量度和纠缠的传送,以及以纠缠为基础的几个典型量子信息处理过程(包括量子隐形传态、量子博弈和量子无错鉴别)的光学实现。本文的主要创新结果如下:
     1、利用量子比特的单光子表示,提出了实现包括Einstein-Podolsky-Rosen(EPR)态在内的两个量子比特的任意纠缠态的量子隐形传态的全线性光学实现方案。我们使用的线性光学元件分别是分束器、相移器和波片。这种全线性光学实现方案是基于单光子路径和极化都可以表示量子比特。该方案中我们总共使用了五个量子比特,其中四个是单光子的路径量子比特,一个是单光子的极化量子比特。
     2、通过非线性光学元件线性光学元件的组合,首次提出了一种
With the development of information technique and quantum mechanics, a new subject based on the law of quantum mechanics-quantum information theory comes into being. Because of the large improvements in computational efficiency and communication security by exploiting the superposition principle and the non-classical correlation of quantum mechanics, quantum information theory soon attracts much attention and becomes the hottest areas of modern academe. It is the quantum coherence which lies at the heart of quantum information that makes the manipulation of information-carrier qubits possible, and the occurrence of the information coding, storing and transferring in a unconventionality way. Nowadays the processing of quantum information is theoretically under intense investigation, people are eagerly to find physical system to testify potential improvements offered by quantum mechanics to the manipulation and the transmission of information. Based on the substantial development in quantum engineering and measurement of light in the past decades, quantum optical systems are ideal for the experimental test of the foundation of quantum mechanics as well as for the experimental implementation of quantum information processing.This thesis investigates the generation and preparation of several typical entangled states, the measurement and transmission of entanglement, as well as the typical information processing based on entanglement which includes quantum teleportation, quantum game and error-free discriminations of quantum states. Our mainly work is as follow:
    (1) Based on the representation of multiple qubits by single photon, we present a linear optical implementation for quantum teleportation of an unknown two-qubit entangled state by using linear optical elements. The optical elements used here are beam splitters, phase shifters and wave plates. In this optical proposal, five qubits are involved, one of them are built by the polarization of single photon, which is called the polarization qubit, and the others are constructed by the paths where the single photon takes, which is called the location qubit.(2) Present a proposal for optically implementing the quantum game of the two-player quantum prisoner's dilemma by using some linear and nonlinear optical elements. Further we present a feasible scheme by only using linear optical elements. The most important part of quantum Prisoner's dilemma is player's strategies and the gate which introduces entanglement. The strategies of each player are made up of two beam splitters and four phase shifters, and the entangling gate is consist of beam splitters, phase shifters and additional cross Kerr medium. In the further scheme of quantum prisoner's dilemma, in addition to beam splitters and phase shifters, the quarter-wave plates and half-wave plates are used to realize the strategies and the entangling gate.(3) Give an optical method for optimal error-free discrimination of some linear independent states by the coupling of the original particle to an ancillary system. The two systems are represented by different degrees of freedom of a single photon, one is the photon' s polarization, and the other is the photon' s travelling paths. The apparatus we used here are polarized beam splitters, wave plates and single photon detectors.(4) Propose a method for optically creating entangled squeezed vacuum states (SVSs) by introducing a SVS-phase shifter whose possible realization is
引文
[1] E. Schrodinger. Die gegenwartige Situation in der quantenmechanik[J]. Naturwissenschaften, 1935, 23(5): 807.
    [2] A. Einstein, B. Podolsky and N. Rosen. Can quantum-mechanical description of physical reality be considered complete[J]. Phys. Rev., 1935 47(10): 777.
    [3] 李承祖,黄明球,陈平形,等.量子通信和量子计算[M].长沙:国防科技大学出版社,2000:101.
    [4] C.H. Bennett and G. Brassard. Qauntum cryptography: public key distribution and coin tossing[M]. IEEE New York: Proc. IEEE Int. Conf. Comp., 1984: 1.
    [5] C.H. Bennett. Quantum cryptography using any two nonorthogonal states[J]. Phys. Rev. Lett., 1992, 68(21): 3121.
