基于小波变换和模糊粗糙集技术的图像识别
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像识别是近二十年来模式识别和图像处理研究的热点,是用现代信息处理技术与计算机技术完成对图像的认识、理解过程。它研究的主要内容是根据图像的特征进行识别(或分类),已在许多领域得到广泛应用。图像识别过程大致可分为图像预处理、图像特征提取和图像识别(或分类)三个步骤。其中,图像特征提取和图像分类是两个核心环节,本文主要在这两方面开展研究。
     在图像特征提取研究中,主要工作包括以下2方面:
     1.将小波变换和二维投影子空间技术有机地结合起来,从变换系数中提取图像的代数特征。研究了小波子段图像的选取问题,提出了①基于小波变换和二维主成分分析的图像特征提取方法;②基于小波变换和双向二维主成分分析的图像特征提取方法;③基于小波变换和二维线性判别分析的图像特征提取方法。在ORL、YALE、JAFFE和UMIST四个人脸数据库上的实验结果表明了该方法的有效性。
     2.作为一种矩阵分解方法,奇异值分解可用于提取图像的代数特征。图像的奇异值特征具有很多好的性质,如稳定性、几何不变性、对噪声的不敏感性。但是只用一个尺度的图像奇异值特征难以获得高识别率。基于小波变换和奇异值分解,提出了基于小波多尺度奇异值分解的图像特征提取方法,它将多个尺度的小波子图奇异值特征组合起来用于图像识别。在ORL、YALE和JAFFE三个人脸数据库上的识别率分别达到82.11%、100%和95.68%。
     在图像分类方法的研究中,基于模糊粗糙集技术,提出了以下三种分类方法:
     1.针对二维主成分分析提取的图像特征依然存在冗余这一问题,提出了基于二维主成分分析和模糊粗糙集技术的图像识别方法。该方法利用模糊粗糙集技术的属性约简进行属性选择,将对分类比较重要的属性选择出来,将冗余的属性去掉。实验结果表明该方法优于基于二维主成分分析的图像识别方法。
     2.模糊粗糙集是粗糙集的扩展,它将数据的模糊性和粗糙性结合起来。基于模糊粗糙集技术,提出了一种模糊决策树分类方法。该方法利用模糊条件属性相对于模糊决策属性的重要度选择扩展属性,它集成了数据中的两种不确定性,比基于纯模糊熵的模糊决策树分类方法具有更好的分类能力。实例分析和实验结果均表明该方法优于模糊ID3算法。
     3.对于给定的模糊信息系统,可以求得多个模糊属性约简,而每个模糊属性约简对分类都有不同程度的贡献。如果只用其中一个模糊属性约简,即便它是最重要的模糊属性约简来产生分类规则,那么隐藏在其他模糊属性约简中的有用信息将不可避免地被丢失。针对这一问题,提出了一种基于模糊粗糙集技术的多模糊决策树归纳方法,该方法融合了多个模糊属性约简对分类的贡献。实例分析及实验结果均表明这一方法优于单个模糊属性约简的模糊决策树方法。
     另外,本文还研究了信息系统信息粒度的粗细对决策树产生的影响,得出结论:粗信息粒的信息熵不小于细信息粒的信息熵,细信息粒下选取扩展属性产生的决策树优于粗信息粒下选取扩展属性产生的决策树。
Image recognition is the process of image cognition and image understanding by using modern information processing technology and computer technology, which has attracted lots of attention in pattern recognition and image processing during the last two decades. Image recognition mainly investigates the image classification based on image features and has been widely applied to many fields. It roughly consists of three steps: image preprocessing, image feature extraction, and image classification. The image feature extraction and image classification are two vital steps, which are the major focuses of this thesis. The contributions of this thesis in image feature extraction mainly include the following two aspects:
     (1) This thesis integrates the wavelet transforms (WT) and two-dimensional projection subspace techniques effectively. The selection of wavelet sub-band images used for image recognition is studied. Three methods for image feature extraction are proposed,①image features extraction method based on WT and two-dimensional principal component analysis (2DPCA),②image features extraction method based on WT and two-directional two-dimensional principal component analysis ((2D)2PCA), and③image features extraction method based on WT and two-dimensional linear discriminant analysis (2DLDA). The experimental results on four face databases (ORL, YALE, JAFFE, and UMIST) verify the effectiveness of the proposed methods.
