阵列信号处理中的DOA估计关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阵列信号处理中的DOA(Direction Of Arrival)估计技术有着很大的应用前景,无论是雷达、通信、声纳,还是地震勘探、射电天文等领域对它都非常青睐。其中智能天线空分多址、声源定位探测以及无源阵列雷达等学科已经把它列为了一项重要技术。各国的专家学者在过去的几十年里陆续提出了很多性能良好的方法,可谓硕果累累。然而由于一些难点没有得到解决,许多的方法还不能真正的用到实际系统上。论文介绍了阵列信号处理的基本模型以及一些理论方法,并且对已有的一些DOA估计算法的特点进行了分析,针对它们的不足之处提出了新的改进算法。
     在实际应用中,空间存在大量波达方向随时间变化的信号源,因此针对运动目标的动态DOA估计也就成为波达方向估计中的重要研究课题,最大似然估计(MLE: Maximum Likelihood Estimation)在DOA处理中具有很好的性能,然而它需要进行多维参数的搜索,所以运算起来非常耗时。针对信号方向时刻变化这一情况,提出了一种基于粒子群优化技术的跟踪方法,这种方法能够自动的对目标进行跟踪,并在很小的一个区域内锁定目标,回避了子空间类方法需要重复分解协方差矩阵的过程。这样便在很大的程度上使计算量得到了降低。而且算法有着较好的跟踪精度和实时性能,还能处理相干信号。
     一般的DOA估计方法需要假设信号以及背景噪声为高斯白噪声,这样便可以利用二阶协方差矩阵的方法很方便的估计出信号方向。但是实际生活里的很多信号以及噪声往往不是服从高斯分布,比方说通信线路上的瞬间干扰、海洋环境噪声以及大气放电产生的噪声,还有许多人为噪声等等,它们都有着明显的尖峰,如果仍然采用二阶协方差矩阵的方法来处理,那么肯定得不到理想的估计,幸亏有一种称为α稳定分布的信号模型可以对以上的信号进行描述。论文对α稳定分布进行了介绍,然后分析了描述噪声的分数低阶矩这一模型。针对动态DOA估计这一问题,基于粒子群优化技术提出了一种新的锁定跟踪方法。它不必重复的分解分数低阶矩矩阵,使多维搜索的计算量得到了有效的降低,而且跟踪性能也很好。
     由于通常的二维DOA估计都需要较多的阵元,然而利用率都不高。在最小冗余线阵的基础上提出了一种新的阵列模型,模型设置了三条平行阵列,它的阵元冗余度很低,并且结合传播算子方法实现了信号二维DOA估计,避免了矩阵特征分解以及谱峰搜索过程。由于采用了最小冗余线阵,所以阵列孔径得到了增大,如此便使传播算子方法在低信噪比下也获得了较好的性能。另外为了能够更好的在冲击噪声背景下对信号DOA进行估计,论文结合分数低阶矩矩阵以及最小冗余线阵提出了一种新颖的人工蜂群算法。算法使阵列孔径得到了扩展,它的分辨力在冲击噪声背景下也有较好的表现,而且使用的阵元数目可以少于信号数目。此外在L形阵列的基础上提出了新的二维DOA估计方法,它利用了参考阵列的旋转不变性,通过纵向和横向两重的扩展构造了虚拟阵列,而且该虚拟阵列也有着旋转不变性,与此同时它的四阶累积量矩阵不存在数据冗余。新算法估计信号子空间时只需完成两个四阶累积量矩阵的计算,再结合ESPRIT方法即可得到信号方向。新方法具有精度高、计算量低的优点,论文从理论和实验两个方面证明了算法的性能。
     在宽带DOA估计算法中,聚焦矩阵的选取非常重要,它直接影响着估计性能。论文提出了一种构造聚焦矩阵的新方法,使得信噪比较低时也能够较好的完成DOA估计,且聚焦前后没有损失信噪比。实验证明了该方法比传统的双边相关变换(TCT:Two-sided Correlation Transformation)算法的估计精度更高。
Direction-Of-Arrival(DOA) estimation techniques in array signal processing with array antenna have wide applications in a variety of fields ranging from radar, communication, sonar, seismology to radio astronomy. Especially, they become a key technique in the passive detection of array radar, SDMA of smart antenna system and detection sound source. Since early 1980s, high resolution DOA estimation techniques have received considerable attention and a lot of significant processes have been achieved in this field. However, there are still important and urgent problems that have not been solved perfectly. The basic model and theory of array signal processing are introduced in this dissertation firstly, then, the properties and disadvantages of the existed DOA estimation are analyzed. Furthermore, the new algorithms are proposed and discussed.