    [6] C.H. Bennett, G. Brassard, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolski-Rosen channels[J]. Phys. Rev. Lett., 1993, 70(13): 1895.
    [7] M. Zukowski, A. Zeilinger, et al. "Event-ready-detectors" Bell experiment via entanglement swapping[J]. Phys. Rev. Lett., 1993 71(26): 4287.
    [8] C.H. Bennett and S.J. Wiesner. Communication via one- and two-particle operators on Einstein-Podolski-Rosen states[J]. Phys. Rev. Lett., 1992, 69(20): 2881.
    [9] C.H. Bennett, G. Brassard, et al. Purification of noisy entanglement and faithful teleportation via noisy channels[J]. Phys. Rev. Lett., 1996 76(5): 722.
    [10] R. Somma, G. Ortiz, et al. Simulating physical phenomena by quantum networks[J]. Phys. Rev. A, 2002 65(4): 042323.
    [11] P.W. Shor. Algorithms for Quantum Computation: Discrete Logarithms and Factoring[M]. Los Alamitos: IEEE Computer Society Press, 1994: 124.
    [12] L. K. Grover. Quantum Mechanics Helps in Searching for a Needle in a Haystack[J]. Phys. Rev. Lett., 1997, 79(2): 325.
    [13] G. L. Long. Grover algorithm with zero theoretical failure rate[J]. Phys. Rev. A, 2001 64(2): 022307.
    [14] D. Deutsch and R. Jozsa. Rapid solution of problems by quantum computation[J]. Proc. R. Soc. London A, 1992, 439(1907): 553.
    [15] P.W. Shor. Scheme for reducing deconerence in quantum computer memory[J]. Phys. Rev. A, 1995, 52(4): R2493.
    [16] A. M. Steane. Error correcting codes in quantum theory[J]. Phys. Rev. Lett., 1996, 77(5): 793.
    [17] B. Rainer. Push-button entanglement [J]. Nature, 2000, 404(6775): 231.
    [18] C. A. Sackett, D. Kielpinski, et al. Experimental entanglement of four particies[J]. Nature, 2000, 404(6775): 256.
    [19] D.G. Cory, R. Laflamme, et al. NMR Based Quantum Information Processing: Achievements and Prospects[J]. Fortschr. Phys., 2000, 48(9-11): 875.
    [20] Ximing Fang, Xiwen Zhu, et al. Experimental Implementaton of Dense Coding Using Nuclear Magnetic Resonance[J]. Phys. Rev. A, 2000, 61(2): 022307.
    [21] Xinhua Peng, Xiwen Zhu, et al. Experimental implementation of Hogg's algorithm on a three-quantum-bit NMR quantum computer [J]. Phys. Rev. A, 2002, 65(4): 042315.
    [22] Xinhua Peng, Xiwen Zhu, et al. Experimental Implementation of Remote State Preparation by Nuclear Magnetic Resonance [J]. Phys. Lett. A, 2003, 306(5):271.
    [23] X. Maitre, E. Hagley, et al. Quantum Memory with a Single Photon in a Cavity[J]. Phys. Rev. Lett., 1997, 79(4): 769.
    [24] R. Folman, P. Kruger, et al. Controlling Cold Atoms using Nanofabricated Surfaces: Atom Chips [J]. Phys. Rev. Lett., 2000, 84(20): 4749.
    [25] G. K. Brennen, C. M. Caves, et al. Quantum Logic Gates in Optical Lattices[J]. Phys. Rev. Lett., 1999, 82(5): 1060.
    [26] D. Jaksch, H.-J. Briegel, et al. Entanglement of Atoms via Cold Controlled Collisions[J]. Phys. Rev. Lett., 1999, 82(9): 1975.
    [27] J. I. Cirac, P. Zoller. A scalable quantum computer with ions in an array of microtraps[J]. Nature, 2000, 404(6778): 579.
    [28] B. E. Kane. A silicon-based nuclear spin quantum computer[J]. Nature, 1998, 393(6681): 133.
    [29] P. M. Platzman and M. I. Dykman. Quantum Computing with Electrons Floating on Liquid Helium[J]. science, 1999, 284(5422): 1967.
    [30] Ian A. Walmsley and Michael G. Raymer. Toward quantum-information processing with photons [J]. Science, 2005, 307(5716): 1733.
