阵列天线快速自适应波束形成技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数字波束形成(Digital Beamforming, DBF)天线系统以其在抗干扰、多波束等方面的独特优点在雷达、通信、声纳等领域得到越来越广泛的应用。本文针对大阵列天线自适应数字波束形成处理中算法运算量大、传输数据量大及系统性能受阵列非理想因素影响的问题,围绕分块并行、子阵、降秩和稳健处理等几个方面,对阵列天线快速自适应波束形成技术进行了研究。本文主要工作如下:
     1、采用分块并行的方法来解决大阵列天线自适应数字波束形成中计算量和数据传输的瓶颈问题。首先,把分块并行的线性约束最小方差(Partitioned-Parallel Linearly Constrained Minimum Variance, PLCMV)算法推广到二维平面阵列,给出了权矢量方程的构造方法,推导了适用于二维平面天线阵列的PLCMV自适应波束形成算法,并给出了该算法在分布式并行处理系统的实现方案图。另外,提出了基于最小均方的分块并行(Partitioned-Parallel Least Mean Square, PLMS)自适应波束形成算法,并在该算法中加入了切比雪夫约束来获得低的波束旁瓣性能。该算法具有与传统LMS(Least Mean Square)相同的波束形成性能,且可以应用于分布式并行处理系统来实现实时处理。PLMS具有比PLCMV更低的运算量,和更简单的算法实现流程。
     2、对子阵级自适应波束形成算法进行了研究。首先,针对大型的二维平面阵列天线,将阵元级不规则错位行的思想应用于子阵布阵中,研究了基于子阵的平面阵列不规则错位布阵方式。并利用二进制粒子群优化算法对错位量的不规则方式进行了优化设计。采用优化后的不规则错位子阵结构的面阵,可以有效降低天线扫描范围内的栅瓣电平。然后,将二维面阵分块并行LCMV(Linearly Constrained Minimum Variance)算法应用于优化后的不规则错位子阵结构,在保证主瓣指向的同时,既控制了栅瓣电平,又可以自适应抑制干扰。利用子阵降低自适应处理维数的同时,通过分块并行算法进一步加快自适应波束形成处理速度。
     3、传统的降秩自适应波束形成算法降秩矩阵大多数需通过特征分解获得,而特征值分解会带来新的大运算量,大大限制了算法的工程实现。本文提出了基于最小方差波束形成器(Minimum Variance Beamformer, MVB)的快速降秩自适应波束形成算法(Fast Reduced Rank MVB, FRRMVB)。FRRMVB利用阵列接收的快拍数据来快速构造降秩矩阵中的干扰子空间,具有更优的实时性,适用于大规模阵列雷达或是空时处理雷达系统。该算法在小快拍数下仍有很好波束形成性能,且FRRMVB波束形成性能优于HTP(Hung-Turner Projection)算法。
     FRRMVB适用于存在间歇期的雷达系统,用来构造干扰子空间的快拍数据中不能含有期望信号。而连续波体制雷达,接收信号中一直存在期望信号。针对连续波体制雷达,本文还提出了一种基于广义旁瓣相消器(Generalized Sidelobe Canceler, GSC)的快速降秩(Fast Reduced Rank Generalized Sidelobe Canceler, FRRGSC)自适应波束形成算法。该算法可以应用于接收信号中含有期望信号的情况。利用GSC下支路的中间快拍数据来构造降秩矩阵,并在此基础上对快速估计干扰空间的方法进行了改进,利用所有可以利用的快拍数来构造降秩矩阵,只增加了少量的运算量,使得所提出的快速降秩波束形成算法具有很好的稳健性。FRRGSC算法构造降秩矩阵只需要一次复数乘法和少量复数加法,所需运算量远小于传统的基于GSC的降秩算法,在实际应用中具有更优的实时性,有利于算法的工程实现。
     4、针对大阵列自适应波束形成算法的稳健性问题,提出了一种适用于大型阵列的分块并行的稳健递归LCMV算法(Partitioned-Parallel Robust Recursive LCMV, PRRLCMV),并给出了PRRLCMV算法应用于分布式并行处理系统的方案流程图。PRRLCMV算法可以有效地校正估计期望信号方向性矢量误差,避免期望信号方向性矢量误差所带来的算法波束形成性能下降。PRRLCMV算法的运算量远远小于传统的基于梯度优化的稳健LCMV算法,且在达到稳健性的同时,该算法的大部分步骤可以进行分块并行处理。
     5、对传统的基于投影的稳健自适应波束形成算法进行了改进,首先通过最小均方误差准则求得校正后的估计协方差矩阵,然后从校正协方差矩阵的特征向量中估计出期望信号子空间,最后把估计期望信号方向性矢量向期望信号子空间投影得到校正的期望信号方向性矢量。与传统的基于投影的稳健算法相比,改进后算法不需要估计信源个数,且在低信噪比下仍具有很好的波束形成性能。
Digital beamforming(DBF) technique can greatly improve the capability of interference suppression, and can conveniently form multi-beam. It is applied for many areas such as radar, communication sonar. For a large-scale adaptive array, heavy computational load and high-rate data transmission are two challenges in the implementation of an adaptive DBF system. Moreover, the large-scale array becomes extremely sensitive to array imperfections. In this dissertation, some research works have been made on fast digital beamforming technique:Partioned-Parallel DBF algorithm, DBF algorithm based on subarray, reduced rank DBF algorithm and robust DBF algorithm. The main contributions are illustrated as follows:
