海洋平台半主动振动控制方法及模型试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋平台在服役期间会受到风、浪、流甚至冰以及地震等载荷的作用。在这种连续性、长期性环境载荷作用,海洋平台结构会发生明显、连续的振动,从而加剧了平台的疲劳破坏、增加生产风险,同时影响了平台作业人人员的工作环境,因此,海洋平台的振动控制成为工程界十分关注的课题。
     本文基于线性波浪理论、采用Morison方程计算随机波浪力,分析了海洋平台在随机波浪载荷下所表现的动力响应特性,以及磁流变阻尼器阻尼的特点,对海洋平台的半主动振动控制方法进行了理论和模型试验的研究。本论文主要研究内容包括:
     ◆采用线性波浪理论、Morison方程、波浪力谱分析方法计算随机波浪力,并进行了数值模拟。
     ◆建立了海洋平台结构振动方程,并分别从频域和时域给出了振动方程的求解方法,以一典型的海洋平台为数值算例,对实际海洋平台的振动响应进行了时域和频域分析,给出了平台的振动响应特征。
     ◆将平台结构视为多自由度系统,推导出了加有控制装置后平台振动方程,基于滑移模态控制和模糊控制等智能振动控制理论,采用磁流变阻尼器为半主动控制实现装置给出了海洋平台结构的半主动控制系统设计方法,并以一典型的海洋导管架式平台为数值算例,进行了减振效果的数值仿真。
     ◆以一典型导管架式海洋平台为原型,根据动力相似准则按1:50比例设计海洋平台结构模型,采用减振效果较好的模糊控制理论设计了针对该海洋平台结构模型的磁流变阻尼器半主动式振动控制系统,并对其在规则波及随机波设计实验工况下的减振效果进行了数值仿真。
     ◆基于本文所发展的海洋平台结构模型设计方法及半主动式控制设计原理,实际制作典型导管架海洋平台模型及磁流变阻尼器(MR)为控制器的半主动控制系统,并在波浪水池中进行了多种工况模型试验,对平台在随机波、规则波作用下的减振效果进行了模型试验研究,并将数值模拟结果和模型试验结果进行了比较分析。结果表明,设计的控制系统对海洋平台在波浪载荷下的振动响应控制效果在30%以上,起到了很好的控制效果。
For the environments of the offshore platforms, the offshore platforms inevitably undergo the environment loads during the service time such as wind, waves, current, ice and earthquake ete, especially continuous and longtime wave load which will induce continuous vibration of the offshore platforms. First and foremost, the continuous vibration will cause fatigue damage, which will reduces the reliability and the avail using years. Besides, the continuous vibration will increase the venture and the investment. At the same time, the surroundings or the operators will be worsened for the vibration. With the development of the vibration control of building in land, the control technology of the offshore platform has become a very important research subject on ocean engineering and academic fields.
     This thesis studies the dynamic properties of offshore platforms under random wave loading and the traits of the magnetorheological fluid damper (MRFD), furthermore, using the theory and experimentation metholds, studies the semi-active reducing vibration methold of the offshore platforms. The major research is shown as following:
     ◆With the line wave theory, Morison equation and wave force spectrum the random wave force was calculated, and the numerical simulation was finished.
     ◆The structure vibration equation was erected, the solution of the vibration equation was gave from spectrum field and time field. A typical jacket offshore platform as a numerical example, the platform vibration response was analysed from time field and spectrum field, and the vibration response characters were given.
     ◆The vibration equation with control fitting was deduced when the platform is as multiple degrees of freedom system. On the basis of the sliding mode control and fuzzy control, the method of the platform structure semi-active vibration control system was given using the MRFD as the control fitting. Used a typical jacket offshore platform as a numerical example, the numerical simulation of the vibration control effect was done.
     ◆On the basis of similarity criterion on dynamics the platform model was designed with the scale of 1:50 by the typical jacket platform. The MRFD semi-active control system for the model was designed using the fuzzy control theory, and numerical simulation of the vibration control effects were finished under the random wave and regular wave load cases.
     ◆On the basis of the platform model design scheme and the semi-active control design theory, the model and the MRFD control system were made, and the model experiment was did in the wave water basin. Studied the vibration control effects under random wave and regular wave load cases, the experimental results compared with the numerical simulational results. The results show that the MRFD system designed can reduce the vibration of the platforms effectively, reduced above more 30%, and in the same time the control effect is stable.
引文
[1] J.P.T.Yao.“Concept of Structural Control”[M], Struct.Div., ASCE, 98(ST7), 1972, pp.1567-1574.
    [2]邹向阳,王晓天,刘丽华等.结构振动控制发展概况综述[J].长春工程学院学报(自然科学版).2001.2(4):10-12.
    [3]欧进萍.结构振动控制——主动、半主动和智能控制[M].北京:科学出版社. 2003.296-340.