    [31] Michael Reck, Anton Zeilinger. Experimental Realization of Any Discrete Unitary Operator[J]. Phys. Rev. Lett., 1994, 73(1): 58.
    [32] D.Bouwmeester, J.W. Pan, K.Mattle, et al. Experimental quantum teleportation[J]. Nature, 1997, 390(6660): 575.
    [33] J.W. Pan, S. Gasparoni, et al. Experimental realization of freely propagating teleported qubits[J]. Nature, 2003, 421(6924): 721.
    [34] Z. Zhao, Y.-A.o Chen, et al. Experimental Demonstration of Five-photon Entanglement and Open-destination Teleportation[J]. Nature, 2004, 430(6995): 54-58.
    [35] Jian-Wei Pan, Dik Bouwmeester, et al. Experimental Entanglement Swapping: Entangling Photons That Never Interacted[J]. Phys. Rev. Lett., 1998, 80(18): 3891.
    [36] J.W. Pan, C. Simon, et al. Entanglement purification for quantum communication[J]. Nature, 2001, 410(6832): 1067.
    [37] Christoph Simon, Jian-Wei Pan. Polarization Entanglement Purification using Spatial Entanglement[J]. Phys. Rev. Lett., 2002, 89(25): 257901.
    [38] Z. Zhao, T. Yang, et al. Experimental Realization of Entanglement Concentration and A Quantum Repeater[J]. Phys. Rev. Lett., 2003, 90(20): 207901.
    [39] C.H. Bennett, F. Bessette, et al. Experiment quantum cryptography[J]. J. Cryptology, 1992, 5(1): 3.
    [40] D. Bethune, E. Risk. An autocompensating fiberoptic quantum cryptography system based on polarization splitting of light[J]. IEEE J. Quantum Electron, 2000, 36(3): 340.
    [41] M. Bourenane, M.D. Ljunggren, et al. Experimental long wavelength quantum cryptography: from single photon trasmission to key extraction protocols[J]. J. Mod. Opt., 2000, 47(3): 563.
    [42] F. Grosshans, G. Assche, et al. quantum key distribution using gaussianmodulated coherent states[J]. Nature, 2003, 421(6920): 238.
    [43] A. Beveratos, R. Brouri, et al. Single photon quantum cryptography[J]. Phys. Rev. Lett., 2002, 89(18): 187901.
    [44] Li Xiao, Cui Lu Long, et al. Efficient multiparty quantum-secret-sharing schemes [J]. Phys. Rev. A, 2004, 69(5): 052307.
    [45] Y.Z. Gui, Z.F. Han, X.F. Mo, et al. Experimental quantum key distribution over 14.8 km in a special optical fibre[J]. Chin. Phys. Lett., 2003, 20(5): 608.
    [46] J. Zhang, K.C. Peng. Quantum teleportation and dense coding by means of bright amplitude-squeezed light and direct measurement of a Bell state[J]. Phys. Rev. A, 2000, 62(6): 064302.
    [47] X.-Y Li, Q. Pan, et al. Quantum Dense Coding Exploiting a Bright Einstein- Podolsky-Rosen Beam[J]. Phys. Rev. Lett., 2002, 88(4): 047904.
    [48] J. Zhang, C.-D. Xie, K.C. Peng. Controlled dense coding for continuous variables using three-particle entangled states[J]. Phys. Rev. A, 2002, 66(3): 032318.
    [49] J.-T. Jing, J. Zhang, et al. Experimental Demonstration of Tripartite Entanglement and Controlled Dense Coding for Continuous Variables[J]. Phys. Rev. Lett., 2003, 90(16): 167903.
    [50] X.-J. Jia, X.-L. Su, et al. Experimental Demonstration of Unconditional Entanglement Swapping for Continuous Variables[J]. Phys. Rev. Lett., 2004, 93(25): 250503.
    [51] E. Knill, R. Laflamme, G. J. Milburn. A scheme for effient quantum computation with linear optics[J]. Nature, 2001, 409(6816): 46.