     (2) As a matrix decomposition method, singular value decomposition (SVD) can be used to extract algebraic features from images. The SV features of images have many good properties such as stability, geometric invariance, and insensitiveness to noise. However, it is difficult to achieve high recognition rate by only using one scale SV features in image recognition. Based on the wavelet transforms and SVD, this thesis proposes an image feature extraction method which combines multiple scale SV features of wavelet sub-band images. The recognition rates on three face databases (ORL, YALE, and JAFFE) are 82.11%, 100%, and 95.68% respectively, which are higher than the existing SVD based approaches.
     For image classification, this thesis proposes three classification methods based on fuzzy rough sets technique.
     (1) To handle the redundant features which are extracted from images by using 2DPCA methods, an image recognition method (image classification method) is presented based on 2DPCA and fuzzy rough sets technique. The proposed method selects the important features for classification by using attribute reduction in fuzzy rough sets theory. The experimental results show the proposed method outperforms the existing image recognition methods based on 2DPCA.
     (2) Fuzzy rough sets are generalizations of rough sets to deal with both fuzziness and vagueness in data, which integrate fuzzy sets and rough sets together. Based on fuzzy rough sets technique, this thesis proposes a new criterion, in which expanded attributes are selected by using significance of fuzzy conditional attributes with respect to fuzzy decision attributes. Because that two uncertainty (fuzziness and roughness) are integrated together in the proposed method whose power of classification is higher than the one of fuzzy decision tree algorithms based on pure fuzzy entropy. An illustrative example as well as the experimental results statistically confirms that the proposed method is superior to the fuzzy ID3 algorithm.
     (3) Given a fuzzy information system, we may find many fuzzy attribute reducts and each of them can have different contributions to decision-making. If only one of the fuzzy attribute reducts, even though the most important one is selected to induce decision rules, some useful information hidden in the other reducts for the decision-making will be losing unavoidably. To make good use of the information provided by every individual fuzzy attribute reduct in the fuzzy information system, this thesis presents a novel induction of multiple fuzzy decision trees based on fuzzy rough sets technique. An illustrative example as well as the experimental results validate that the proposed multiple tree induction has better performance than the single tree induction based on the individual reducts.
     In addition, this thesis investigates the influences of the coarse granularity and the fine granularity on the decision tree induction. The investigation leads us to the conclusion that the information entropy under coarse granularity is not less than the one under fine granularity. Furthermore, we draw the conclusion that the decision tree generated by selecting the expanded attribute under fine granularity outperforms the one under coarse granularity.
引文
[1]张兆礼,赵春晖,梅晓丹.现代图像处理技术及MATLAB实现[M].北京:人民邮电出版社, 2001.
    [2]李弼程,彭天强,彭波.智能图像处理技术[M].北京:电子工业出版社, 2004.
    [3] R. C. Gonzalez, R. E. Woods.数字图像处理(第二版)(英文影印版) [M].北京:电子工业出版社, 2007.
    [4]章毓晋.图像工程(第2版) [M].北京:清华大学出版社, 2007.
    [5]边肇祺,张学工.模式识别[M].北京:清华大学出版社, 2000.
    [6]孙即祥,现代模式识别[M].长沙:国防科技大学出版社, 2002.
    [7]杨淑莹,图像模式识别—VC++技术实现[M].北京:清华大学出版社, 2005.
    [8]张延炘,基于相关器的光学模式识别的存在性问题[J].中国科学(G辑), 2003, 33(4):368-377.
    [9] S. Mitra, S. K. Pal. Fuzzy sets in pattern recognition and machine intelligence [J]. Fuzzy Sets and Systems, 2005, 156(3):381-386.
    [10] A. Ghosh, S. K. Pal. Soft computing approach to pattern recognition and image processing [M]. Singapore: World Scientific, 2003.
    [11] J. C. Bezdek. Pattern recognition with fuzzy objective function algorithms [M]. New York: Plenum Press, 1981.
    [12] S. K. Pal, S. Mitra. Neuro-fuzzy pattern recognition: methods in soft computing [M]. New York: Wiley, 1999.
    [13] S. Mitra, S. K. Pal, P. Mitra. Data mining in soft computing framework: a survey [J]. IEEE Transactions on Neural Networks, 2002, 13(1):3-14.
    [14] S. K. Pal. Fuzzy image processing and recognition: uncertainty handling and applications [J]. International Journal of Image Graphics, 2001, 1(2):169-195.
