江西浒坑钨矿含矿石英脉地质特征及其构造演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
位于赣西武功山地区的江西浒坑钨矿是一个大型石英脉型钨矿床,与赣南典型的“五层楼”模式不同,矿脉主要集中在岩体内接触带。矿区最主要的含矿石英脉方向为NW向和近EW向,其次是NWW向和NE向,此外还有近水平的脉组。各含矿脉带从结构上均可分为块状含矿石英脉、条带状含矿石英脉和复合状含矿石英脉三类。
     野外和室内研究表明,条带状石英脉实质上是韧性剪切带,以透入性发育的剪切面理和拉伸线理、剪切透镜体、剪切分异条带普遍发育为特色。剪切带岩石以石英质糜棱岩为主,具有丰富的塑性变形显微构造特征。显微剪切指向构造统计表明东西向和北西向脉组的运动方式均以左旋正滑为主,近水平脉组则以正滑为主。
     NW向和近EW向条带状石英脉的磁组构研究表明,不同脉组的磁组构特征相似,磁化率各向异性度P平均值为1.279,反映变形比较强烈。磁化率椭球的扁率E<1和E>1都存在,磁面理和磁线理均发育,E<1的点沿E=1的线附近分布,表明矿区变形以剪切和压扁变形为主。最小磁化率K3方向,即最大压应力方向以SSW-SW为主,倾角在30°-60°之间。
     NW向和近EW向条带状石英脉的EBSD(电子背散射)研究表明,石英质糜棱岩的石英光轴对称形式主要为单斜和三斜对称,变形形式是非共轴的简单剪切变形,剪切方式为左旋剪切,与显微镜下研究结果吻合。石英脉的组构优选形式为近似Ⅷ型极密和交叉环带,表明含矿石英脉的变形主要是底面滑移系和柱面滑移系共同作用的结果。石英脉的变形条件为550℃偏低,低应变速率的变形条件。
     同构造新生绢云母40Ar-30Ar法测年结果表明,北西向韧性剪切带的新生绢云母40Ar-39Ar坪年龄为140.3±1.0Ma,相应的等时线年龄为139.6±2.4Ma;而东西向韧性剪切带绢云母40Ar-39Ar坪年龄则比较复杂,高温阶段年龄可能受到成矿期白云母残斑的影响,中温阶段的表观年龄和总气体年龄更接近前一样品的坪年龄。据此认为韧性剪切变形的年龄为140Ma左右,韧性变形发生在成岩和成矿之后。。
     初步建立矿区的成矿构造演化序列为:主期中粗粒白云母花岗岩株侵入(152Ma)→原生节理形成,块状石英脉充填(主成矿期,150Ma)→晚期补充细粒花岗岩枝上侵,导致各脉组发生韧性剪切,形成条带状石英脉(主要构造改造期,140Ma)→条带状石英脉的再次张开,第二期块状石英脉充填→脆性碎裂,北西向脉发生明显的右旋平移-逆冲运动。
Hukeng tungsten deposit is a large scale tungsten deposit which locates at the Wugong Mountain in the west of Jiangxi Province. Ore bearing quartz veins are mainly at the inner contact zone of the rock body which are different from the topical five-layer model in the southern Jiangxi Province. The main direction of the ore-bearing quartz veins are NW striking and EW striking. Some are NWW striking and NE striking. The mode of veins’motion is lefe-lateral nomal fault.According to their structure,we can differentiate them as massive quartz veins, banded quartz veins and complex quartz veins. The petrological study shows that banded ore belongs to mylonite, which has abundant microstructure feature of plastic deformation.
     Using magnetic fabric analysis to research the ore-bearing quartz veins of Hukeng tungsten deposit. The mean degree of magnetic anisotropy is 1.279,which meas that the ore-bearing quartz veins experienced intensity ductile deformation. Magnetic foliation and lineation well developed in the ore-bearing quartz veins with the E value was either above one or below one.The samples with the E value above one distributed alone the line of E=1,indicationg that the mining area were subjected to compressional and shear deformation.The dominant orientation of minimum magnetic susceptibility shows that the direction of maximum compressive stress is SSW-SW with the dip of 30°-60°.The kinematic model of the ductile deformation is left-lateral shear in the horizonal direction and normal slip in vertical direction.
     Petrofabric of quartz C-axis is characterized by monoclinic and triclinic symmetry. Deformation model is non-coaxial shearing and had resulted from the combined action of underside
slide system and cylinder slide system. Deformation environment is that tempreture was a little bit lower than 550℃and low strain rate.