    [52] Kaoru Sanaka, Thomas Jennewein, et al. Experimental Nonlinear Sign Shift for Linear Optics Quantum Computation[J]. Phys. Rev. Lett., 2004, 92(1): 17902.
    [53] T. B. Pittman, B. C. Jacobs, and J. D. Franson. Probabilistic quantum logic operations using polarizing beam splitters[J]. Phys. Rev. A, 2001, 64(6): 062311.
    [54] Z. Zhao, A.-N. Zhang, et al. Experimental Demonstration of a Nondestructive Controlled-NOT Quantum Gate for Two Independent Photon Qubits[J]. Phys. Rev. Lett., 2005, 94(3): 30501.
    [55] M. Mohseni, J. S. Lundeen, et al. Experimental Application of Decoherence Free Subspaces in an Optical Quantum-Computing Algorithm[J]. Phys. Rev. Lett., 2003, 91(18): 187903.
    [56] S.X. Yu, C.P. Sun. Canonical quantum teleportation[J]. Phys. Rev. A, 2000, 61(2): 022310.
    [57] Jindong Zhou, Gugang Hou, Yongde Zhang. Teleportation scheme of s-level quantum pure states by two-level Einstein-Podolsky-Rosen states [J]. Phys. Rev. A, 2001, 64(1): 012301.
    [58] S.B. Zheng, G.C. Guo. Teleportation of atomic states within cavities in thermal states[J]. Phys- Rev. A, 2001, 63(4): 044302.
    [59] S. Wiesner. Conjugate coding[J]. SIGACT News, 1983, 15(1): 78.
    [60] S. Massar and S. Popescu. Optima extractionn of information from finite quantum ensembJes[J]. Phys. Rev. Lett., 1995, 74(8): 1259.
    [61] D. A. Meyer. Quantum Strategies[J]. Phys. Rev. Lett., 1999, 82(5): 1052.
    [62] Jens Eisert, Matin Wilkens, Maciej Lewenstein. Quantum Game and Quantum Strategies[J]. Phys. Rev. Lett., 1999, 83(15): 3077.
    [63] S. C. Benjamin, P. M. Hayden. Multiplayer Quantum Game[J]. Phys. Rev. A., 2001, 64(3): 030301.
    [64] Y.J. Han, Y.S. Zhang, G.C. Guo. W state and Greenberger-Horne-Zeilinger state in quantum three-person prisoner's dilemma[J]. Phys. Lett. A, 2002, 295(2): 61.
    [65] A. Iqbal, A.H. Toor. Quantum cooperative games[J]. Phys. Lett. A, 2002, 293(3): 103.
    [66] Y.M. Ma, G.L. Long, et al. Cooperative three- and four-player quantum games[J]. Phys. Lett. A, 2002, 301(2): 117.
    [67] Jiangfeng Du et al. Experimental Realization of Quantum Games on a Quantum Computer[J]. Phys. Rev. Lett., 2002, 88(13): 137902.
    [68] A. Iqbal, A.H. Toor. Eyolutionarily stable strategies in quantum games[J]. Phys. Lett. A, 2001, 280(5): 249.
    [69] E.W. Piotrowski, J. Sladkowski. Quantum market games[J]. Physica A, 2002, 312(1-2): 208.
    [70] E.W. Piotrowski, J. Sladkowski. Quantum English Auctions[J]. Physica A, 2003, 318(3-4): 505.
    [71] W. K. Wotter and W. H. Zurek. A single quantum cannot be cloned[J]. Nature, 1982, 299(5886): 802.
    [72] R. Feynman. Simulating Physics with Computers[J]. Int. J. Theor. Phys., 1982, 21(6-7): 467.
    [73] D. Deutsch. Quantum Theory, the Church-Turing Principle and Universal Quantum Computer[J]. Proc. R. Soc. London A, 1985, 400(1320): 97.
    [74] Sudhakar Prasad, Marlan O. Scully, Werner Martienssen. A quantum description of beam splitter[J]. Opt. Commun., 1987, 62(3): 139.
    [75] T. Jennewein, C. Simon, et al. Quantum Cryptography with Entangled Photons[J]. Phys. Rev. Lett., 2000, 84(20): 4729.