    [15] S. K. Pal, B. U. Shankar, P. Mitra. Granular computing, rough entropy and object extraction [J]. Pattern Recognition Letters, 2005, 26(16):2509-2517.
    [16] N. R. Pal. Soft computing for feature analysis [J]. Fuzzy Sets and Systems, 1999, 103(2):201-221.
    [17] C. Li, J. Y. Huang, C. M. Chen. Soft computing approach to feature extraction [J]. Fuzzy Sets andSystems, 2004, 147(1):119-140.
    [18] W. Pedrycz. Fuzzy sets in pattern recognition: methodology and methods [J]. Pattern Recognition, 1990, 23(1-2):121-146.
    [19] M. Szczuka, P. Wojdyllo. Neuro-wavelet classifiers for EEG signals based on rough set methods [J]. Neurocomputing, 2001, 36(1-4):103-122.
    [20] Z. Q. Hong. Algebraic feature extraction of image for recognition [J]. Pattern Recognition, 1991, 24(3):211-219.
    [21] M. Hu. Visual pattern recognition by moment invariant. IRE Transactions on Information Theory [J]. 1962, 8:179-187.
    [22] Z. Miao. Zernike moment-based image shape analysis and its application [J]. Pattern Recognition Letters, 2000, 21(2):169-177.
    [23] D. Shen, H. H. S. Ip. Discriminative Wavelet Shape Descriptors for recognition of 2-D Patterns [J]. Pattern Recognition, 1999, 32(2):151-165.
    [24] R. M. Haralick, K. Shanmugam, I. Dinstein. Texture features for image classification [J]. IEEE Transactions on System, Man and Cybernetics, 1973, 8(6):610-621.
    [25] H. Tamura, S. Mori, T. Yamawaki. Texture features corresponding to visual perception [J]. IEEE Transactions on System, Man and Cybernetics, 1978, 8(6):460-473.
    [26] A. Rosenfeld, M. Thurston. Edge and curve detection for visual scene analysis [J]. IEEE Transactions on Computer, 1971, 20:512-519.
    [27]李弼程,郭志刚,文超.图像的多层次模糊增强与边缘检测[J].模糊系统与数学, 2000, 14(4):77-83.
    [28] V. C. Klema, A. J. Laub. The singular value decomposition: its computation and some applications [J]. IEEE Transactions on Automatic Control, 1980, 25(2):164-176.
    [29] M. Kirby, L. Sirovich. Application of the Karhunen-Loeve procedure for the characterization of human faces [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(1): 103-108.
    [30] R. A. Fisher. The use of multiple measures in taxonomic problems [J]. Annals of Eugenics, 1936, 7:179-188.
    [31] P. Comon. Independent component analysis, a new concept? [J]. Signal Processing, 1994, 36(3):287-314.
    [32] A. Hyvarinen, E. Oja. Independent component analysis: algorithms and applications [J]. Neural Networks, 2000, 13(4-5):411-430.
    [33] C. Jutten, J. Herault. Blind separation of source, part I: an adaptive algorithm based on neuromimetic architecture [J]. Signal Process. 1991, 24(1):1-10.
    [34] A. Laine, J. Fan. Texture classification by wavelet packet signatures [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(11):1186-1191.
    [35] S. Pittner, S. V. Kamarthi. Feature extraction from wavelet coefficients for pattern recognition tasks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(1):83-88.
    [36] S. Arivazhagan, L. Ganesan. Texture classification using wavelet transform [J]. Pattern Recognition Letters, 2003, 24(9-10):1513-1521.
    [37] Y. Tao, E. C. M. Lam, Y. Y. Tang. Feature extraction using wavelet and fractal [J]. Pattern Recognition Letters, 2001, 22(3-4):271-287.
    [38] C. M. Pun, M. C. Lee. Extraction of shift invariant wavelet features for classification of images with different sizes [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(9):1228-1233.
    [39] P. H. Hsu. Feature extraction of hyperspectral images using wavelet and matching pursuit [J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2007, 62(2):78-92.
    [40] A. Sengur, I. Turkoglu, M. C. Ince. Wavelet packet neural networks for texture classification [J]. Expert Systems with Applications, 2007, 32(2):527-533.
    [41] C. F. Tsai. Image mining by spectral features: A case study of scenery image classification [J]. Expert Systems with Applications, 2007, 32(1):135-142.
    [42] R. O. Duda, P. E. Hart, D. G. Stock.模式分类(第2版,英文影印版) [M].北京:机械工业出版社, 2005.