     In actual situations, there are many moving sources, so dynamic DOA estimation becomes the important research topic, MLE has the excellence performance as a DOA method, it is a no linearity and multidimensional estimation, it take a long time to do, A new method to estimate direction-of-arrival (DOA) of moving sources is proposed. Making use of maximum likelihood algorithm, this method can avoid the decompositions of the covariance matrix which should be repeated in the methods based on subspace tracking. In order to solve the problem of the huge computation cost in maximum likelihood algorithm, the particle swarm algorithm was considered and improved. So the aims can be tracked and estimated in a very little space in which the maximum is searched for. In this way the searching place was reduced greatly and the swarm intelligence was used in searching, so the cost can be reduced mostly. Simulation results show that the DOA estimation based on the improved particle swarm algorithm has the ability to track coherent sources and performs better than the methods based on subspace tracking in the aspect of tracking precision with the ability of being real-time.
     The traditional algorithms always run into the supposition that the signal and the noise obey the Gaussian distribution, and obtain better results by using more than second-order statistics. In practical applications, much random signal and noise encountered is not Gaussian distribution, such as atmospheric and lightning noise, the instantaneous peak on communications line and a variety of man-made noise, in which these are many significant peaks and the traditional second-order statistics-based methods of treatment should not be satisfied. There is a very important statistical signal model known as the Alpha stable distribution, which can describe the above-mentioned noise. Therefore the text briefly introduced the stable distribution and the fractional lower order moment. This paper provides a new improvement on particle swarm optimization algorithm basing on the idea of locking and tracking, and study a new method based on the maximum likelihood algorithm for dynamic direction-of-arrival (DOA) estimation in impulsive noise environments. This method can avoid the decompositions of the fractional lower order moments matrix which should be repeated in the methods based on subspace tracking, and perform better than the methods based on subspace tracking in the aspect of tracking precision. In addition the cost of the multidimensional search can be reduced mostly.
     In order to overcome the low sensor utilization rate problem existing in most two-dimensional DOA estimation algorithms, a new array model with low array redundancy is proposed in this paper. Therefore, the application of MRLA is extended to 2-D DOA estimation. Simultaneously, two-dimensional spectral peak searching and Eigen-decomposition of large matrix is avoided by using propagator method. The computational complexity is greatly reduced. The larger array effective aperture is obtained by using MRLA, So the performance of DOA estimation in the poor environment with low SNR is obviously improved. Simulation results showed the superiority of this proposed method in precision. Based on virtual multi-element uniform linear array and reconstructed fractional lower order covariance matrix, a novel maximum likelihood (ML) algorithm is proposed. The proposed algorithm utilized few virtual elements and expanded the number of effective aperture array, while significantly improving the performance of the original ML algorithms, In order to fit the proposed direction finding algorithm based on the minimum redundant array and fractional lower order covariance matrix, a bee colony algorithm is applied to objective function of direction finding. Monte-Carlo simulations have proved that the proposed method has some good performance such as high resolution in the presence of impulse noise and the capability of using a small number of elements to find more signal sources. A new method for estimating two-dimensional direction-of-arrival based on special linear array was presented. The virtual array's rotational invariance can be got by the rotational invariance of the reference arrays, by using the method of two directions'expansion, the array's expanding ability can be increased, and it can also eliminate the redundant data of the forth-order cumulant matrix. By using this new method, the signal's subspace estimation can be obtained by only two forth-order cumulant matrix, and the estimation of the signal's DOA can be achieved by the 2-D ESPRIT method. The theoretical analysis and simulated results show that this method is characterized by low computation cost, well expanding ability、high precision and good practicability.
     In the wide-band direction-finding algorithms based on the signal subspace approach, the focusing matrix has an important effect on the performance of the estimation. This paper proposed a new method of constructing focusing matrix and the signal to noise ratio of the array before and after focusing was equal without any loss. New approach can distinguish the two targets which are close to each other even break the restriction of Rayleigh resolution limit and has higher accuracy compared to TCT algorithm while the signal to noise ratio is very low. Extensive simulation results demonstrate that the algorithm has good performance.