     1. The efficient Partitioned-Parallel DBF method has been used to deal with the bottleneck of high-rate data transmission and reduce the computational cost. First, the Partitioned-Parallel Linearly Constrained Minimum Variance (PLCMV) is extended to adaptive 2-D antenna array processing. An implementation scheme of the 2-D PLCMV algorithm based on a distributed-parallel-processing system is also present. Then, an efficient Partioned-Parallel DBF algorithm based on the least mean square algorithm (PLMS) is proposed. Moreover, low sidelobe of the beam pattern is obtained by constraining the static steering vector with Tschebyscheff coefficients. PLMS has the same performance as the conventional LMS algorithm. Also, PLMS requires less computational load than PLCMV. as well as it is easier to be implemented to do real time adaptive array processing. An implementation scheme of the PLMS algorithm based on a distributed-parallel-processing system is also present.
     2. Subarray technique for DBF system is investigated. First, for the large plane antenna arrays with subarrays, the randomly staggered structure is applied to decrease the grating lobes. Binary particle swarm optimization (BPSO) algorithm is used to find the optimal structure of the randomly staggered subarrays. Simulated results show that the plane antenna arrays with subarrays of this new structure can get low side lobe in the scanning range. Then, PLCMV based on the optimal staggered structure is proposed, wich can adaptive cancel the interferences. Combine subarray to reduce the adaptive dimension and the Partioned-Paralle algorithm to achieve fast processing.
     3. In conventional reduced rank beamformer based on Generalized Sidelobe Canceller (GSC) or Minimum Variance beamformer (MVB). reducing rank matrix is usually obtained from estimated sample covariance matrix by eigendecomposition. To alleviate the computational burden and achieve real-time processing, a fast reduced rank adaptive beamforming based on minimum variance beamformer(FRRMVB) is proposed. FRRMVB takes a set of data vectors as a rough and fast estimate of the interference subspace. And the rank reducing matrix is obtained as the augmentation of the estimated interference subspace and the steering vector of the desired signal. The FRRMVB is very simpler in design and programming, and requires less computational load than the conventional RRMVB adaptive beamformer. Moreover, it has good performance even with small sample size, and has better performance than HTP algorithm. FRRMVB can be used to deal with the real-time adaptive array processing for uncontinuous wave radar. For continuous wave radar, a new fast reduced rank adaptive beamforming algorithm based on GSC(FRRGSC) is proposed. It uses a set of intermediate data vectors in the below branch of GSC to construct the rank reducing matrix. Furthermore, in order to achieve the robustness, all available snapshots have been used to obtain the rank reducing matrix. The FRRGSC method is very simpler in design and programming, and requires less computational load than the conventional reduced rank adaptive beamformer. Simulation results demonstrate the validity of this new method.