    [43]王熙照.模糊测度和模糊积分及在分类技术中的应用[M].北京:科学出版社, 2008.
    [44] J. R. Quinlan. Induction of decision trees [J]. Machine Learning, 1986, 1:81-106.
    [45] V. Vapnik. The nature of statistical learning theory [M]. New York: Springer, 1995.
    [46]邓乃扬,田英杰.数据挖掘中的新方法—支持向量机[M].北京:科学出版社, 2004.
    [47]杨志民,刘广利.不确定性支持向量机原理及应用[M].北京:科学出版社, 2007.
    [48] F. M. Ham,I. Kostanic.神经计算原理(英文影印版) [M].北京:机械工业出版社, 2003.
    [49] S. Kumar.神经网络(英文影印版) [M].北京:清华大学出版社, 2006.
    [50] R. Slowinski, J. Stefanowski. Rough classification in incomplete information systems [J]. Mathematical and Computer Modelling, 1989, 12(10-11):1347-1357.
    [51] Z. Pawlak. Rough classification [J]. International Journal of Human-Computer Studies, 1995, 51(2):369-383.
    [52] T. M. Mitchell.机器学习(英文影印版) [M].北京:机械工业出版社, 2003.
    [53] Y. Yuan, M. J. Shaw. Induction of fuzzy decision trees [J]. Fuzzy Sets System, 1995, 69(2):125-139.
    [54] X. Z. Wang, D. S. Yeung, E. C. C. Tsang. A comparative study on heuristic algorithms for generating fuzzy decision trees [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B, 2001, 31(2):215-226.
    [55] X. Z. Wang, B. Chen, G. Qian, F. Ye. On the optimization of fuzzy decision trees [J]. Fuzzy Sets and Systems, 2000, 112(1):117-125.
    [56] J. J. Buckley, Y. Hayashi. Fuzzy neural networks: a survey [J]. Fuzzy Sets and Systems, 1994, 66(1):1-13.
    [57] P. K. Simpson. Fuzzy min-max neural networks-part 1: classification [J]. IEEE Transactions on neural networks, 1992, 3(5):776-786.
    [58] N. K. Kasabov. Learning fuzzy rules and approximate reasoning in fuzzy neural networks and hybrid systems [J]. Fuzzy Sets and Systems, 1996, 82(2):135-149.
    [59] C. F. Lin, S. D. Wang. Fuzzy support vector machines [J]. IEEE Transactions on Neural Networks, 2002, 13(2): 464-471.
    [60] Y. Chen, J. Wang. Support vector learning for fuzzy rule-based classification systems [J]. IEEE Transactions on Fuzzy Systems, 2003, 11 (6):716-728.
    [61] D. G. Chen, Q. He, X. Z. Wang. FRSVMs: Fuzzy rough set based support vector machines [J]. Fuzzy Sets and Systems, 2010, 161(4):596-607.
    [62] S. Y. Zhao, E. C. C. Tsang, D. G. Chen, et al. Building a rule-based classifier---a fuzzy-rough setapproach [J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(5): 624-638.
    [63] M. Sarkar. Fuzzy-rough nearest neighbor algorithms in classification [J]. Fuzzy Sets and Systems, 2007, 158(19):2134-2152.
    [64] S. Y. Zhao, E. Tsang, D. G. Chen. The model of fuzzy variable precision rough sets [J]. IEEE Transactions on Fuzzy Systems, 2009, 17(2):451-567.
    [65] M. Turk, A. pentland. Eigenfaces for recognition [J]. Journal of Cognition Neuroscience, 1991, 3(1):71-86.
    [66] P. N. Belhumeur, J. P. Hespanha, D. J. Kriegman. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection [J]. IEEE Transactions Pattern Analysis and Machine Intelligence, 1997, 19(7):711-720.
    [67] B. A. Draper, K. Baek, M. S. Bartlett et al. Recognizing faces with PCA and ICA [J]. Computer Vision and Image Understanding, 2003, 91(1-2):115-137.
    [68] M. S. Bartlett, J. R. Movellan, T. J. Sejnowski. Face recognition by independent component analysis [J]. IEEE Transactions on Neural Networks, 2002, 13(6):1450-1464.
    [69] J. Yang, D. Zhang. Two-dimensional PCA: A new approach to appearance-based face representation and recognition [J]. IEEE Transactions Pattern Analysis and Machine Intelligence, 2004, 26(1):131-137.