引文
[1]Capon J. High-resolution frequency-wave number spectrum analysis [J]. Proc. Of IEEE, 1969,57(58):1408-1418.
    [2]Burg J P. Maximum entropy spectral analysis [C]. Proc of the 37th meeting of the Annual Int.SEG Meeting, Oklahoma City, OK,1967
    [3]Pillai S U, Kwon B H. Forward/backward spatial smoothing techniques for coherent signal identification. IEEE Trans. on ASSP,1989,37 (1):8-15.
    [4]Schmidt R O. Multiple emitter location and signal parameter estimation [J]. IEEE Trans. on Antennas and Propagation,1986,34(3):276-280.
    [5]Roy R, Kailath T. ESPRIT-a subspace rotation approach to estimation of parameters of cissoids in noise [J]. IEEE Trans. On ASSP,1986,34(10):1340-1342.
    [6]Roy R, Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques [J]. IEEE Trans. On ASSP,1986,37(7):984-995.
    [7]R.Kumaresan, D.W. Tufts, Estimating the angles of arrival of multiple plane waves [J], IEEE Trans. AES, Jan.1983,19(1):134-139.
    [8]Cadzow J A. A high resolution direction-of-arrival algorithm for narrow-band coherent and incoherent source [J]. IEEE Trans. On ASSP,1988,36(7):965-979.
    [9]Stoica P, Nehorai A. MUSIC, Maximum likelihood, and Cramer-Rao bound [C]. In Proc. ICASSP,1988,296-299.
    [10]Ottersten B. Viberg M, Stoica, Nehorai A. Exact and large sample ML techniques for parameter estimation and detection in array processing [C]. IN Haykin, Litva, and shepherd, editors, Radar array processing, Springer-Verlag, Berlin,1993,99-151.
    [11]Georges R H, Fermando G L, David E. The compace genetic algorithm [J]. IEEE Trans. Evolutionary Computation,1999,3(2):124-141.
    [12]S Kirkpatrick, C D Gelatt, M P Vecchi. Optimization by Simulated Annealing [J]. Science.1983,220:611-680.
    [13]Colorni A, Dorigo M, Maniezzo V. Distributed Optimization by Ant Colonies [C]. Proc. Of the 1st European Conf. on Artifical Life, Paris, France, Elsevier Publishing,1991: 134-142.
    [14]J. Kennedy and R. C. Eberhart. Particle Swarm Optimization [C]. Proc IEEE Int'l. Conf. on Neural Networks,1995,4:1942-1948.
    [15]王凌.智能优化算法及其应用[M].北京:清华大学出版社,2001:1-16.
    [16]John H. Holland. Adaption in Nature and Artificial Systems [D]. MIT press,1992:6-10.
    [17]Schwefel H P. Evolution and Optimum Seeking [D]. John Wiley&Sons Inc, New York, NY, USA,1994:15-20.
    [18]Fogel D B. An Introduction to Simulated Evolutionary Optimization [J]. IEEE Trans. on Neural Networks.1994,5(1):3-14.
    [19]胡山鹰,陈丙珍,何小荣.非线性规划问题全局优化的模拟退火法[J].清华大学学报(自然科学版),1997,4(6):5-9.
    [20]周明,孙树栋.遗传算法原理及应用[M].国防工业出版社,2002:47-77.
    [21]汪镭,康琦,吴启迪.群体智能算法总体模式的形式化研究[J].信息与控制,2004,33(6):694-697.
    [22]李爱国,覃征,鲍复民等.粒子群优化算法[J].计算机工程与应用,2002,6(7):1-4.
    [23]杨燕,靳蕃,Kamel M微粒群优化算法研究现状及其进展[J].计算机工程,2004,30(21):1-5.
    [24]W. Feller. An Introduction to Probability Theory and Its Applications [J], vol2, John Wiley & Sons,1966.
    [25]P. Mertz. Model of impulsive noise for data transmission[J]. IRE Transactions on communication systems,1961, vol.9, no.6pp.120-137.