     4. In practical array systems, traditional adaptive beamforming algorithms are known to degrade if some of exploited assumptions on the environment, sources or antenna array become wrong or imprecise. A new efficient partitioned-parallel robust recursive linearly constrained minimum variance (PRRLCMV) algorithm is proposed. An implementation scheme of the PRRLCMV algorithm based on a distributed-parallel-processing system is also present. It can be easily executed in a distributed-parallel-processing fashion, sequentially and in parallel. As a result, the PRRLCMV algorithm provides an effective solution that can alleviate the bottleneck of high-rate data transmission and reduce the computational cost. Moreover, PRRLCMV can significantly reduce the degradation due to various array errors.
     5. A novel modified projection method is proposed, which is robust against the signal steering vector mismatch and covariance matrix uncertainty. First, an enhanced covariance matrix estimate based on a shrinkage method is obtained. Then, the desired signal subspace is estimated from the eigenvectors of the enhanced covariance matrix, and a new calibrated steering vector of the desired signal is obtained in sequence by projecting the presumed one onto the new estimated desired signal subspace. Compared with the traditional projection method, it does not need to estimate the number of sources, and works well even at low signal-to-noise ratio.
引文
[1]Pillai S U and Burrus C S. Array Signal Processing. New York:Springer-Verlag,1986
    [2]Krim H and Viberg M. Two decades of array signal proeessing research:the parametric Approach. IEEE signal Proeessing magazine,1996,13(4):67-94
    [3]Haykin S, Reilly J P, KeZys V, etal.. Some aspects of array signal proeessing. IEE Proceedings Radar and Signal Processing, Feb.1992,139(1):1-26
    [4]Howells P W. Intermediate frequency side-lobe canceller. U. S. Patent 3202990,Aug.1965
    [5]Widrow B, Mantey P E, Grifiths L J, Goode B. Adaptive Antenna System. Proc. IEEE,1967,55:2143-2159
    [6]Applebaum S P. Adaptive Antenna. IEEE Trans.on Antenna and Propagation.1976, 24:585-598
    [7]Capon J. High Resolution Frequency Wave Number Spectrum Analysis. Proc. IEEE, 1969,57(8):1408-1418
    [8]Schmidt R O. Multiple Emitter Location and Signal Parameter Estimation. IEEE Trans.on Antenna and Propagation,1986,34(3):276-280
    [9]Roy R, Paulraj A, Kailath T. ESPRIT—A Subspace Rotation Approch to Estimation of Cisoids in Noise. IEEE Trans.on Acoust., Speech, and Signal Processing,1986, 34(5):1340-1342
    [10]Gabriel W F. Adaptive arrays-An introduction. Proc. IEEE,1976,64:239-272.
    [11]Reed I S, Mallett J D, Brennan L E. Rapid Convergence rate in adaptive arrays. IEEE Trans.1974, AEs-10:853-863
    [12]Sander W. Experimental phased-array radar ELRA:antenna system, IEE Proc. Pt.F, 1980,127(4):285-289
    [13]吴曼青.大有作为的数字阵列雷达.现代军事.2005:46-49
    [14]朱庆明.数字阵列雷达述评.雷达科学与技术.2004,2(3):136-146
    [15]Brattstrom S-O. A C-band phased array antenna using digital beam forming in a surveillance radar system. IEEE International Symposium on Phased Array Systems and Technology.2003:217-222
    [16]王剑,罗军.舰载相控阵雷达的现状及发展趋势.电讯技术,2005,45(3):7-14
    [17]Billam E R. MESAR-the application of modern technology to phased array radar. Phased Array Radar. IEE Tutorial Meeting on 18 Sep 1989:511-516
    [18]云海.英国研制多功能有源阵列雷达.系统工程与电子技术,2000,22(6):53
    [19]McWhirter J G, Rees H D, Hayward S D, Mather, J L. Adaptive Radar Processing. The IEEE Adaptive Systems for Signal Processing, Communications, and Control Symposium. 2000,1-4 Oct.2000:25-30
    [20]Larvor J P, Muller D, Gibassier J Y, Alix C, Simatos P. SAFRAN: a Digital Beamforming Radar for battlefield applications. Radar 97 (Conf. Publ. No.449),14-16 Oct. 1997:60-64
    [21]Miyauchi H, Shinonaga M, Takeya S, Uwamichi H, Wada T. Development of DBF Radars. IEEE International Symposium on Phased Array Systems and Technology 15-18 Oct. 1996:226-230
    [22]Cant rell B. Development of a Digital Array Radar(DAR). IEEE Aerospace and Electronic Systems.Magazine,2002,17 (3):22227
    [23]吴曼青.数字阵列雷达的发展与构想.雷达科学与技术,2008,6(6):401-405
    [24]Eli Brookner.Practical phased array antenna system.Artech House Boston,London,1991.