     40Ar-39Ar dating of new-generated sericites from mylonite in the NW-trending shear zone yields a plateau age of 140.3±1.0Ma and an isochron age at 139.6±2.4Ma respectively. Whereas, the plateau ages of EW-trending shear zone are more complicated,in which the high-temperature stage plateau age may be affected by muscovite remnant phenocryst which formed in mineralization stage and the medium-temperature stage total gas age and apparent age are more close to the age of plateau age of sample HK121.It is concluded that the age of ductile shearing is about 140Ma, which indicated that ductile shearing deformation occurred after petrogenesis and mineralization.
     Structural analysis reveals that most primary joints related to magmatic rocks are synchronogenic. The quartz veins which intruded into the joints underwent long-term and multi- tectonic movements, thereby formed complicated quartz veins and ore types. The evolution series of structure in the mining area are as follows: formation of the primary joints→filled by the quartz veins→ductile shear→filled by the quartz veins at second stage→formation of brittle fracture.
引文
Borradaile G J and Tartning D H. The influence of deformations on magnetic fabric in weakly deformed rocks[J]. Tectonophysics , 1981,77 : 151 - 168.
    Chen Wen, Zhang Yan, Ji Qiang, Wang Songshan, Zhang Jianxin. The magmatism and deformation times of the Xidatan rock series, East Kunlun Mountain[J]. Science in China, Series B, 2002,45(Supplement):20-27.
    Etchecopar A.,Vasseur G. A 3-D k inematic model of fabric development in polycrystalline aggregates:comparisons with experimental and natural examples.Jour . Struct[J] . Geol. , 1987, 9 (5/ 6) :705-717.
    Faure M,Sun Yan,Shu Liangshu,et al. Extensional tectonics within a subduction-type orogen. The case study of the Wugongshan dome(Jiangxi Province, Southeastern China) [J]. Tectonophysics, 1996,77-106.
    Hamid Reza Bakhtari, Dominique Frizon de Lamotte, Charles Aubourg, et al. Magnetic fabrics of Tertiary sandstones from the Arc of Fars(Eastern Zagros, Iran)[J]. Tectonophysics, 1998,284: 299- 316.
    Jessell M W. Simulat ion of fabric development in recrystallizing aggregates2II . Example model runs. Jour.Struct. Geo l. , 1988,10 (8) : 779-793.
    Jessell M.W. Simulat ion of fabric development in recrystallizing aggregates2I . Description of the model.Jour.Struct. Geol. , 1988,10 (8) : 771-778.
    Kligfield R , Lowrie W and Dalziel I W D. Magnetic susceptibility anisot ropy as a st rain indicator in the subbury basin Ont rario[J]. Tectonophysics , 1977 ,40 : 287 - 305.
    Kligfield R , Lowrie W and Priffner O A. Magnetic properties of deformed oolitic limestones f rom the Swiss Alps : the correlation of magnetic anisot ropy and strain[J]. Eclogae Geol , 1982,75 : 127 - 157.
    Li Shuguang, Harts R, Zheng Shuanggen, et al. Timing of collision between the north and south China Blocks—The Sm-Nd isotopic age evidence[J]. Sci in China (Series B), 1989, 1393-1400.
    Li Shuguang, Jagoutz E, Chen Yizhi, et al. Sm-Nd and Rb-Sr isotopic chronology and coolinghistory of ultrahigh pressuremetamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, central China[J]. Geochim CosmochimActa, 2000 , 64(6): 1077-1093.
    Li Shuguang, Wang Songshan, Chen Yizhi, et al. Excess argon in phengite from eclogite:Evidence from dating of eclogite minerals by Sm-Nd,Rb-Sr and40Ar/39Armethods[J]. Chem Geol, 1994,112: 343-350.
    Li Shuguang, Xiao Yilin, Liu Deliang, et al. Collision of the North China and Yangtz Blocks and formation of coesite-bearing eclogites: Timing and processes[J]. Chem Geol, 1993,109: 89-111.
    Lister G.S., Hobbs B.E. The simulation of fabric development during plastic deformation and its application to quarzite.The influence of deformation history[J]. Journal of Strucrural Geology,1980,vol.2,355-372.
    Passchier C. W. , T rouw R. A J. M icro tectonics[M] . Berlin: Springer, 1996 ,49-95 .
    Price G. P. P referred orientations in quartzites. In: Wenk, H R Preferred Orientation in Deformed Metals and Rocks[J].Orlando:A cademic P ress.1985,385—406.
    Price,G.P. Preferred orientations in quartzites,in,Edified by H-R Wenk,APEMIC press,INC,1985.
