井中激发极化法正反演及快速迭代求解技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
井中激发极化法是勘查多金属和贵金属硫化物矿床,尤其是寻找深部盲矿体优先选用的井中物探方法。研究适用于起伏地形和复杂井眼环境条件下高效率、高精度的正演模拟算法以及稳健可靠的快速反演算法具有理论意义和应用价值。有限元法具有网格剖分灵活,求解过程规范的优点,适合复杂地球物理模型的模拟。在正演的基础上根据正则化原理建立反演目标函数,对目标函数求极小实现反演问题的求解。三维正反演问题一般采用迭代法来求解其中的线性方程组和优化问题,迭代求解技术是影响正反演计算效率的关键因素。本文研究了井中激发极化法的三维正反演,以及求解线性方程组和优化问题的快速迭代求解技术。
     考虑到井中激发极化法的不同测量方式(井-地,地-井,井-井),以及深度方向上大尺度的网格剖分及井眼的影响等,在正演模拟中采用放射状三棱柱单元结构化网格,结合非结构化网格对模拟区域离散,提高了网格质量,减少了网格单元数,解决了考虑井眼影响时的模拟问题。进一步利用仿射坐标变换对三棱柱单元做单元分析,实现了显式的单元积分。其与采用等参变换和高斯数值积分相比,可以大大缩短获得刚度矩阵所需的时间。对有限元方程作右端项校正,在保证计算精度的前提下有效地减小了计算区域和剖分网格单元数。
     在边值问题的处理中,采用人工截断边界方式,在边界上施加混合边界条件能获得较好的模拟效果。在实际勘探工作中通常涉及到多个源电极布置,不同的源电极对应着不同的有限元方程,从而生成了一序列线性方程组。根据Krylov子空间迭代法的收敛性分析,将体积分项和边界积分项分开进行计算和存储,并选择一个适当的线性方程组作为种子系统预先求解,利用在此过程中生成的子空间信息以加速其余线性方程组的求解过程,得到了求解序列线性方程组的循环Krylov子空间预条件共轭梯度法(PCG)算法。该算法的收敛性与序列线性方程组各系数矩阵之间的差异程度和右端项的靠近程度相关,通过构造新的右端项更靠近的序列线性方程组可进一步提高方法的计算效率。
     根据正则化原理实现了反演问题的求解。讨论了正则化参数的选择,光滑约束矩阵的构造方法。为降低反演问题的不适定性,正反演采用不同的网格系统,反演用尽量少的网格单元,正演网格在反演网格的基础上进行加密。利用Jacobian-free Krylov子空间技术,不直接求取和存储Jacobian矩阵,只计算Jacobian矩阵与向量的乘积。用不精确的Krylov子空间法求解Gauss-Newton模型修正量方程,可减少迭代次数,降低计算量。在视电阻率反演的基础上,进一步实现了视极化率的正反演。
Induced polarization well logging is a preferred method for surveying deep metal mineral resources. There is important theoretical and practical significance in the study of efficient and high accuracy simulations and inversions regarding complicate well logging environment and topography. The forward modeling with FEM (Finite Element Method) leads to a large, sparse system by discretizing partial differential equations. To solve the inverse problem, it is first to build an objective function with the regularization technique, then to solve the functional minimization through an optimization iterative algorithm. Iterative solvers play a critical role in the process of solving the forward and inverse problems. The main task in this paper is to solve the forward and inverse problem of induced polarization well logging, and to study varieties of iterative algorithms involving in the modeling and inverse problems.
     Forward modeling provides the basis of the solution of inverse problem. The techniques of mesh generations were discussed because it's important for the large computational domain and complexity in3D FEM modeling of the well logging. It improved the mesh quality and reduced the number of elements by employing a radial grid with parallel tri-prism. The accurate element integration of parallel tri-prism was implemented through an affine transformation, which shortens the element integral computational time greatly compared with isoparametric form and Gauss numerical integration. Incorporated with the unstructured mesh techniques, the forward modeling under complicated conditions was implemented. A correction technique to the right hand side could not only reduce the effects of the source singularity, but also reduce the errors associated with the influence of boundaries.