    [25]Kumar B P and Branner G R. Generalized analytical technique for the synthesis of unequally spaced arrays with linear, planar, cylindrical or spherical geometry. IEEE Trans.on Antenna and Propagation,2005,53(2):621—634
    [26]袁朋杰,强勇.阵列稀疏布阵雷达数字波束形成研究.2010通信理论与技术新发展——第十五届全国青年通信学术会议论文集(上册),2010:174-178
    [27]Zatman M. Properties of Hung-Turner projections and their relationship to the eigencanceller. In Conference Record of the Thirtieth Asilomar Conference on Signals, Systems and Computers,1996:1176-1180
    [28]Gierull Christoph H. Performance analysis of fast projections of the Hung-Turner type for adaptive beamforming. Signal Processing,1996,50:17-28
    [29]Nickel U. Some properties of fast projection methods of the Hung Turner type. Proc.EURASIP-86,1986:1165-1168
    [30]Hung E K L, Turner R M. A fast beamforming algorithm for large arrays. IEEE Transactions on Aerospace and Electronic Systems,1983, AES-19(4):598-607
    [31]Lee C C and Lee J H. Eigenspace-Based Adaptive Array Beamforming with Robust Capabilities. IEEE Transactions on antennas and propagation,1997,45(12):1711-1716
    [32]Lee J H and Lee Y H. Two-Dimensional Adaptive Array Beamforming With Multiple Beam Constraints Using a Generalized Sidelobe Canceller. IEEE Transactions on signal processing,2005,53(9):3517-3529
    [33]Sarkar T K and Koh J, A Pragmatic approach to adaptive antennas. IEEE Transactions on Antennas and Propagation, April 2000,42(2):39-55
    [34]Lee K C. Adaptive algorithm of direct data domain including mutual coupling effects, Electronics Letters,2005,41 (5):223-225
    [35]Van Veen B and Roberts R A. Partial adaptive beamformer design via output power minimization.IEEE Trans. Acoust, Speech,Signal Processing, Nov.1987, ASSP-35:1524-1532
    [36]Van Veen B.Eigenstructure based partially adaptive array design. IEEE Trans. Antennas Propagation. Mar.1988,36:357-362
    [37]Peckham C D, Haimovich A M, Ayoub T F, Goldstein J S and Reed I S. Reduced-rank STAP performance analysis. IEEE Transactions on Aerospace and Electronic Systems,2000, 36:664-675
    [37]Carboun D O, Games R A, and Williams R T. A principal components sidelobe cancellation algorithm. In Conference Record Twenty-Fourth Asilomar Conference on Signals, Systems and Computers, Nov 1990:763-768
    [39]Chang L, and Yeh C. Performance of DMI and eigenspace-based beamformers. IEEE transactions on Antennas and Propagation,1992,40:1336-1347
    [40]Marshall D F. A two step adaptive interference nulling algorithm for use with airborne sensor arrays. In proc. of the Seventh signal processing workshop on statistical and array processing,1994:301-304
    [41]Kirsteins I P and Tuffts D W. Adaptive detection using low rank approximation to a data matrix. IEEE transactions on Aerospace and Electronic Systems,1994,30:55-67
    [42]Tufs D W, Kumaresan R, and Kirsteins I. Data adaptive signal estimation by singular value decomposition of a data matrix. In Proceedings of the IEEE,1982,70:684-685
    [43]Berger S D, Welsh B M. Selecting a reduced-rank transformation for STAP a direct form perspective. IEEE transactions on aerospace and electronic systems,1999,35(2):722-729
    [44]Goldstein J S and Reed I S. Subspace selection for partially adaptive sensor array processing. IEEE Transactions on Aerospace and Electronic Systems,1997,33:539-544.