    [26]E.C. Field, Jr. and M. Lewinstein. Amplitude-probability distribution model for VLF/ELF atmospheric noise[J]. IEEE Transactions on Communications,1978, vol. COM-26, no.1,pp.83-87.
    [27]A. Giordano and F. Haber. Modeling of atmospheric noise[J]. Radio Science,1972, vol,7, pp.1101-1123.
    [28]M.P. Shinde and S. N. Gupta. Signal detection in the presence of atmospheric noise in tropics[J]. IEEE Transactions on Communications,1974, vol. COM-22, pp.1055-1063.
    [29]M. Bouvet and S. C. Schwartz. Comparison of adaptive and robust receivers for signal detection in ambient underwarter noise[J]. IEEE Transactions on Acoustic, Speech, Signal Processing,1989, vol. ASSP-37, pp.621-626.
    [30]D. Middleton. Statistical-physical models of electromagnetic interference[J]. IEEE Transactions on Electromagnetic Compatibility,1977, vol. EMC-19, no.3, pp.106-127.
    [31]B.W. Stuck and B. Kleiner. A statistical analysis of telephone noise[J]. Bell Systems Technical Journal,1974, vol.53, no.7 pp.1263-1320.
    [32]A. C. Kolaram, R. D. Morris, W. J. Fitzgerald, and P. J. W. Rayner. Interpolation of missing data in image sequences[J]. IEEE Transactions on Image Processing,1995, vol. 4, no.11, pp.1509-1519.
    [33]J. How. Signal Processing in α-Stable Noise Environments:Noise Modeling, Detection and Estimation[D], phD. Thesis, University of Toronto,1995.
    [34]B. Mandelbrot. The variation of certain speculative prices[J]. Journal of Business,1963, vol.36, pp.394-419.
    [35]Tsakalides P, Nikias C L. Maximum likelihood localization of sources in noise modeled as a stable process[J]. IEEE Trans Signal Processing,1995,43:2700-2713.
    [36]Tsakalides P, Nikias C L. The robust covariation-based MUSIC (ROC-MUSIC) algorithm for bearing estimation in impulsive noise environments[J]. IEEE Trans Signal Processing,1996,44:1623-1633.
    [37]Liu T H, Mendel J M. A subspace-based direction finding algorithm using fractional lower-orderstatistics[J]. IEEE Trans Signal Processing,2001,49:1605-1613.
    [38]吕泽均,肖先赐.基于分数阶矩的测向方法研究[J].电波科学学报,2002,17(6):561-564.
    [39]吕泽均,肖先赐.在冲击噪声环境中基于子空间的测向算法研究[J].航空学报,2003,24(2):174-177.
    [40]邱天爽,张旭秀,李小兵,张咏梅.统计信号处理一非高斯信号处理及其应用[M].电子工业出版社,2004:139-244.
    [41]何劲.α稳定分布噪声背景下阵列信号处理方法研究[D].南京理工大学博士论文,2007:87-101.
    [42]郭洋.基于MP算法的线性调频信号参数估计[D].西南交通大学硕士论文,2008:32-53.
    [43]Yang Bin. Projection approximation subspace tracking[J]. IEEE Trans. on Signal Processing,1995,43(1):95-107.
    [44]Chan Shing-Chow. A robust past algorithm for subspace tracking in impulsive noise [J]. IEEE Trans. on Signal Processing,2006,54(1):105-116.
    [45]Yang Jian. RLS-based adaptive algorithm for generalized eigen-decomposition[J]. IEEE Trans. on Signal Processing,2006,54(4):1177-1188.
    [46]Badeau R. Fast approximated power iteration subspace tracking[J]. IEEE Trans. on Signal Processing,2005,53(8):2931-2941.
    [47]何友.雷达数据处理及应用[M].北京:电子工业出版社,2006:100-132.
    [48]Javier Sanchez-Araujo and Sylvie Marcos. An efficient PASTd-algorithm implementation for multiple direction of arrival tracking[J]. IEEE Trans. on Signal Processing,1999,47(8):2321-2324.
    [49]Rao C R. Tracking the direction of arrival of multiple moving targets[J]. IEEE Trans. on Signal Processing,1994,42(5):1133-1144.
    [50]Satish A. Multiple target tracking using maximum likelihood principle[J]. IEEE Trans. on Signal Processing,1995,43(7):1677-1694.