     A typical method for the boundary problem is to impose mixed boundary condition on an artifical boundary, which has been proved to be a reasonable option. Typical3D resistivity surveys may involve several hundred electrode positions. With domain discretization, the numerial simulation with FEM for the problem results in a sequence of large sparse linear systems. Based the analysis of the convergence of Krylov subspace method, the global stiff matrices were considered to be assembled and stored into two parts separately. The equivalent multiple linear systems with more correlative right-hand sides were constructed. And the recycling Krylov subspace technique for the multiple linear systems arising from FEM modeling was implemented by solving a seed system firstly, and the descent direction and the solution of the seed system was reused to accelerate the process of finding the solution of the subsequent systems.
     The regularization technique for ill-posed inverse problem has been discussed and the regularization parameters, model weighting matrix and line search techniques were analyzed with numerical tests. A multi-grid inverse technique was applied to reduce the ill-posedness of the inverse problem. Relatively coarse inverse grids define the elements whose electrial characters are to be determined, while in each process of inversion, refined grids in the forward calculations were carried out. An inexact Gauss-Newton solver has been implemented for the inverse algorithm. The search directions are determined with an inexact preconditioned conjugate gradient(PCG) algorithm. The Jacobian-free Krlov method was discussed. The method computes the Jacobian-vector product without forming and storing the elements of the true Jacobian matrix. Based on the apparent resistivity inversion, apparent polarizability inverse techniques were discussed and tested with numerical simulations.
引文
[1]蔡柏林,陈学忙,任振波.单孔多电极排列的正演问题研究.物探与化探,1992,16(3):181-186.
    [2]蔡柏林,黄智辉,谷守民.井中激发极化法.北京,地质出版社,1983.
    [3]楚泽涵,高杰,黄隆基等.地球物理测井方法与原理(上册).北京:石油工业出版社,2007.
    [4]底青云,王妙月.积分法三维电阻率成像.地球物理学报,2001,44(6):843-851.
    [5]何继善.双频激电法.北京,高等教育出版社.2005.
    [6]何展翔,贺振华,王绪本.非地震技术在油田开发中的应用综述.石油地球物理勘探,2001,28(4):70-73.
    [7]柯敢攀,黄清华.井地电法的三维正反演研究.北京大学学报(自然科学版)网络版,2008,pkuxbw2008040,62-70.
    [8]李长伟,阮百尧,吕玉增等.点源场井-地电位测量三维有限元模拟.地球物理学报,2010,53(3):729-736
    [9]李金铭.地电场与电法勘探.北京:地质出版社,2005.
    [10]刘海飞.直流激电反演中的线性与非线性方法研究.中南大学博士论文,2007.
    [11]吕玉增.地-井、井-地IP三维快速正反演研究.中南大学博士论文,2008.
    [12]米萨克N纳比吉安.勘查地球物理电磁法.北京:地质出版社,1992.
    [13]屈有恒,张贵宾,赵连锋,文战久.井地有限线源三维电阻率反演研究.地球物理学进展,2007,22(5):1393-1402.
    [14]任政勇,汤井田.基于局部加密非结构化网格的三维电阻率法有限元数值模拟.地球物理学报,2009,52(10):2627-2634
    [15]阮百尧,熊彬,徐世浙.三维地电断面电阻率测深有限元数值模拟.地球科学,2001,26(1):73-77
    [16]阮百尧,熊彬.电导率连续变化的三维电阻率测深有限元模拟.地球物理学报,2002,45(1):131-138
    [17]阮百尧,村上裕,徐世浙.电阻率/激发极化法数据的二维反演程序.物探化探计算技术,1999,21:116-125.
    [18]阮百尧,村上裕,徐世浙.激发极化数据的最小二乘二维反演方法.地球科学,1999,24:619-624.
    [19]阮百尧,徐世浙.电导率分块线性变化二维地电断面电阻率测深有限元数值模拟.地球科学,1998,23:303-307.
    [20]阮百尧.三角单元剖分电导率分块连续变化点源二维电场有限元数值模拟.广西科学,2001,8:1-3.