    [4]李宏男,李忠献,祁皑等.结构振动与控制[M].北京:中国建筑工业出版社. 2005.1-407.
    [5]韩兵康,杜冬.结构半主动调谐质量阻尼器的发展[J].振动与冲击. 2005.24(2):46-49.
    [6] Rahul Rana and T.T.Soong. Parametric study and simplified design of tuned mass dampers[J]. Engineering Structurer.1998.20(3):193-204.
    [7] S.R.Chen, C.S.Cai. Coupled vibration control with tuned mass damper for long-span bridges[J]. Journal of Sound and Vibration. 2003. 278(2004)449-459.
    [8] Francesco Ricciardelli, Antonio Occhiuzzi, Paolo Clemente. Semi-active Tuned Mass Damper control strategy for wind-excited structures[J]. Journal of Wind Engineering.2004. 88(2000)57-74.
    [9] T.Pinkaew, Y.Fujino. Effectiveness of semi-active tuned mass dampers under harmonic excitation[J]. Engineering Structurer. 2000.23(2001):850-856.
    [10] Chi-Chang Lin, Jin-Min Ueng, Teng-Ching Huang. Seismic response reduction of irregular buildings using passive tuned mass dampers[J]. 1998. Engineering Structurer.
    [11] Soong TT. Active structural control: theory and practice[J]. Longman Scientific and Technical.1990.22(1999):513-524.
    [12] Guo-Ping Cai, Jin-Zhi Huang, Simon X. Yang. An optimal control method for linear systems with time delay[J]. Computers and Structures .2003.81(2003):1539-1546.
    [13] Y. M. RAM and S. ELHAY. Pole assignment in vibratory systems by multi-input control[J]. Journal of Sound and Vibration.2000.230(2):309-321.
    [14] Guoping Cai, Jin-Zhi Huang. Instantaneous optimal method for vibration control of linear sampled-data systems with delay in control[J]. Journal of Sound and Vibration. 2002.262(2003):1057-1071.
    [15] S.S.Akhiev, U.Aldemir, M.Bakioglu. Multipoint instantaneous optimal control of structures[J]. Computers and Structures.2002.80(2002):909-917.
    [16]孟松,杜深良.基于模糊算法的控制器[J].大连海事大学学报. 2000.26(3):84-86.
    [17]胡海岩,郭大蕾,翁建生.振动半主动控制技术的进展[J].振动、测试与诊断. 2001.21(4):235-244.
    [18]陶大卫,王新成,王东波.传统控制理论与模糊控制理论相结合的实用过程控制系统[J].齐齐哈尔大学学报. 2000.16(1):79-80.
    [19]姜超.计算机模糊控制算法[J].南通航运职业技术学院学报. 2003.2(1):10-13.
    [20]刘国光.基于模糊算法的自适应温度控制器[J].研究报告. 2002. 19(2):8-10.
    [21]陆春晖,翁正新,李和贵等.一种新型智能模糊控制器的研究[J].计算机仿真. 2003.20(9):95-97.
    [22] Scott E.Breneman and H.Allison Smith. Design of H∞output feedback controllers for the AMD benchmark problem[D].California:Stanford University.
    [23] Ji Chunyan, Li Huajun, Meng Qingmin. Active Control Strategy for Offshore Structures Accounting for AMD Constraints[J]. High Technology Letters.2004. 10(4):63-68.
    [24] Yanqing Liu, Hiroshi Matsuhisa, Hideo Utsuno. Semi-active vibration isolation system with variable stiffnessand damping control [J]. Journal of Sound and Vibration, 2008, 313: 16-28.
    [25]李敏霞,刘季,变刚度半主动结构振动控制的试验研究[J].地震工程与工程振动. 1998.18(4):90-95.
    [26] Francesco Ricciardelli, Antonio Occhiuzzi, Paolo Clemente. Semi-active Tuned Mass Damper control strategy for wind-excited structures[J]. Journal of Wind Engineering and Industrial Aerodynamics. 2000.88(2000):57-74.
    [27]林建华.结构半主动控制的新技术——主动变刚度/阻尼控制[J].福建建筑. 2000.1:25-27.
    [28]谭平,阎维明,周福霖.主动变刚度/阻尼控制算法研究[J].世界地震工程. 1998.14(1):10-16.
    [29]张莉洁,王炅,钱林方.冲击载荷下磁流变阻尼器动态特性试验分析[J].兵工学报, 2008, 29(5): 532-536.
    [30]沙凌锋,徐赵东,李爱群等.磁流变阻尼器的设计与分析[J].工业建筑, 2008, 38(3): 59-63.
    [31] Z. G. Ying and W. Q. Zhu. A Stochastic optimal semi-active control strategy for ER/MR dampers[J]. Journal of Sound and Vibration.2002.259(1):45-62.