    [51]Zhou Yifeng. Tracking the direction-of-arrival of multiple moving targets by passive arrays[J]. algorithm. IEEE Trans. on Signal Processing,1999,47(10):2655-2666.
    [52]Zhou Yifeng. Tracking the direction-of-arrival of multiple moving targets by passive arrays[J]. Asymptotic performance analysis. IEEE Trans. on Signal Processing,1999, 47(10):2644-2654.
    [53]Sastry C R. An efficient algorithm for tracking the angles of arrival of moving targets[J]. IEEE Trans. on Signal Processing,1991,39(1):342-346.
    [54]陈辉,光永良.秩-1子空间跟踪算法[J].电子与信息报,2002,24(5):26-30.
    [55]胡星航,林德云.矩形平面阵列天线旁瓣电平优化的遗传算法[J].电子学报,1999,27(12):119-120.
    [56]Alan T. Moffet. Minimum redundancy linear arrays[J]. IEEE Transactions on antennas and propagation.1968,16(2):172-175.
    [57]J. Arsac. Nouveau pour I'observation radioastronomique de la brillance sur le soleil a 9350 Mc/s[J], Compt. Rend. Acad. Scl.1955:942-945.
    [58]R. N. Bracewell. Radio astronomy techniques[J]. Handbuchder Physik.1962:42-129.
    [59]包志强,韩冰,吴顺君.基于模糊聚类的信源个数检测新算法[J].电子与信息学报,2006,28(10):1761-1765.
    [60]叶中付.基于四阶累量的约束最小冗余线阵的ESPRIT波达方向估计方法[J].信号处理,1997,13(1):47-53.
    [61]贾为敏,姚敏立,徐锦拓,姜霞.基于最小冗余线阵的谱相关波达方向估计算法[J].数据采集与处理,2004,19(3):110-115.
    [62]郭强,顾杰,赵国庆.一种新的非均匀线阵插值测向算法的研究[J].中国电子科学研究院学报,2006,1(4):324-327.
    [63]于振海,宋石磊,赵国庆.最小间隙阵的插值分析[J].国外电子测量技术,2006,25(11):31-34.
    [64]陈建,王树勋,郭纲.基于增广矩阵束的方向角与仰角估计[J].仪器仪表学报,2007,28(10):1759-1763.
    [65]顾建峰,魏平.基于伪数据域的最小冗余线阵测向算法[J].电波科学学报,2007,22(6):965-970.
    [66]刁鸣,陈超,杨丽丽.四阶累积量阵列扩展的传播算子测向方法[J].哈尔滨工程大学学报,2010,31(5):652-656.
    [67]Wax M, Shan T J, Kailath T. Spatio-temporal spectral analysis by eigenstructure method[J]. IEEE Trans. on ASSP,1984,32(4):817-827.
    [68]Su G, Morf M. Signal subspace approach for multiple wideband emitter location[J]. IEEE Trans. on ASSP,1983,31(12):1502-1522.
    [69]Bienvenu G. Eigensystem properties of the sample space correlation matrix[J]. In proc. ICASSP,1983,332-335.
    [70]Wang H, Kaveh M. Coherent signal-subspace processing for the detection and estimation of angles of arrival of multiple wideband sources[J]. IEEE Trans, on ASSP,1985,33(4): 823-831.
    [71]Wang H, Kaveh M. Estimation of angles-of arrival for wideband sources[J]. ICASSP, 1984,7.5.1-7.5.4.
    [72]Valaee S, Kabal P. Wideband array processing using a two-sided correlation transformation[J]. IEEE Trans. on SP,1995,43(1):160-172.
    [73]Hung H, Kaveh M. Focusing matrices for coherent signal-subspace processing[J]. IEEE Trans. on ASSP,1988,36(8):1272-1281.
    [74]Doron M A, Weiss A J. On focusing matrices for wide-band array processing[J]. IEEE Trans. on Sp,1992,40(6):1295-1302.
    [75]Valaee S, Champagne B. Localization of Wideband Signals Using Least-Squares and Total Least-Squares Approaches [J]. IEEE Trans. on SP,1999,47(5):1213-1222.
    [76]Lee T S. Efficient wideband source localization using beamforming invariance tachnique[J]. IEEE Trans. on SP,1994,42(6):1376-1386.