    [21]汤井田,任政勇,化希瑞.地球物理学中的电磁场正演与反演.地球物理学进展.2007,22(4):1181-1194
    [22]汤井田;公劲喆.三维直流电阻率有限元-无限元耦合数值模拟.地球物理学报,2010,53(3):717-728
    [23]滕吉文.当代地球物理学向何处去.地球物理学进展,2006,21(2):327-339
    [24]滕吉文.强化第二深度空间金属矿产资源探查,加速发展地球物理勘探新技术与仪器设备的研制及产业化.地球物理学进展,2010,25(3):729-748.
    [25]王勖成,邵敏.有限单元法基本原理和数值方法.北京,清华大学出版社,1997
    [26]王彦飞.反演问题的计算方法及其应用.北京,高等教育出版社,2007
    [27]王志刚,何展翔,刘昱.井地直流电法三维数值模拟及异常规律研究.工程地球物理学报,2006,3(2):87-92.
    [28]王志刚,何展翔,魏文博.井地直流电法三维数值模拟中若干问题研究.物探化探计算技术,2006,28(4):322-327.
    [29]吴小平,汪彤彤.利用共轭梯度算法的电阻率三维有限元正演.地球物理学报,2003,46(3):428-432.
    [30]吴小平,徐果明.利用共轭梯度法的电阻率三维反演研究.地球物理学报,2000,43(3):420-427.
    [31]吴小平.非平坦地形条件下电阻率三维反演.地球物理学报,2005,48(4):932-936.
    [32]熊彬,阮百尧.电位双二次变化二维地电断面电阻率测深有限元数值模拟.地球物理学报,2002,45:285-294.
    [33]徐凯军,李桐林,张辉等.基于共轭梯度法的垂直有限线源三维电阻率反演.煤田地质与勘探,2006,34(3):69-71.
    [34]徐凯军,李桐林.垂直有限线源三维地电场有限差分正演研究.吉林大学学报(地球科学版),2006,36(1):137-141.
    [35]徐世浙.地球物理中的有限单元法.北京:科学出版社,1994
    [36]杨文采.评地球物理反演的发展趋向.地学前缘,2002,9(4):389-395
    [37]袁亚湘等.最优化理论与方法.科学出版社,1997
    [38]周熙襄,钟本善等.电法勘探数值模拟技术.成都.四川科学技术出版社.1986.
    [39]朱涛,冯锐,徐中信.垂直线电流源的三维电阻率成像.CT理论与应用研究,200413(2):1-5.
    [40]Aono T., Mizunaga H., Ushijima K. Imaging fractures during injection and production operation of reservoirs by a 4-Dgeoelectrical method. Proceedings of the 6th SEGJ international Symposium. Tokyo,2003:281-287.
    [41]Aster R C, Borchers B, Thurber C H. Parameter estimation and inverse problems. Elsevier,.2005
    [42]Astley R J. Infinite elements for wave problems:a review of current formulations and an assessment of accuracy. Int. J. Numer. Meth. Engng 2000,49:951-976
    [43]Astley R. J.,Macaulay G. J. Mapped wave envelope elements for acoustical radiation and scattering. Journal of Vibration and Acoustics,1994,170(1):97-118
    [44]Avdeev D and Avdeeva Anna.3D magnetotelluric inversion using a limited-memory quasi-Newton optimization. Geophysics,.2009,74(3):45-57
    [45]Avdeev D B, Kuvshinov A V, Pankratov, et al. Three dimensional induction logging problems, part 1:An integral equation solution and model comparisons. Geophysics,2002, 67(2):413-426.
    [46]Avdeev D B. Three-dimensional electromagnetic modeling and inversion from theory to application. Surveys in Geophysics,2005,26:767-799
    [47]Barrett R, Berry M, Chan T, et al. Templates for the Solution of Linear Systems:Building Blocks for Iterative Methods. SIAM, Philadelphia,1994.