    [32] J.Y. Wang , Y.Q. Ni , J.M. Ko , B.F. Spencer Jr. Magnetorheological tuned liquid column dampers (MR-TLCDs) for vibration mitigation of tall buildings: modelling and analysis of open-loop control[J]. Computers and Structures. 2005.(2005):1-12.
    [33] Li Huajun, Wang Shuqing and Ji Chunyan. Semi-active control of wave-induced vibration for offshore platforms by use of MR damper[J]. China Ocean Engineering. 2002.16(1):33-40.
    [34] Haiping Dua, Kam Yim Szeb, JamesLam. Semi-active H∞control of vehicle suspension with magneto-rheological dampers[J]. Journal of Sound and Vibration.2004.283(2005):981-996.
    [35]姜南,李忠献.基于半主动控制的MR阻尼器控制力优化[J].地震工程与工程振动, 2008, 28(3): 138-144.
    [36]王唯,夏品奇.一种改进的磁流变阻尼器模型及其对振动主动控制的应用[J].力学季刊, 2008, 29(12): 194-198.
    [37]何晓宇,李宏男.波浪荷载作用下导管架海洋平台利用TLCD的振动控制[J].振动工程学报, 2008, 22(1): 71-78.
    [38]刘剑林,魏民祥,邵金菊等.磁流变阻尼器模糊控制的遗传算法优化[J].机械科学与技术, 2008, 27(2): 171-175.
    [39]冷谦,于建华.磁流变阻尼器用于结构减振的控制策略研究[J].西南交通大学学报. 2003.38(6):663-667.
    [40]张春巍,欧进萍.结构磁流变阻尼半主动控制的改进算法与仿真分析[J].世界地震工程. 2003.19(1):37-43.
    [41]黄祥鹿,陆鑫森.海洋工程流体力学及结构响应分析[M].上海:上海交通大学出版社. 1992
    [42]李远林.近海结构水动力学[M],广州:华南理工大学出版社. 1999.
    [43] Wang Yangying. Waves and wave loads on offshore structures. [M] Dalian Marine University Press. 2003.
    [44]俞聿修.随机波浪及其工程应用[M].大连:大连理工大学出版社. 2000.131-175.
    [45]竺艳蓉.海洋工程波浪力学[M],天津大学出版社, 1991.
    [46] [英]C.A布雷比亚、S.瓦尔克.近海结构动力分析[M].海洋出版社, 1985.
    [47]宋金宝,徐德伦,孙孚.计算孤立小桩柱上随机波浪里的一个线性化的Morison公式[J].海洋学报, 1997,19(3):133-141
    [48]嵇春艳.海洋平台动力响应分析与振动控制技术研究[D].山东青岛:中国海洋大学. 2003.
    [49]邹经湘.结构动力学[M].哈尔滨:哈尔滨工业大学出版社. 1996.108-110.
    [50]郭迎庆,费树岷,徐赵东.磁流变阻尼结构模糊控制器的设计与分析[J].东南大学学报(自然科学版), 2007, 37(26): 1027-1031.
    [51]臧彦升,谢光汉,黄超灵.磁流变阻尼器力学模型动态特性实验研究[J].机床与液压, 2008, 36(4): 299-301.
    [52]孙清,张可,周进雄等.新型磁流变阻尼器及其在结构振动半主动控制中的应用[J].西安交通大学学报, 2003, 37(1): 92-95.
    [53]孙作玉,刘季.线性结构的滑动模态半主动控制[J].地震工程与工程振动, 1998, 18(1): 88-94.
    [54]张旭红,吴植安,张善元.建筑结构振动变阻尼滑模控制[J].工程力学, 2002, (增): 393-396.
    [55]欧进萍.结构振动控制—主动、半主动和智能控制[M].第一版.北京:科学出版社. 2003. 71-75.
    [56]章卫国,杨向忠.模糊控制理论与应用[M].西安:西北工业大学出版社. 2001.
    [57]欧进萍,关新春.磁流变耗能及其性能[J].地震工程与工程振动. 1998, 18(3): 74-81.
    [58]冷谦,于建华.磁流变阻尼器用于结构减振的控制策略研究[J].西南交通大学学报, 2003, 38(6): 663-667.
    [59]陈水生.斜拉桥拉索的MR半主动控制研究[J].中国公路学报. 2004.17(2):50-54.
    [60]杨飏,欧进萍.导管架式海洋平台磁流变阻尼隔震结构的振动台试验[J].地震工程与工程振动, 2005, 25(4): 141-148.
    [61]王均刚,马汝建.满足固有频率相似的海洋平台相似模型设计[J].西安石油大学学报, 2007, 22(1): 103-106.
    [62]杨俊杰.相似理论与结构模型试验[M].武汉:武汉理工大学出版社, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700