    [70] M. Li, B. Yuan. 2D-LDA: A novel statistical linear discriminant analysis for image matrix [J]. Pattern Recognition Letter, 2005, 26(5):527-532.
    [71] D. Zhang, Z. Zhou. (2D)2PCA: Two-directional two-dimensional PCA for efficient face representation and recognition [J]. Neurocomputing, 2005, 69(1-3):224-231.
    [72] S. Noushath, G. H. Kumar, P. Shivakumar. (2D)2LDA: An efficient approach for face recognition [J]. Pattern Recognition, 2006, 39(7):1396-1400.
    [73] P. Nagabhushan, D. S. Guru, B. H. Shekar. (2D)2FLD: An efficient approach for appearance based object recognition [J]. Neurocomputing, 2006, 69(7-9):934-940.
    [74] S. Chen, H. Zhao, M. Kong, et al. 2D-LPP: A two-dimensional extension of locality preserving projections [J]. Neurocomputing, 2007, 70(4-6):912-921.
    [75] S. Mallat. A theory for multiresolution signal decomposition: the wavelet representation [J]. IEEETransactions Pattern Analysis and Machine Intelligence, 1989, 11(7):674-693.
    [76]成礼智,王红霞,罗永.小波的理论与应用[M].北京:科学出版社, 2004年.
    [77] P. Goupillaud, A. Grossmann, J. Morlet. Cycle octave and related transform in seismic signal analysis [J]. Geoexploration, 1984, 23(1):85-102.
    [78] S. Mallat. Multiresolution approximations and wavelet orthonormal bases of L2(R) [J]. Transactions of American Mathematical Society, 1989, 315:69-87.
    [79] S. Mallat, W. Hwang. Singularity detection and processing with wavelets [J]. IEEE Transactions on Information Theory, 1992, 38(2):617-643.
    [80] S. Mallat. Zero-crossings of a wavelet transform [J]. IEEE Transactions on Information Theory, 1991, 37(4):1019-1033.
    [81] A. Grossman, J. Morlet. Decomposition of hardy functions into square integrable wavelets of constant shape [J]. SIAM Journal of Mathematical Analysis, 1984, 15(4):723-736.
    [82] I. Daubechies. Orthonormal bases of compactly supported wavelets [J]. Communications on Pure Applied Mathematics, 1988, 41:909-996.
    [83] I. Daubechies. The wavelet transform, time frequency localization and signal analysis [J]. IEEE Transactions on Information Theory, 1990, 36(5):961-1005.
    [84] I. Daubechies. Ten Lectures on Wavelets [M]. Philadelphia: SIAM Press, 1992.
    [85] R. R. Coifman, M. V. Wickerhauser. Entropy-base algorithms for best basis selection [J]. IEEE Transactions on Information Theory, 1992, 38(2):713-719.
    [86] A. Mojsilovic, M. V. Popovic, D. M. Rackov. On the selection of an optimal wavelet basis for texture characterization [J]. IEEE Transactions on Image Processing, 2000, 9(12):2043-2050.
    [87] P. P. C. Tsui, O. A. Basir. Wavelet basis selection and feature extraction for shift invariant ultrasound foreign body classification [J]. Ultrasonics, 2006, 45(1-4):1-14.
    [88]王蕴红,谭铁牛,朱勇.基于奇异值分解和数据融合的脸像鉴别[J].计算机学报, 2000, 23(6):649-653.
    [89]甘俊英,张有为.一种基于奇异值特征的神经网络人脸识别新途径[J].电子学报, 2004, 32(1):170-173.
    [90] K. Liu, Y. Q. Cheng, J. Y. Yang. Algebraic feature extraction for image recognition based on anoptimal discriminant criterion [J]. Pattern Recognition, 1993, 26(6):903-911.
    [91] R. W. Swiniarski, L. Hargis. Rough sets as a front end of neural-networks texture classifiers [J]. Neurocomputing, 2001, 36(1-4):85-102.
    [92] R. W. Swiniarski, A. Skowron. Rough set methods in feature selection and recognition [J]. Pattern Recognition Letters, 2003, 24(6):833-849.
    [93] F. Samaria, A. Harter. Parameterization of a stochastic model for human face identification [C]. Proceedings of 2nd IEEE Workshop on Applications of Computer Vision, Sarasota FL, December 1994.