    [45]Shan Rong, Fan ChongYi, Huang XiaoTao. A new reduced-rank STAP method based on cross spectral defined by range cell echo. International Conference on Wireless Communications & Signal Processing,2009:1-3
    [46]Goldstein J S and Reed I S, Scharf L L. A multistage representation of the Wiener filter based on orthogonal projections. IEEE Transactions on Information Theory,1998, 44(7):2943-2959
    [47]Ricks D C, Goldstein J S. Efficient architectures for implementing adaptive algorithms. Proceedings of the 2000 Antenna Applications Symposium. Allerton Park, Monticello, IL, 2000:29-41
    [48]Weippert M E, Hiemstra J D, Goldstein J S. et al. Insights from the relationship between the multistage Wiener filter and the method of conjugate gradients.2nd IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM 2002), Rosslyn VA.2002:388-392
    [49]Joham M, Zoltowski M D. Interpretation of the Multi-stage Nested Wiener Filter in the Krylov Subspace Framework. Tech Rep TUM-LNS-TR-00-6, Munich University of Technology,2000. Also:Technical Report TR-ECE-00-51, Purdue University.
    [50]丁前军,王永良,张永顺.一种多级维纳滤波器的快速实现算法—迭代相关相减算法.通信学报,2005,,26(12):1-7
    [51]Zanatta-Filho D, De Lamare R C, Fa R. Reduced-rank interference suppression for GPS systems based on adaptive basis-function approximation.42nd Asilomar Conference on Signals, Systems and Computers,2008:1635-1639
    [52]De Lamare R. C. and Sampaio-Neto R. Reduced-rank adaptive filtering based on joint iterative optimization of adaptive filters. IEEE Signal Processing Letters,2007,14(12): 980-983
    [53]Fa R, De Lamare R C, Zanatta-Filho D. Reduced-rank STAP algorithm for adaptive radar based on joint iterative optimization of adaptive filters.42nd Asilomar Conference on Signals, Systems and Computers,2008:533-537
    [54]Zhang G.Y.. Phased array antenna radar system. National defense industry publishing company, Aug.1994
    [55]邱力军,周智敏,梁甸农.稀布相控阵雷达子阵划分方法研究.系统工程与电子技术,1997,7:31-37
    [56]曾操,何学辉,廖桂生,陶海红.对称指数分布的子阵级多波束形成方法.系统工程与电子技术,2009.31(10):2294-2298.