    [48]Bauer F.Lukas M A. Comparing parameter choice methods for regularization of ill-posed problems. Mathematics and Computers in Simulation.2011,81(9):1795-1841
    [49]Bauer F,Mathe P. Parameter choice methods using minimization schemes. Journal of Complexity.2011,27:68-85
    [50]Bettess P. Infinite Elements. Penshaw Press, Cleadon, U.K.,1992
    [51]Biermann J, et al. Higher order finite and infinite elements for the solution of Helmholtz problems. Comput. Methods Appl. Mech. Engrg.2009,198:1171-1188
    [52]Blome, M., Maurer, H. R. and Schmidt K. Advances in three-dimensional geoelectric forward solver techniques. Geophys. J. Int.,2009,176:740-752
    [53]Bo'rner F D, Schopper J R, Weller A. Evaluation of transport and storage properties in the soil and groundwater zone from induced polarization measurements. Geophysical Prospecting,1996,44:583-601.
    [54]Brown P N,Saad Y. Hybrid Krylov methods for nonlinear systems of equations. SIAM J Sci. Stat. Comput.1990,11:450-481
    [55]Burnett D. S., Holford R. L. An ellipsoidal acoustic infinite element. Comput. Methods Appl. Mech. Engrg.1998,164(1-2):49-76
    [56]Burnett, D. S. A three-dimensional acoustic infinite element based on a prolate spheroidal multipole expansion. The Journal of the Acoustical Society of America,1994,96(5): 2798-2816
    [57]Carlos Calderron-macias, Mrinal K.Sen and Paul L.Stoffa. Artificial neural networks for parameter estimation in Geophysics. Geophysical Prospecting; 2000,48:21-47.
    [58]Chambers J. E., Wilkinson P. B., et al. Mineshaft imaging using surface and crosshole 3D electrical resistivity tomography:A case history from the East Pennine Coalfield, UK. Journal of Applied Geophysics,2007,62(4):324-337.
    [59]Chan T F, Ng M K. Galerkin projection methods solving multiple linear systems. SIAM Journal on Scientific Computing,1999,21:836-850
    [60]Clemens M, Helias M, Steinmetz T, et al. Multiple right-hand side techniques for the numerical simulation of quasistatic electric and magnetic fields. Journal of Computational and Applied Mathematics.2008,215:328-338
    [61]Coggon, J. H., Electromagnetic and electrical modeling by the finite element method. Geophysics,1971,36(2),132-151.
    [62]Dai Y, Yuan Y. A nonlinear conjugate gradient method with a strong global convergence property. SIAM Journal on Optimization.1999,10:177-182
    [63]Das, U. C., Parnasis, D. S. Resistivity and induced polarization responses of arbitrarily shaped 3-d bodies in a two-layered earth. Geophys. Prospect.,1987,35:98-109
    [64]De Groot-Hedin C,Constable S C. Occam's inversion to generate smooth,two dimensional models from magnetotelluric data. Geophysics,1990,55(12):1613-1624
    [65]Dembo R S,Eisenstat S C,Steihaug T. Inexact Newton methods. SIAM Journal of Numerical Analysis,1982,19:400-408.
    [66]Demkowicz L.,Pal M. An infinite element for Maxwell's equations. Comput. Methods Appl. Mech. Engrg.1998,164:77-94
    [67]Demkowicz L.,Shen J. A few new facts about infinite elements. Comput. Methods Appl. Mech. Engrg.2006,195:3572-3590
    [68]Dey, A., Morrison, H. F. Resistivity modeling for arbitrarily shaped three-dimensional structures. Geophysics,1979,44(4):753-780.
    [69]Dieter,K.,Paterson,N.,& Grant, F. IP and resistivity type curves for three-dimensional bodies. Geophysics,1969,34:615-632
    [70]Eld'en L. A note on the computation of the generalized cross-validation function for ill-conditioned least squares problems. BIT.1984,24:467-472
    [71]Ellis R G, Oldenburg D W. The pole-pole 3-d dc-resistivity inverse problem:a conjugate gradient approach. Geophys. J. Int.,1994,119:187-194
    [72]Ellis, R. G., Oldenburg, D. W. The pole-pole 3-D DC resistivity inverse problem:a conjugate gradient approach. Geophys. J. Int.,1994,119:187-194.