    [76] K. Mattle, H. Weinfurter, et al. Dense Coding in Experimental Quantum Communication[J]. Phys. Rev. Lett., 1997, 76(25): 4656.
    [77] C. K. Hong, Z. Y. Ou, and L. Mandel. Measurement ofsubpicosecond time intervals between two photons by interference[J]. Phys. Rev. Lett., 1987, 59(18): 2044.
    [78] Z. Y. Ou, and L. Mandel. Observation of spatial quantum beating with separated photodetectors[J]. Phys. Rev. Lett., 1988, 61(1): 54.
    [79] Ulf Leonhardt. Measuring the quantum state of light[M]. United Kingdom: Cambridge University Press, 1997: 67.
    [80] Bernard Yurke, Samuel L. et al. SU(2) and SU(1,1) interferometers[J]. Phys. Rev. A, 1986, 33(6): 4033.
    [81] Richard A. Campos, Bahaa. E. A. Saleh, Malvin C. Teich. Quantum-mechanical 1ossless beam splitter: SU(2) symmetry and photon statistics[J]. Phys. Rev. A, 1989, 40(3): 1371.
    [82] Matteo G. A. Paris. Displacement operator by beam splitter[J]. Phys. Lett. A, 1996, 217(1): 78.
    [83] 廖延彪.偏振光学[M].北京:科学出版社,2003:212.
    [84] L. Vaidman. Teleportation of quantum states[J]. Phys. Rev. A, 1994, 49(2): 1473.
    [85] S. L. Braunstein and H. J. Kimble. Teleportation of Continuous Quantum Variables[J]. Phys. Rev. Lett., 1998, 80(4): 869.
    [86] Lan Zhou, Leman Kuang. Linear Optical Implementation for Quantum Teleportation of Unknown Two-Qubit Entangled States[J]. Chin. Phys. Lett., 2004, 21(11): 2101.
    [87] A. Furusawa, et al. Unconditional quantum teleportation[J]. Science, 1998, 282(5389): 706.
    [88] V. N. Gorbachev and A. I. Trubilko. Quantum Teleportation of an Einstein-Podolsy-Rosen Pair Using an Entangled Three-Particle State [J]. J. Exp. Theor. Phys., 2000, 91(5): 894.
    [89] N. J. Cerf, C. Adami, P. G. Kwiat. Optical simulation of quantum logic[J]. Phys. Rev. A, 1998, 57(3): R1477.
    [90] L. Zhou, Leman Kuang. Optical preparation of entangled squeezed vacuum states[J]. Phys. Lett. A, 2002, 302(5): 273.
    [91] L. Zhou, Leman Kuang. Proposal for optically realizing a quantmn game[J]. Phys. Lett. A, 2003, 315(3): 246.
    [92] J. Lu, L. Zhou, Leman Kuang. Linear optics implementation for quantum game with two players[J]. Phys. Lett. A, 2004, 330(1): 48.
    [93] 曾谨言,龙桂鲁,等.量子力学新进展(第三辑)[M].北京:北京大学出版社, 2003:188.
    [94] 张维迎.博弈论与信息经济学[M].上海:上海人民出版社,1996:12.
    [95] J. Du, X. Xu, et al. Entanglement playing a dominating role in quantum games[J]. Phys. Lett. A, 2001, 289(1): 9.
    [96] C.C. Gerry and R.A. Campos. Generation of maximally entangled photonic states with a quantum-optical Predkin gate[J]. Phys. Rev. A, 2001, 64(6): 063814.
    [97] N. Imoto, H. A. Haus, Y. Yamamoto. Quantum nondemolition measurement of the photon number via the optical Kerr effect[J]. Phys. Rev. A, 1985, 32(4): 2287.
    [98] J. Du, H. Li, et al. Entanglement enhanced multiplayer quantum games[J]. Phys. Lett. A, 2002, 302(5): 229.
    [99] J. L. Chen, L. C. Kwek, C. H. Oh. Noisy quantum game[J]. Phys. Rev. A, 2002, 65(5): 052320.
    [100] X. F. Liu, C. P. Sun. Generalized Quantum Games with Nash Equilibrium[J]. Commun. Theor. Phys., 2004, 41(4): 553.