    [57]Mailloux R. Array grating lobes due to periodic phase, amplitude, and time delay quantization. IEEE transactions on Antennas and Propagation,1984,32(12):1364-1368
    [58]Howard R L et al. The relationships between dispersion loss, sidelobe level, and bandwidth in wideband radar with subarrayed antennas. Proc. IEEE Int. Symp. Antennas and Propagation,1988,1:184-187
    [59]Goffer A P, Kam M, Hercafeld P R. Design of phased arrays in terms of random subarrays. IEEE trans.on antennas and propagation, June 1994,42(6)
    [60]Kerby K C, Bernhard J T. Wideband Periodic Array of Random Subarrays. IEEE Trans. on Antennas and Propagation Society International Symposium,2004, 1(1):555-558
    [61]Wang H, Fang D G and Chow Y L. Grating lobe reduction in a phased array of limited scanning. IEEE Trans.Antenna Propag., June 2008,56(6):1584-1586
    [62]Wang L L, Fang D G and Sheng W X. An equivalent overlapping arrays with optimized sub-array pattern.3rd international conference on microwave and millimeter wave technology, Aug.2002,588-591
    [63]Hu H, Li S B. Application of weighting methods adapting to array structure for design of DBF in subarray. International conference on microwave and millimeter wave technology proceedings,2002
    [64]Nickel U. Subarray configurations for digital beamforming with low sidelobes and adaptive interference suppression. Proc. IEEE International Radar Conference,1995, Alexandria, USA:714-719
    [65]Lombardo P, Pastina D. Quiescent Pattern Control in Adaptive Antenna Processing at Sub-array Level. IEEE International Symposium on Phased Array Systems and Technology, Boston, USA,2003:176-181
    [66]胡航,张皓.子阵级自适应差波束的方向图控制方法.信号处理,2009,25(3):357-361
    [67]胡航,李绍滨,邓新红.重叠子阵平面相控阵ADBF的方向图控制系统工程与电子技术,2007,29(12):2001-2005
    [68]胡航,邓新红.子阵级平面相控阵ADBF的旁瓣抑制方法,电波科学学报,2008,23(1):201-205
    [69]Teitelbaum K A. Flexible Processor for a digital adaptive array radar. IEE Trans.Systems Magazine, May 1991, AES:18-22
    [70]罗旭明.自适应干扰置零并行处理技术.硕士论文.1998,成都电子科技大学
    [71]Chan S C, Yang X X. Improved Approximate QR-LS Algorithms for Adaptiven Filtering. IEEE, Jan 2004,51(1):29-40
    [72]Liu Z S. A QR-based least mean squares algorithm for adaptive parameter estimation. IEEE Tran. Circuits Syst., Mar.1998,45:321—329
    [73]Lee J H, Tong F P. Efficient adaptive array beamforming under steering errors, Antennas and Propagation Society International Symposium,18-25 July 1992:1015-1018
    [74]Yu S J, Lee J H. Adaptive array beamforming based on an efficient technique. IEEE Trans.AP-44,1996 (8):1094-1101
    [75]Tang J, Wang X Q and Peng Y N. Sub-array RLS adaptive algorithm. IEEE Electronics letters,1999,35(13):1061-1062
    [76]Wang W, Sheng W X, Qi B Y. Subarray Adaptive Array Beamforming Algorithm Based on LCMV. Asia pacific microwave conference proceedings,2005,3:1964-1966
    [77]Stoica P and Moses R L. Introduction to Spectral Analysis.Englewood Cliffs, NJ: Prentice-Hall,1997
    [78]Van Trees H L. Detection, Estimation, and Modulation Theory, Part IV, Optimum Array Processing. New York:Wiley,2002
    [79]Griffiths L J and Jim C W. An alternative approach to linearly constrained adaptive beamforming. IEEE Transactions on Antennas and Propagation, Jan.1982,30 (1):27-34
    [80]Frost Ⅲ O L. An Algorithm for Linearly Constrained Adaptive Array Processing. Proceedings of the IEEE, August 1972,60 (8):926-935
    [81]Compton R T. Adaptive antennas:concepts and performance. Prentice Hall, January 1988
    [82]Er M H and Cantoni A. Derivative constraints for broad-band element space antenna array processors. IEEE Trans. Acoust., Speech, Signal Processing, Dec.1983, ASSP-31: 1378-1393
    [83]Buckley K M and Griffiths L J. An adaptive generalized sidelobe canceller with derivative constraints. IEEE Trans. Antennas Propagation, Mar.1986, AP-34:311-319