    [73]Engl H W, Hanke H, Neubauer A. Regularization of Inverse Problems, Kluwer,Dordrecht,1996
    [74]Erhel J, Guyomarc'h F. An augmented conjugate gradient method for solving consecutive symmetric positive definite linear systems. SIAM J. Matrix Anal. Appl.,2000, 21:1279-1299
    [75]Farquharson C G, Oldenburg D W. A comparison of automatic techniques for estimating the regularization parameter in non-linear inverse problems. Geophys. J. Int. 2004,156:411-425
    [76]Faruk O.A., Torres-Verdin C., et al. Petrophysical inversion of borehole array-induction logs:Part Ⅰ—Numerical examples. Geophysics,2006,71(4):F101-F119.
    [77]Freund R W, Malhotra M. A block QMR algorithm for non-Hermitian linear systems with multiple right-hand sides. Linear Algebra Appl.1997,254:119-157
    [78]Gad EI-Qady and Keisuke Ushijima. Inversion of DC resistivity data using neural networks. Geophysical Prospecting,2001,49:417-430.
    [79]Giraud L, Ruiz D, Touhami A. A comparative study of iterative solvers exploiting spectral information for SPD systems. SIAM Journal on Scientific Computing.2006, 27(5):1760-1786
    [80]Golub G H, Heath M,Wahba G. Generalized cross-validation as a method for choosing a good ridge parameter.1979,21:215-223
    [81]Golub G H, Ruiz D, Touhami A. A hybrid approach combining chebyshev filter and conjugate gradient for solving linear systems with multiple right-hand sides. SIAM J. Matrix Anal. Appl.2007,29(3):774-795
    [82]Gunther T., Rucker C., Spitzer K. Three-dimensional modelling and inversion of dc resistivity data incorporating topography-Ⅱ. Inversion. Geophys. J. Int.,2006,166: 506-517.
    [83]Haber, E.,Ascher U M, Oldenburg D. On optimization techniques for solving nonlinear inverse problems. Inverse Problems,2000,16:1263-1280.
    [84]Hager W W, Zhang H. A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM Journal on Optimization.2005,16:170-192
    [85]Hansen P C, O'Leary D P. The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J. Sci. Comput.1993,14:1487-1503
    [86]Hansen P C. Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev. 1992,34:561-580
    [87]Hansen P C. Rank-Deficient and Discrete Ill-Posed Problems. SIAM, Philadelphia,1998
    [88]Hvozdara, M., Kaikkonen, P. An integral equations solution of the forward D.C. geoelectric problem for a 3-d body of inhomogeneous conductivity buried in a halfspace. J. appl. Geophys.1998,39:95-107
    [89]Jin C, Cai X C. A preconditioned recycling GMRES solver for Stochastic Helmholtz problems. Commun. Comput. Phys.2009,6(2):342-353
    [90]Kemna A, Binley A., Ramirez A and Daily W. Complex resistivity tomography for environmental applications. Chemical Engineering Journal,2000,77:11-18.
    [91]Kerry,K., Weiss,C. Adaptive finite element modeling using unstructed grids, the 2D magnetotelluric example. Geophysics,2006,71:G291-294
    [92]Kilmer M E, O'Leary D P. Choosing regularization parameters in iterative methods for ill-posed problems. SIAM Journal on matrix analysis and applications 2001,22:1204-1221
    [93]Kilmer M E, de Sturler E. Recycling subspace information for diffuse optical tomography. SIAM Journal on Scientific Computing.2006,27(6):2140-2166
    [94]Knoll D A,Keyes D E. Jacobian-free Newton-Krylov methods:a survey of approaches and applications. Journal of Computational Physics,2004,193:357-397
    [95]Lee,T. An integral equation and its solution for some two and three-dimensional problems in resistivity and induced polarization. Geophys. J.,1975,42:81-95
    [96]Li Y, Oldenburg, D.W. Inversion of 3-D DC resistivity data using an approximate inverse mapping. Geophys. J. Int.,1994,116:527-537.