    [94] A. S. Georghiades, P. N. Belhumeur, D. J. Kriegman. From few to many: illumination cone models for face recognition under variable lighting and pose [J]. IEEE Transactions Pattern Analysis and Machine Intelligence, 2001, 23(6):643-660.
    [95] M. J. Lyons, J. Budynek, S. Akamatsu. Automatic classification of single facial images [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(12):1357-1362.
    [96] D. B. Graham, N. M. Allinson. Face Recognition: from theory to applications [C]. Scotland: NATO Advanced Study Institute on Face Recognition, 1998:446-456.
    [97] L. A. Zadeh. Fuzzy sets and information granularity [Z]. Advances in Fuzzy Set Theory and Application, 1979, 1:3-18.
    [98]梁吉业,钱宇华.信息系统中的信息粒与熵理论[J].中国科学E辑:信息科学, 2008, 38(12):2049-2065.
    [99]苗夺谦,王珏.粗糙集理论中知识粗糙性与信息熵关系的讨论[J].模式识别与人工智能, 1998, l1(1): 34-40.
    [100] Y. H. Qian, J. Y. Liang. Combination entropy and combination granulation in rough set theory [J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2008, 16(2): 179-193.
    [101]张铃,张钹.模糊商空间理论:模糊粒度计算方法[J].软件学报, 2003, 14(4): 770-776.
    [102]李道国,苗夺谦,张红云.粒度计算的理论、模型与方法[J].复旦学报(自然科学版), 2004,10: 837-841.
    [103] M. Umano, H. Okamolo, I. Hatono, H. Tamura. Fuzzy decision trees by fuzzy ID3 algorithm and itsapplication to Diagnosis System [C]. Proceedings of Third IEEE International Conference on Fuzzy Systems, 1994, 3:2113-2118.
    [104]苗夺谦,李道国.粗糙集理论、算法与应用[M],北京:清华大学出版社, 2008:34-66.
    [105] C. E. Shannon. A mathematical theory of communication [J]. The Bell System Technical Journal, 1948, 27:379-423.
    [106] X. Z. Wang, J. H. Zhai, S. X. Lu. Induction of multiple fuzzy decision trees based on rough set technique [J]. Information Sciences, 2008, 178(16):3188-3202.
    [107] C. L. Blake, C. J. Merz. UCI Repository of machine learning databases [OL]. http://www.ics.uci.edu/~mlearn/MLRepository.html.
    [108] S. M. Chen, J. D. Shie. Fuzzy classification systems based on fuzzy information gain measures [J]. Expert Systems with Applications, 2009, 36(3):4517-4522.
    [109] Z. Pawlak. Rough sets [J]. International Journal of Information and Computer Sciences, 1982, 11:341-356.
    [110] D. Dubois, H. Prade. Rough fuzzy sets and fuzzy rough sets [J]. International Journal of General Systems, 1990, 17:191-208.
    [111] L. I. Kuncheva. Fuzzy rough sets: application to feature selection [J]. Fuzzy Sets and Systems, 1992, 51(2):147-153.
    [112] X. D. Liu, W. Pedrycz, T. Y. Chai, et al. The development of fuzzy rough sets with the use of structures and algebras of axiomatic fuzzy sets [J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(3):443-462.
    [113] D. G. Chen, W. X. Zhang, D. S. Yeung, et al. Rough approximations on a complete completely distributive lattice with applications to generalized rough sets [J]. Information Sciences, 2006, 176(13):1829-1848.
    [114] Q. Hu, D. Yu, Z. Xie, et al. Fuzzy probabilistic approximation spaces and their information measures [J]. IEEE Transactions on Fuzzy Systems, 2006, 14(2):191-201.
    [115] E. C. C. Tsang, D. G. Chen, D. S. Yeung, et al. Attributes reduction using fuzzy rough sets [J]. IEEE Transactions on fuzzy system, 2008, 16(5):1130-1141.
    [116] R. Jensen, Q. Shen. Fuzzy-rough data reduction with ant colony optimization [J]. Fuzzy Sets andSystems, 2005, 149(1):5-20.
    [117] N. Parthalain, R. Jensen, Q. Shen. A distance measure approach to exploring the rough set boundary region for attribute reduction [J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(3):305-317.
    [118] Q. Hu, D. Yu, Z. Xie. Information-preserving hybrid data reduction based on fuzzy-rough techniques [J]. Pattern Recognition Letters, 2006, 27(5):414-423.