    [84]Zhang S and Thng I L. Robust presteering derivative constraints for broadband antenna arrays. IEEE Trans. Signal Processing, Jan.2002,50:1-10
    [85]Zatman M. Comments on theory and applications of covariance matrix tapers for robust adaptive beamforming. IEEE Trans. Signal Processing, June 2000,48:1796-1800
    [86]Yu Z L, Zou Q, Er M H. A new approach to robust beamforming against generalized phase errors, in:Proceedings of the IEEE sixth Circuits and Systems Symp.on Emerging Technologies:Frontiers of Mobile and Wireless Comm.,31 May-2 June 2004:775-778
    [87]Deng X, Liao G S, Liu H Q. Recursive robust LCMV beamforming algorithm. Systems Engineering and Electronics, China,2007,29 (3):449-452
    [88]Hudson J E. Adaptive Array Principles. London, U.K.:Peter Peregrinus,1981
    [89]Carlson B D. Covariance matrix estimation errors and diagonal loading in adaptive arrays. IEEE Trans. Aerosp. Electron. Syst., July 1988,24:397-401
    [90]Van Veen B D. Minimum variance beamforming with soft response constraints. IEEE Trans. Signal Processing, Sept.1991,39:1964-1972
    [91]Cox H, Zeskind R M, and Owen M M. Robust adaptive beamforming. IEEE Trans. Acoust., Speech, Signal Processing, Oct.1987, ASSP-35:1365-1376
    [92]Gerlach K. Adaptive Array Transient Sidelobe Levels and Re—Mddies.IEEE Trans on AES,1990,26(5):560-568
    [93]李军,龚耀寰.大型线阵自适应数字波束形成超低副瓣技术.信号处理,2005,21(4):397-401
    [94]Ma Ning and Goh Joo Thiam. Eficient method to determine diagonal loading value. Acoustics, Speech, and Signal Processing,2003,5:341-344
    [95]Du L, Li J and Stoica P. Fully automatic computation of diagonal loading levels for robust adptive beamforming. IEEE Trans. Areospace and electronic systems,2010, 46(1):.449-458
    [96]Tian Z, Bell K L, and Van Trees H L. A Recursive leat Squarse Implementation for LCMP Beamforming Under Quadratic Contrain. IEEE Trans.Signal Processing,2001, 49:1138-1145
    [97]Lie J P, Li X, Ser W, See C S, Lei L. Adaptive uncertainty based iterative robust capon beamformer.2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP),14-19 March 2010:2526-2529
    [98]Song X, Wang J, Wang B. Robust Adaptive Beamforming Under Quadratic Constraint with Recursive Method Implementation. Wireless Personal Communications,2010, 53(4):555-568
    [99]宋昕,汪晋宽,刘福来,王彬.顽健自适应波束形成算法.通信学报,2009,30:7-12
    [100]Feldman D D, Griffiths L J. A constraint projection approach for robust adaptive beamforming. Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing,1991:1381-1384
    [101]Chang L, Yeh C C. Performance of DMI and eigenspace based beamformers. IEEE Trans. Antenn. Propagat.,1992,40(11):1336-1347
    [102]Yu J L, Yeh C C. Generalized eigenspace-based beamformers. IEEE Trans. signal Processing,1995,43(11):2453-2461
    [103]Shahbazpanahi S, Gershman A B, Luo Z Q and Wong K M. Robust adaptive beamforming for general-rank signal models. IEEE Trans. Signal Processing, September 2003, 51(7):2257-2269
    [104]Vorobyov S A, Gcrshman A B, and Luo Z Q. Robust adaptivc beamforming using worst-case performance optimization: A solution to the signal misatch problem. IEEE Trans. ori Signal Processing, February 2003,51(2):1702-1714
    [105]Robert G L, Stephen P B. Robust Minimum Variance Beamforming. IEEE Trans. Signal Processing,2005,53(5):1684-1696
    [106]Li J, Stoica P, and Wang Z. On robust Capon beamforming and diagonal loading. IEEE Trans. Signal Processing, July 2003,51:1702-1715
    [107]Li J, Stoica P, and Wang Z. Doubly Constrained Robust Capon Beamformer. IEEE Trans. Signal Processing,2004,52(9):2407-2423
    [108]Kim S J, Magnani A, Mutapcic A, Boyd S P and Luo Z Q. Robust Beamforming via Worst-Case SINR Maximization. IEEE Transactions on signal processing, APRIL 2008, 56(4):1539-1547