    [97]Li, Y., Oldenburger, D. W. Approximate inverse mappings in DC resistivity problem. Geophys. J. Int.,1992,109:343-362
    [98]Li,Y, Spitzer,K. Three-dimensional DC resistivity forward modeling using finite elements in comparison with finite-difference solutions. Geophys. J. Int.,2002,151(3):924-934
    [99]Loke, M. H. Topographic modeling in resistivity imaging inversion, in Proceedings of the 62nd EAGE Conference & Technical Exhibition(Extended Abstract,D-2),2000.
    [100]Loke, M. H., Barker, R. D. Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophys. Prosp.,1996,44:131-152.
    [101]Loke, M. H., Chambers, J. E. and Ogilvy, R. D. Inversion of 2D spectral induced polarization imaging data. Geophysical Prospecting,2006,54:287-301.
    [102]Loke, M. H.,Dahlin, T. A comparison of the Gauss-Newton and quasi-Newton methods in resistivity imaging inversion. Journal of Applied Geophysics,2002,49:149-162.
    [103]Lowry,T.,Allen,M.B.& Shive,P.N. Singularity removal:a refinement of resistivity modeling techniques. Geophysics,1989,54:766-774
    [104]Ma, Q. The boundary element method for 3-d dc resistivity modeling in layered earth. Geophysics,2002,67(2):610-617
    [105]Mackie R L, Madden T R. Three-dimensional magnetotelluric inversion using conjugate gradients. Geophys. J. Int.,1993,115:215-229
    [106]Madden T R, Cantwell T. Induced polarization, Mining Geophysics.1967,2:373-400.
    [107]McGillivray P R, Oldenburg D W. Methods for calculating frechet derivatives and sensitivities for non-linear inverse problem:a comparative study. Geophys. Prospecting,1990,38:501-512
    [108]Mello L A M, de Sturler E, Paulino G H, et al. Recycling Krylov subspaces for efficient large-scale electrical impedance tomography. Comput. Methods Appl. Mech. Engrg.2010,199:3101-3110
    [109]Morgan R B. Restarted block-GMRES with deflation of eigenvalues. Appl. Numer. Math.2005,54:222-236
    [110]Mufti, J. R. A practical approach to finite-difference modeling. Geophyscis,1978,43:5
    [111]Mufti, J. R. Finite-difference resistivity modeling for arbitrarily shaped two-dimensional structures. Geophysics,1976,41:62-78
    [112]Nam M. J., Pardo D., Toores-Verdin C. Simulation of DC dual-laterolog measurements in complex formations:A Fourier-series approach with nonorthogonal coordinates and self-adapting finite elements. Geophysics,2009,74(1):E31-E43.
    [113]Nimmer R. E., Osiensky J. L., Binley A. M. Williams B. C. Three-dimensional effects causing artifacts in two-dimensional, cross-borehole, electrical imaging. Journal of Hydrology,2008,359(1):59-70.
    [114]Nocedal J, Wright S J. Numerical optimization. Springer,2006
    [115]O'leary D P. The block conjugate gradient algorithm and related methods. Linear Algebra Appl.,1980,29:293-322.
    [116]Okabe, M. Boundary element method for the arbitrary inhomogeneity problem in electrical prospecting. Geophys. Prospect.,1981,29:39-59.
    [117]Oldenborger,G. A., Routh, P. S. The point-spread function measure of resolution for the 3-D electrical resistivity experiment. Geophys. J. Int.,2009,176:405-414
    [118]Oldenburg D W, Li Y. Inversion of induced polarization data. Geophysics, 1994,59:1327-1341
    [119]Pain,C.C.,Herwanger,J.V.,Worthington,M.H.,et al. Effective multidimensional resistivity inversion using finite-element technique. Geophys. J. Int.,2002,151 (3):710-728
    [120]Pardo D., Calo V. M., Torres-Verdin C. Nam M. J. Fourier series expansion in a non-orthogonal system of coordinates for the simulation of 3D-DC borehole resistivity measurements. Comput. Methods Appl. Mech. Engrg.2008,197:1906-1925.