    [77]J. Krolik, D. N. Swingler. Focused Wide-Band Array Processing by Spatial Resampling[J]. IEEE Trans. on ASSP,1990,38(2):356-360.
    [78]B. Friedlander, A. J. Weiss. Direction Finding for Wide-Band Signals Using An Interpolated Array[J]. IEEE Trans. on SP,1993,41(4):1618-1634.
    [79]K.M. Buckley, L. J. Griffiths. Broad-Band Signal-Subspace Spatial-Spectrum(BASS-AL E) Estimation [J]. IEEE Trans, on ASSP,1998,36(7):953-964.
    [80]Y. Grenier. Wideband Source Location through Frequency-Dependent Modeling[J]. IEEE Trans. on SP,1994,42(5):20-27.
    [81]Lee J. J, Livingston S, Loo R. Y. Calibration of wideband Arrays Using Photonic Delay Lines[J]. Electronics Letters,1995,31(18):1533-1534.
    [82]肖国有,屠庆平.声信号处理及应用[M].西安:西北工业大学出版社,1994:107-139.
    [83]Zatman, M. How narrow is narrowband? Radar, Sonar and Navigation [C], IEEE Processings,1998,145(2):85-91.
    [84]Roy R, Kailath T. ESPRIT-a subspace rotation approach to estimation of paramaters of cissoids in noise [J]. IEEE Trans. on ASSP,1986,34(10):1340-1342.
    [85]Zhao L C, Krishnaiah P R, Bai Z D. On detection of numbers of signals in presence of white noise[J]. Multivariate Anal,1986,20:1-25.
    [86]Shan T J, Paulray A, Kailath T. On smoothed rand profile tests in eigen structure methods for directions-of-arrival estimation [J]. IEEE Trans. on Acoustics Speech and Signal Processing,1987,35(10):1377-1385.
    [87]Cozzens J H, Sousa M J. Source enumeration in a correlated signal environment [J]. IEEE Trans, on Acoustics Speech and Signal Processing,1994,42(2):304-317.
    [88]Cadzow J A, Kim Y S, Shiue D C. General direction-of-arrival estiamation:a signal subspace approach [J]. IEEE Trans. On AES,1989,25(1):31-46.
    [89]Di A. Multiple sources location-a matrix decomposition approach[J]. IEEE Trans. ASSP, 198533(4):1086-1091.
    [90]H. T. Wu, J. F. Yang, F. K. Chen. Source number estimator using Gerschgorin Disks [J]. Proc. ICASSP, Adelaide, Australia,1994:261-264.
    [91]H. T. Wu, J. F. Yang, F. K. Chen. Source number estimation using transformed Gerschgorin Radii[J]. IEEE Trans. on Signal Processing,1995,43(6):1325-1333.
    [92]Akaike H. A new look at statistical model identification[J]. IEEE Trans. on Automatic Control,1974, (AC-19):716-722.
    [93]Rissanen J. Modeling by shortest data description[J]. Automatica,1978,14:465-471.
    [94]Schwartz G. Estimation the demension of a model[J]. Ann. Stat,1978,6:461-464.
    [95]王永良,陈辉,彭应宁,万群著.空间谱估计理论与算法[M].北京:清华大学出版社,2004:215-249.
    [96]EBERHARTR C, SHI Y. Particle swarm optimization developments, applications and resources[A]. Proceedings of the IEEE congress on evolutionary computation[C]. Piscataway. USA,2001.
    [97]吕振肃,侯志荣.自适应变异的粒子群优化算法[J].电子学报,2004,32(3):416-420.
    [98]A. Janicki and A. Weron, Simulation and Chaotic Behavior of α-Stable Stochastic Processes[M], Marcel Dekker, New York,1994.
    [99]P. Levy, Calcul des Probabilities [M], Paris:Gauthier-Villars,1925.
    [100]P. Levy, Theorie de 1'Addition des Variables Aleatoires[M], Paris:Gauthier-Villars, 1937.
    [101]B. V. Gnedenko and A. N. Kolmogorov, Limit Distributions for Sums of Independent Random Variables[J], Addison-Wesley, Reading.