    [109]Agee B G, Schell S V, Gardner W A. Spectral self-coherence restoral:A new approach to blind adaptive signal extraction using antenna arrays. Proc IEEE,1990,78:753-767 [110] Wu Q, Wong K M. Blind adaptire beamforming for cyclostationary signals. IEEE Trans on SP,1996,44(11):2787-2767
    [111]Wang L, de Lamare R C, Yukawa Masahiro. Adaptive Reduced-Rank Constrained Constant Modulus Algorithms Based on Joint Iterative Optimization of Filters for Beamforming. IEEE Trans. Signal Processing,2010,58(6):2983-2997
    [112]Wang L, de Lamare R C. Adaptive Constrained Constant Modulus Algorithm Based on Auxiliary Vector Filtering for Beamforming. IEEE Trans. Signal Processing,2010, 23(1):46-49
    [113]Gu Y J, Zhu W P and Swamy M N S. Adaptive beamforming with joint robustness against covariance matrix uncertainty and signal steering vector mismatch. IET electronics letters,2010,46(1)
    [114]Hassanien A, Vorobyov S, and Wong K M. Robust adaptive beamforming using sequential quadratic programming:an iterative solution to the mismatch problem, IEEE Signal Process. Lett.,2008,15:733-736
    [115]石镇.自适应天线原理.国防工业出版社,1991
    [116]Van Trees Harry L. Optimum array processing, Part IV of detection, estimation and Modulation Theory. John Wiley & Sons, Inc., New York,2002
    [117]Haykin S, Litva J, Shepherd T J. Radar Array Processing, Springer, New York,1992.
    [118]Kailath T. Linear Systems, Englewood Cliffs,NJ:Pretice Hall,1980
    [119]龚耀寰.自适应滤波-时域自适应滤波和智能天线.电子工业出版社,2003
    [120]Kerby K C, Bernhard J T. Wideband Periodic Array of Random Subarrays. IEEE Trans. on Antennas and Propagation Society International Symposium,2004, 1(1):555-558
    [121]Mailloux Robert J,南京电子技术研究所(译).相控阵天线手册(第二版).电子工业出版社.2007
    [122]Mailloux R J, Zahn L, Maritinez A Ⅲ, Forbes G R. Grating lobe control in limited scan arrays. IEEE transactions on Antennas and Propagation,1979,27 (1):79-85
    [123]Eberhard R, Kennedy J. A New Optimizer Using Particle Swarm Theory. Proc of Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan,1995:39-43
    [124]Kennedy J and Eberhart R C A discrete binary version of the particle swarm algorithm. In:Proc. of 1997 Conf.on Systems, Man, and Cybernetics. Piscataway:IEEE Press,1997: 4104-4109
    [125]Van Den Bergh F. An analysis of particle swarm optimizers. Pretoria: Department of Natural and Agricultural Science, University of Pretoria,2001
    [126]莫愿斌,陈德钊等.二进制粒子群优化算法在化工优化问题中的应用.计算机与应用化学,2006,23(12):1271-1274
    [127]李建新,徐慧等.基于FFT的阵列方向图快速计算.微波学报,2007,23(1):10-15
    [128]Dennis Bernstein. Matrix Mathematics. Princeton University Press.2005:44
    [129]William F G. Using spectral estimation techniques in adaptive processing antenna systems. IEEE transactions on Antennas and Propagation,1986, AP-34:291-300
    [130]Yu Shiann-Jeng, Lee Ju-Hong. The statistical performance of eigenspace-based adaptive array beamformers. IEEE Transactions on Antennas and Propagation,1996,44(5): 665-671
    [131]Chapman D J. Partial adaptivity for the large array. IEEE Transactions on Antennas and Propagation,1976,24(5):685-696
    [132]Huang F, Sheng W X, Ma X F, and Wang W. Robust adaptive beamforming for large-scale arrays. Signal Processing,2010,90:165-172
    [133]Akaike H. A new look at the statistical model identification. IEEE Trans. Autom. Control,1974,19:716-723
    [134]Wax M, and Kailath T. Detection of signals by information theoretic criteria. IEEE Trans. Acoust. Speech Signal Process,1985,33:387-392
    [135]Lee H, and Li F. An eigenvector technique for detecting the number of emitters in a cluster. IEEE Trans. Signal Process.,1994,42 (9):2380-2388

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700