    [119] R. Jensen, Q. Shen. New approaches to fuzzy-rough feature selection [J]. IEEE Transactions on Fuzzy Systems, 2009, 17(4):824-838.
    [120] Q. Shen, R. Jensen. Selecting informative features with fuzzy-rough sets and its application for complex systems monitoring [J]. Pattern Recognition, 2004, 7(7):1351-1363.
    [121] R. B. Bhatt, M. Gopal. On fuzzy-rough sets approach to feature selection [J]. Pattern Recognition Letters, 2005, 26(7):965-975.
    [122] A. M. Radzikowska, E. E. Kerre. A comparative study of fuzzy rough sets [J]. Fuzzy Sets and Systems, 2002, 126(22):137-155.
    [123] D. S. Yeung, D. G. Chen, E. C. C Tsang, et al. On the generalization of fuzzy rough sets [J]. IEEE Transactions on Fuzzy Systems, 2005, 13(3):343-361.
    [124] S. Mitra, K. M. Konwar, S. K. Pal. Fuzzy decision tree, linguistic rules and fuzzy knowledge-based network: generation and evaluation [J]. IEEE Transactions on Systems, Man, and Cybernetics—Part C, 2002, 32(4):328-339.
    [125] C. Z. Janikow. Fuzzy decision tree: Issues and methods [J]. IEEE Transactions on System, Man, and Cybernetics-Part B, 1998, 28(1):1-14.
    [126] I. J. Chiang, J. Y. J. Hsu. Fuzzy classification trees for data analysis [J]. Fuzzy Sets and Systems, 2002, 130(1):87-99.
    [127] W. Pedrycz, Z. A. Sosnowski. Genetically optimized fuzzy decision trees [J]. IEEE Transactions on System, Man, and Cybernetics-Part B, 2005, 35(3):633-641.
    [128] W. Pedrycz, A. Sosnowski. C-fuzzy decision trees [J]. IEEE Transactions on Systems, Man, and Cybernetics, 2005, 34(4):498-511.
    [129] X. M. Wang, D. D. Nauck, M. Spott. Intelligent data analysis with fuzzy decision trees [J]. SoftComputing, 2007, 11(5): 439-457.
    [130] X. Z. Wang, E. C. C. Tsang, S. Y. Zhao, et al. Learning fuzzy rules from fuzzy examples based on rough set techniques [J]. Information Sciences, 2007, 177(20):4493-4514.
    [131] G. Cao, S. C. K. Shiu, X. Wang. A fuzzy-rough approach for the maintenance of distributed case-based reasoning systems [J]. Soft Computing, 2003, 7(8):491-499.
    [132] C. C. Hsu, M. F. Han, S. H. Chang, et al. Fuzzy support vector machines with the uncertainty of parameter c [J]. Expert Systems with Applications, 2009,36(3):6654-6658.
    [133] W. L. Hung, Y. C. Chang, S. C. Chuang. Fuzzy classification maximum likelihood algorithms for mixed-weibull distributions [J]. Soft Computing, 2008, 12(10):1013-1018.
    [134] S. M. Chen, F. M. Tsai. Generating fuzzy rules from training instances for fuzzy classification systems [J]. Expert Systems with Applications, 2008, 35(3):611-621.
    [135] Y. C. Tsai, C. H. Cheng, J. R. Chang. Entropy-based fuzzy rough classification approach for extracting classification rules [J]. Expert Systems with Applications, 2006, 31(2):436-443.
    [136] T. G. Dietterich. Approximate statistical test for comparing supervised classification learning algorithms [J]. Neural Computation, 1998, 7 (10):1895-1923.
    [137] A. Hassanien. Fuzzy rough sets hybrid scheme for breast cancer detection [J]. Image and Vision Computing, 2007, 25(2):172-183.
    [138] Z. Pawlak, A. Skowron. Rough sets and Boolean reasoning. Information Sciences, 2006, 177(1):41-73.
    [139] Z. Pawlak, A. Skowron. Rudiments of rough sets [J]. Information Science, 2007, 177(1):3-27.
    [140] Z. Pawlak, A. Skowron. Rough sets: some extension [J]. Information Science, 2007, 177(1):28-40.
    [141] D. Dubois, H. Prade. Putting rough sets and fuzzy sets together, intelligent decision support [Z], in: R. Slowinski (Ed.), Handbook of Applications and Advances of the Rough Sets theory, Kluwer Academic Publishers, 1992.