    [102]V. M. Zolotarev, Mellin-Stieltjes transforms in probability theory[J]. Theory of Probability and Applications,1957,vol.2, no.4, pp.433-460.
    [103]Yang B. Projecion approximation subspace tracking [J]. IEEE Trans, on SP,1995,43(1): 95-107.
    [104]Yang B. Asymptotic convergence analysis of the projection approximation subspace tracking algorithms [J]. Signal Process.1996,50:123-136.
    [105]Durrani T S, Sharman K C. Eigenfilter approaches to adaptive array processing[J]. IEE Proc, Pt.F,1983,130(1):22-28.
    [106]张永军,陈宗骘.幂迭代高分辨率快速算法[J].电子与信息学报.1998,20(3):417-420.
    [107]刁鸣,缪善林,张一飞.基于特殊阵列的相干信源二维测向新方法[J].系统工程与电子技术,2007,29(3):338-340.
    [108]V. J. Paulauskas, Some remarks on multivariate stable distributions[J]. Journal of Multivariate Analysis,1976:vol.6, pp.356-368.
    [109]S. Cambanis and G. Miller, Linear problems in pth order and stable processes[J]. SIAM Journal on Applied Mathematics,1981:vol.41, no.1, pp.43-69.
    [110]G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian Random Processes[D]: Stochastic Models with Infinite Variance, New York, NY:Chapman&Hall,1994.
    [111]W. Feller. An Introduction to Probability Theory and Its Applications [J], vol2, John Wiley&Sons,1966.
    [112]C. L. Nikias and M. Shao, Signal Processing with α-Stable Distribution and Applications [J], John Wiley&Sons,1995.
    [113]查代奉,邱天爽,基于稳定分布模型的自适应阵列信号处理新方法[J].系统工程与电子技术,2005,27(5):779-780.
    [114]唐洪,邱天爽,李婷,非高斯alpha稳定分布环境中自适应滤波及研究进展[J].系统工程与电子技术,2005,27(8),133-134.
    [115]孙永梅,邱天爽,稳定分布噪声下自适应信号处理的研究进展[J].信号处理,2004,20(6):618-620.
    [116]ZHA Daifeng, QIU Tianshuang. Underwater sourceslocation in non-Gaussian impulsive noise environments[J]. Digital Signal Processing,2006,16(2):149-163.
    [117]SWAMI A, SADLER B M. On some detection and estimation problems in heavy-tailed noise[J]. Signal Processing,2002,82(9):1829-1846.
    [118]黄蕾,张曙.冲击噪声环境下的快速DOA估计[J].哈尔滨工程大学学报,2008, 29(6):601-604.
    [119]M. Shao and C. L. Nikias, Signal processing with fractional lower order moments: stable processes and their applications[J]. Processings of IEEE,1993:vol.81, no.7, pp. 986-1010.
    [120]Kumar B P, Branner G R. Generalized analytical technique for the synthesis of unequally spaced arrays with linear, planar, cylindrical or spherical geometry[J]. IEEE Trans. Trans. on Antenna and Propagation.2005,53(2):621-634.
    [121]李建新.阵列多台阶稀疏技术[J].电子学报,1999,27(3):79-80.
    [122]Robert A. Monzing, Thomas W. Miller. Introduction to Adaptive Arrays[M]. John Wiley and Sons Inc.1980.
    [123]Alan T. Moffet. Minimum redundancy linear arrays [J]. IEEE Transactions on antennas and propagation.1968,16(2):172-175.
    [124]J. Arsac. Nouveau reseau pour I'observation radioastronomique de la brillance sur le soleil a 9350Mc/s [J]. Compt. Rend. Acad. Scl.1955:942-945.
    [125]R. N. Bracewell. Radio astronomy techniques[M]. Handbuchder Physik.1962:42-129.
    [126]D. Pearson, S. U. Pillai and Y. Lee. An Algorithm for Near-Optimal Placement of Sensor Elenments[C]. In ONR Annual Report, Polytechnic Univercity.1988.
    [127]J. Munier, G. Delisle. Spatial Analysis Using New Properties of the Cross-Spectral Matrix[J]. IEEE Trans SP,1991,39(3):746-749.
    [128]S. Marcos, M. Benidir. On a high resolution array processing method nonbased on the eigenanalysis approach[J]. In Proc. IEEE Int. Conf. Acoust. Speech. Signal Process, 1990:2955-2958.