    [101] C.W. Helstrom. Quantum Detection and Estimation Theory[M]. New York: Academic Press, 1976: 45.
    [102] I.D. Ivanovic. How to differentiate between non-orthogonal states[J]. Phys. Lett. A, 1987, 123(6): 257.
    [103] D. Dieks. Overlap and distinguishability of quantum states[J]. Phys. Lett. A, 1988, 126(5): 303.
    [104] A. Peres. How to differentiate between non-orthogonal states[J]. Phys. Lett. A, 1988, 128(1): 19.
    [105] G. Jaeger and A. Shimony. Optimal distinction between two non-orthogonal quantum states[J]. Phys. Lett. A, 1995, 197(2): 83.
    [106] A. Chefles. Unambiguous discrimination between linearly independent quantum states[J]. Phys. Lett. A, 1998, 239(6): 339.
    [107] A. Chefles and S.M. Barnett. Optimum unambiguous discrimination between linearly independent symmetric states[J]. Phys. Lett. A, 1998, 250(4): 223.
    [108] B. Huttner, A. Muller, et al. Unambiguous quantum measurement of nonorthogonal states[J]. Phys. Rev. A, 1996, 54(5): 3783.
    [109] R. B.M. Clarke, A. Chefles, et al. Experimental demonstration of optimal unambiguous state discrimination[J]. Phys. Rev. A, 2001, 63(4): 040305(R).
    [110] Y. Sun, M. Hillery, J.A. Bergou. Optimum unambiguous discrimination between linearly independent nonorthogonal quantum states and its optical realization[J]. Phys. Rev. A, 2001, 64(2): 022311.
    [111] M. Mohseni, A. M. Steinberg, J. A. Bergou. Optical Realization of Optimal Unambiguous Discrimination for Pure and Mixed Quantum States[J]. Phys. Rev. Lett., 2004, 93(20): 200403.
    [112] Jing Lu, Lan zhou, Le-Man Kuang. Optical implementation for optimum unambiguous discrimination among quantum states [J]. In preparation.
    [113] John Preskill, Quantum informtation and computation[M/OL]. http://www.theory.caltech.edu/people/preskill/ph229/index.html.
    [114] A. Barenco, C.H.Bennet, et al. Elementary gates for quantum computation[J]. Phys. Rev. A, 1995, 52(5): 3457.
    [115] B. G. Englert, C. Kurtsiefer, H. Weinfurter. Universal unitary gate for singlephoton two-qubit states [J]. Phys. Rev. A, 2001, 63(3): 032303.
    [116] Stephen M. Barnett and Paul M. Radmore. Methods in Theoretical Quantum Optics[M]. New York: Clarendon press Oxford, 1996: 67.
    [117] X.H. Cai, L. M. Kuang. Proposal for teleporting a superposition state of squeezed vacuum states[J]. Phys. Lett. A, 2002, 300(2): 103.
    [118] N. J. Cerf, C. Adami. Negative entropy and information in quantum mechnics[J]. Phys. Rev. Lett., 1997, 79(26): 5194.
    [119] C. H. Bennett, H. J. Bernstein, et al. Concentrating partial entanglement by local operations[J]. Phys. Rev. A, 1996, 53(4): 2046.
    [120] V. Vedral. The roJe of relative entropy in quantum information theory [J]. Rev. Mod. Phys., 2002, 74(1): 197.
    [121] A. Mann, B. C. Sanders, W. J. Munro. Bell's inequality for an entanglement of nonorthogonal states [J]. Phys. Rev. A, 1995, 51(2): 989.
    [122] V. Buzek, H. Moya-Cessa, P. L. Knight. Schrodinger cat states in the resonant Jaynes-Cummings model: collapse and revival of oscillations of the photonnumber distribution[J]. Phys. Rev. A, 1992, 45(11): 8190.
    [123] Le-Man Kuang, Fa-Bo Wang, Gao-Jian Zeng. The K-component Q-coherent State Representations of the Quantum Heisenberg-Weyl Algebra[J]. Phys. Lett. A, 1993, 176(1): 1.
    [124] Lan Zhou, Le-Man Kuang. Entanglement for high-dimension entangled coherent states[J]. In preparation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700