    [121]Park, S. K, Van, G. P. Inversion of pole-pole data for 3-D resistivity structure beneath arrays of electrodes. Geophysics,1991,56:951-960
    [122]Parks M L, de Sturler E, Mackey G, et al. Recycling Krylov subspaces for sequences of linear systems. SIAM Journal on Scientific Computing,2006,28:1651-1674
    [123]Pelton, W. H., Rijo, L., et al. Inversion of two-dimensional resistivtity and induced-polarization data. Geophysics,1978,43:788-803
    [124]Pernicc M. Private communication.2003.
    [125]Phillips D. A technique for the numerical solution of certain integral equations of the first kind. J. Assoc. Comput. Mach.1962,9:84-97
    [126]Pidlisecky A, Haber E, Knight R. RESINVM3D:A 3D resistivity inversion package. Geophysics,2007,72(2):H1-H10
    [127]Pridmore,D.F., Hohmann,G.W.,Ward,S.H.,et al. An investigation of finite-element modeling for electrical and electromagnetic data in three dimensions. Geophysics,1981,46(7):1009-1024.
    [128]Raghu K.Chunduru, Mrinal K.Sen, and Paul L.Stoffa.2D resistivity inversion using spline parameterization and simulated annealing. Geophysics,1996,61:151-161.
    [129]Rijo, L. Inversion of three-dimensional resistivity and induced-polarization data. 54th Ann. Internat. Mtg., Soc. Expl. Geophys. Expanded Abstracts,1984:113-117
    [130]Rodi W L. A technique for improving the accuracy of finite element solutions for magnetotelluric data. Geophys J Roy Astr Sco,1976,44:483-506
    [131]Rodi W, Mackie R L. Nonlinear conjugate gradients algorithm for 2-d magnetotelluric inversion. Geophysics,2001,66(1):174-187
    [132]Riicker C., Giinther T. Spitzer K. Three-dimensional modelling and inversion of dc resistivity data incorporating topography-Ⅰ. Modelling. Geophys. J. Int.,2006,166: 495-505.
    [133]Saad, Y. Iterative Methods for Sparse Linear Systems. PWS, Bostion,1996
    [134]Salkuyeh D K. CG-type algorithms to solve symmetric matrix equations. Applied Mathematics and Computation,2006,172:985-999
    [135]Sasaki, Y. Two-dimensional joint inversion of magnetotelluric and dipole-dipole resistivity data. Geophysics,1989,54:254-262
    [136]Sasaki,Y.3-D Resistivity inversion using finite-element method. Geophysics,1994, 59(11):1839-1848.
    [137]Scriba, H. Computation of the electrical potential in three-dimensional structures. Geophysical Prospecting,1981,29(5):790-802.
    [138]Seigel H. O. Mathematical formulation and type curves for induced polarization. Geophysics,1959,24(3):547-565
    [139]Si H. TETGEN:a 3d delaunay tetrahedral mesh generator, http://tetgen.berlios.de. 2003
    [140]Slater L, Lesmes D P. Electrical-hydraulic relationships observed for unconsolidated sediments. Water Resources Research,2002,38:1213-1225.
    [141]Spitzer, K. A 3-D finite-difference algorithm for DC resistivity modeling using conjugate-gradient methods. Geophys. J. Int.,1995,123(3):903-914.
    [142]Spitzer, K. Wurmstich, B. Speed and accuracy in 3D resistivity modeling. Geophysics,2001.
    [143]Sumi F. Geophysical exploration in mining by induced polarization. Geophysical Prospecting,1959,7:300-310.
    [144]Tikhonov A N, Arsenin V Y. Solution of ill-posed problems. V.H. Winston ans Sons, Washington DC.1977.
    [145]Torres-Verdin C. Rapid numerical simulation of axisymmetric single-well induction data using the extended Born approximation. Radio Science,2001,36(6):287-130.
    [146]Torres-Verdin C., Druskin V. L., Fang S., et al. A dual-grid nonlinear inversion technique with applications to the interpretation of dc resistivity data. Geophysics, 2000,65(6):1733-1745.