    [129]S. Marcos, A. Marsal, M. Benidir. The propagator method for source bearing estimation [J]. Signal Processing.1995,42(2):121-138.
    [130]Li. P, Sun. J, Yu. B. Two-dimensional spatial-spectrum estimation of coherent signals without spatial smoothing and eigendecomposition[J]. IEEE Proceedings-Radar, Sonar and Navigation.1996,143(1):295-299.
    [131]苏淑靖,颜景龙,马维贤,曹东杰.基于传播算子的二维波达方向估计新算法[J].北京理工大学学报,2008,28(7):602-605.
    [132]刘剑,宋爱民,黄国策.基于传播算子的非圆信号实值测向方法[J].系统工程与电子技术,2010,32(6):1136-1139.
    [133]赵春晖,黄光亚,李刚,基于四阶累积量切片的宽带传播算子测向方法[J].系统工程与电子技术.2007,29(12):2022-2025.
    [134]刘成城,赵拥军,胡德秀.基于修正传播算子的高分辨波达方向估计算法[J].计算 机应用.2010,30(5):1418-1424.
    [135]于红旗,刘剑,黄知涛,周一宇.传播算子方法在宽带DOA估计中的应用[J].航天电子对抗.2008,24(2):43-46.
    [136]王宏,李洪升,杨日杰,何友.一种基于改进传播算子的波达方向估计方法.探测与控制学报[J].2007,29(3):41-44.
    [137]曹金亮,刘志文,徐友根.基于传播算子的宽带谱相关测向算法[J].中国电子科学研究院学报.2010,5(4):389-394.
    [138]刁鸣,缪善林.二维ESPRIT算法参数的快速配对[J].哈尔滨工程大学学报,2008,29(3):290-293.
    [139]苏淑靖,颜景龙,马维贤,曹东杰.基于传播算子的二维波达方向估计新算法[J].北京理工大学学报,2008,28(7):602-605.
    [140]H.Y. Gao, M. Diao, "Direction finding of signal subspace fitting algorithm based on reconstructed fractional lower order covariance," Chinese Journal of Radio Science, pp.729-734, August.2009.
    [141]B. Basturk, D. Karaboga, "An Artificial Bee Colony (ABC) algorithm for numeric function optimization," in:IEEE Swarm Intelligence Symposium 2006, May 12-14, Indianapolis, IN, USA,2006.
    [142]P. Tsakalides and C.L. Nikias, "The robust covariation-based MUSIC (ROC-MUSIC)algorithm for bearing estimation in impulsive noise environments," IEEE Transactions on Signal Process, vol.44, pp.1623-1633, July.1996.
    [143]T. H. Liu and J.M. Mendel, "A subspace based direction finding algorithm using fractional lower order statistics," IEEE Transactions on Signal Processing,vol.49, pp.1605-1613, August.2001.
    [144]M. Diao, X.G. Li and B. Wang, "Study on ML direction finding method based on cultural algorithm," Journal of Harbin Engineering University,vol.29, pp.509-513, May. 2008.
    [145]陈建,王树勋,魏小利.一种基于L型阵列的二维波达方向估计的新方法[J].吉林大学学报.2006,36(4):590-593
    [146]蔡步晓.无需预估角的宽带DOA估计方法研究[D].电子科技大学.2008.
    [147]刘春静,刘枫,张曙.基于数据矩阵聚焦的宽带DOA算法[J].弹箭与制导学报,2010,30(1):190-192.
    [148]刘桥,李会勇,何子述.宽带阵列信号波达方向估计的新算法[J].雷达科学与技术.2007,5(5):375-393.
    [149]刘春静,刘枫.一种新的自聚焦相干宽带DOA算法[J].火控雷达技术.2009,38(3): 13-16.
    [150]赵拥军,周林.宽带相干源波达方向估计的新方法及性能分析[J].电子测量与仪器学报.2007,21(6):54-57.
    [151]王彬如,熊键,石敖广,杨世兴.未知信源数的宽带波束域相干源测向算法[J].电子信息对抗技术.2010,25(2):28-33.
    [152]薄保林.宽带阵列信号DOA估计算法研究[D].西安电子科技大学硕士学位论文,2007:5-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700