    [142] T. Deng, Y. Chen, W. Xu, et al. A novel approach to fuzzy rough sets based on a fuzzy covering [J]. Information Sciences, 2007, 177(11):2308-2326.
    [143] Y. Y. Yao. A comparative study of fuzzy sets and rough sets [J]. Information Science, 1988, 109 (1-4):21-47.
    [144] M. Beynon. Reducts within the variable precision rough sets model: a further investigation [J]. European Journal of Operational Research, 2001, 134(3):592-605.
    [145] M. Sugeno. Theory of fuzzy integrals and its applications [D]. Tokyo Institute of Technology, 1974.
    [146] M. Sugeno. Fuzzy measures and fuzzy integrals: a survey [Z], in: Gupta, Saridis, Gaines (Eds.), Fuzzy Automata and Decision Processes, 1977, 89-102.
    [147] R. E. Schapire. The strength of weak learnability [J]. Machine Learning, 1990, 5(2):197-227.
    [148] L. Breiman. Bagging Predictors [J]. Machine Learning, 1996, 6(2):123-140.
    [149] Z. H. Zhou, J. Wu, W. Tang. Ensembling neural networks: Many could be better than all [J]. Artificial Intelligence, 2002, 137(1-2):239-263.
    [150] L. K. Hansen, P. Salamon. Neural network ensembles [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(10):993-1001.
    [151] J. Kittler, M. Hatef, R. P. W. Duin, et al. On Combining Classifiers [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(3):226-239.
    [152] G. Rogova. Combining the results of several neural network classifiers [J]. Neural Network, 1994, 7(5):777-781.
    [153] D. Opitz, R. Maclin. Popular ensemble methods: an empirical study [J]. Journal of Artificial Intelligence Research, 1999, 11(1):169-198.
    [154] L. I. Kuncheva. A theoretical study on six classifier fusion strategies [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(2):281-286.
    [155] L. I. Kuncheva, C. J. Whitaker. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy [J]. Machine Learning, 2003, 51(2):181-207.
    [156] L. I. Kuncheva. Combining classifiers: Soft computing solutions [Z]. in: S. K. Pal and A. Pal (Eds), Pattern Recognition: From Classical to Modern Approaches. World Scientific, 2001, 427-451.
    [157] R. Battiti, M. Colla. Democracy in neural nets: voting schemes for classification [J]. Neural Networks, 1994, 7(4):691-707.
    [158] S. Hashem. Optimal linear combinations of neural networks [J]. Neural Networks, 1997, 10(4):599-614.
    [159] T. Denoeux. A k-nearest neighbor classification rule based on Dempster-Shafer theory [J]. IEEETransactions on System, Man and Cybernetics-Part B, 1995, 25(5):804-813.
    [160] Z. Wang, K. S. Leung, G. J. Klir. Applying fuzzy measures and nonlinear integrals in data mining [J]. Fuzzy Sets and Systems, 2005, 156(3):371-380.
    [161] M. Grabisch. The representation of importance and interaction of features by fuzzy measures [J]. Pattern Recognition Letters, 1996, 17(6):567-657.
    [162] W. Wang, Z. Wang, G. J. Klir. Genetic algorithms for determining fuzzy measures from data [J]. Journal of Intelligent and Fuzzy Systems: Applications in Engineering and Technology, 1998, 6(2):171-183.
    [163] Y. Su, S. G. Shan, X. L. Chen, et al. Hierarchical ensemble of global and local classifiers for face recognition [J]. IEEE Transactions on Image Processing, 1009, 18(8):1885-1896.
    [164] C. C. Liu, D. Q. Dai. Face recognition using dual-tree complex wavelet features [J]. IEEE Transactions on Image Processing, 2009, 18(11):2593-2599.
    [165] G. G. Liu, Z. C. Lin, Y. Yu, et al. Unsupervised object segmentation with a hybrid graph model [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(5):910-924.
    [166] U. Park, Y. Y. Tong, A. K. Jain. Age-invariant face recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(5):947-954.
    [167] T. K. Marks, J. R. Hershey, J. R. Movellan. Tracking motion, deformation, and texture using conditionally gaussian processes [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(2):348-363.
    [168] H. Chen, B. Bhanu. Efficient recognition of highly similar 3d objects in range images [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(1):172-179.
    [169] D. Sen, S. K. Pal. Histogram thresholding using fuzzy and rough measures of association error [J]. IEEE Transactions on Image Processing, 2009, 18(4): 879-888.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700