    [147]Tripp, A. C., Honmann, G. W.& Swift, C. M. Jr. Two dimensional resistivity inversion. Geophysics,1984,49:1708-1717
    [148]Ushijima K, Mizunaga H, Tanaka T. Reservoir monitoring by a 4-D electrical technique. The Leading Edge,1999,18(12):1422-1424.
    [149]Vacquier V, Holmes C R, Kintzinger P R and Lavergue M. Prospecting for groundwater by induced electric polarization, Geophysics,1957,22:660-687.
    [150]Wahba G. Practical approximate solutions to linear operator equations when the data are noisy. SLAM J. Numer. Anal.1977,14:651-667
    [151]Wang S, de Sturler E, Paulino G H. Large-scale topology optimization using preconditioned Krylov subspace methods with recycling. Int. J. Numer. Meth. Engng. 2007,69:2441-2468
    [152]Wang T and Signorelli J. Finite-difference modeling of electromagnetic tool response for logging while drilling. Geophysics,2004,69 (1):152-160.
    [153]Wilkinson P. B., Chambers J. E., et al. Extreme sensitivity of crosshole electrical resistivity tomography measurements to geometric errors. Geophys. J. Int.,2008,173: 49-62.
    [154]Wilkinson P. B., Chambers J. E., et al. Optimization of array configurations and geometries for the detection of abandoned mineshafts by 3D cross-hole electrical resistivity tomography. Journal of Environmental and Engineering Geophysics 2006, 11(1):213-221.
    [155]Williams K H, Kemna A, Wilkins M J, et al. Geophysical monitoring of coupled microbial and geochemical processes during stimulated subsurface bioremediation. Environmental Science and Technology,2009,43:6717-6723.
    [156]Xu, S. Z., Gao, Z. C., et al. An integral formulation for three-dimensional terrain modeling for resistivity surveys. Geophysics,1988,53:546-552
    [157]Zhang J, Mackie R L and Madden T R.3-d resistivity forward modeling and inversion using conjugate gradients. Geophysics,60(5):1313-1325
    [158]Zhang J., Mackie R. L. Madden T.R.3-D resistivity forward modeling and inversion using conjugate gradients. Geophysics,1995,60(5):1313-1325.
    [159]Zhao, S.,Yedlin, M. J. Some refinements on the finite-difference method for 3-d dc resistivity modeling. Geophysics,1996,61(5):1301-1307
    [160]Zhdanov M S. Geophysical inverse theory and regularization problems]. Elsevier, Amsterdam,New York, Tokyo,2002.
    [161]Zhdanov M. S., Yoshioka K. Cross-well electromagnetic imaging in three dimensions. Exploration Geophysics,2003,34:34-40.
    [162]Zhdanov, M. S. The construction of effective method for electromagnetic modeling. Geophys. J. R. astr. Soc.1982,68:589-607
    [163]Zhou B., Greenhalgh S. A. Rapid 2-D/3-D crosshole resistivity imaging using the analytic sensitivity function. Geophysics,2002,67(2):755-765.
    [164]Zhou, B., Greenhalgh, M. and Greenhalgh. S. A.2.5-D/3-D resistivity modeling in anisotropic media using Gaussian quadrature grids. Geophys. J. Int.,2009,176:63-80.
    [165]Zhou, B., Greenhalgh. S. A. Finite element three-dimensional direct current resistivity modelling:accuracy and efficiency considerations. Geophys. J. Int.,2001,145:679-688.
    [166]Zienkiewicz O C, Taylor R L and Zhu J Z. The Finite Element Method its Basis & Fundamentals (sixth ed.). Butterworth-Heinemann, Oxford (2005).
    [167]Zienkiewicz O. C.,Bettess P. Diffraction and refraction of surface wave using finite and infinite elements. International Journal for Numerical Methods in Engineering,1977,13(11):1271-1290
    [168]Zienkiewicz O. C.,Bando K., Bettess P., et al. Mapped infinite elements for exterior wave problems. International Journal for Numerical Methods in Engineering. 1985,21:1229-1251

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700