    Rathore J S. The magnetic fabrics of some slates from the Borrow dale volcanic group in the English Lake dist rict and their correlations with strains[J]. Tectonophysics , 1980,67 :207 - 220.
    Rathore J.S. Magmetic susceptibility anisotropy in the cambrian slate belt of North wales and correlation with strain[J].Tectonophysics. 1979,53, 83-97.
    Rethore J S, Courrioux G and Chouk roune P. Study of ductile shear zones (Galicia, Spain) using texture goniometry and magnetic fabric methods[J]. Tectonophysics , 1983,98 , 87 - 109.
    Schimid S.M. and Casey M. Complete fabric analysis of some commonly observed quartz c-axis patterns,Mineral and Rock Deformation:Laboratory studies[J]. The paterson Volume,Am.Geophys. Union,Geophys.Monogr.,1986,Vol.36,263-286.
    Schofield D. L., Dlemos R. S. Relationship between syn-tectonic granite fabric and regionalP-T-td paths: an example from the gander-Aralon boundary of NE Newfounelland[J]. J Struct Geol, 1998, 30: 459-471.
    Tullis J.A.,Chriatie J.M. and Griggs D.T. Microstructures and preferred orientation of experimentally deformed quartzites[J]. Geol.,Soc.,Am.,Bull.,1973,NO.84,297-314.
    Wang Dezi, Shu Liangshu,M. Faure,et al. Mesozoic magmatism and granitic dome in the Wugongshan Massif,Jiangxi province and their genetical relationship to the tectonic events in southeast China[J]. Tectonophysics, 2001,259-277.
    Yang W.C. Flat mantle reflectors in Eastern China:possible evidence of lithospheric thinning. Tectonophysics,2003,8:219-230.
    蔡学林,朱介寿,曹家敏,等.东西亚太平洋巨型裂谷体系岩石圈与软流圈结构及动力学[J].中国地质,2002,29(3):245-264
    陈柏林,李中坚,谢艳霞.北京怀柔崎峰茶-琉璃庙地区岩石磁组构特征及其构造意义[J].地球学报, 1997,18(2), 134-141.
    陈柏林,张达,吴淦国,等.福建中甲锡矿及其外围岩石磁组构特征[J].地质力学学报, 2000,6(2):38-44.
    陈柏林,张招崇,闫升好,等.阿尔泰南缘东段变形岩石磁组构分析[J].地学前缘, 2007,14(3):138-148.
    陈柏林.应用磁组构方法研究构造变形与成矿作用的时序关系[J].高校地质学报, 1999,5(3):269-274.
    陈国达.成矿构造研究法[M[.北京:地质出版社, 1978,1-100.
    陈宣华,马天林,孙立倩,等.萨瓦亚尔顿金矿床磁组构特征及与金矿化关系[J].地质力学学报, 2001,7(3):208-216.
    高山,骆庭川,张本仁,等.中国东部地壳的结构和组成[J].中国科学(D辑),1999,29(3):204-213.
    何永年,林传勇,史兰斌.构造岩石学基础[M].北京:地质出版社,1985,66-70.
    黄汲清,任纪舜,姜春发,等.中国大地构造及其演化[M].北京:科学出版社,1980.
    嵇少丞.部分熔融的构造意义:变形机制转变的试验研究[J].地质科学, 1988, 23(4): 347-356.
    江西省地质矿产局.江西地质志[M].北京:地质出版社, 1984,1-921.
    江西冶金地质勘探二队.江西南部钨矿资料汇编(总论部分).内部资料, 1978,114-124.
    李继亮,许靖华,孙枢.南华夏造山带的新证据[J].地质科学,1989,(3),217-225.
    李继亮.中国东南地区大地构造基本问题.见:李继亮主编,中国东南陆岩石圈结构与演化研究,北京:中国科学技术出版社.
    廖群安,李昌年,王京名.江绍断裂带晚侏罗世S型酸性火山岩特征及其地质意义.地球科学,1999,24(1):63-68.
    刘俊来,曹淑云,邹运鑫,等.岩石电子背散射衍射(EBSD)组构分析及应用[J].地质通报,2008,27(10),1638-1644.
    刘珺,毛景文,叶会寿,等.浒坑花岗岩锆石SHRIMP U-Pb定年和元素地球化学特征[J].岩石学报, 2008,24(8),1813-1822.
    刘珺,叶会寿,谢桂青,等.江西省武功山地区浒坑钨矿床辉钼矿Re-Os年龄及其地质意义[J].地质学报,2008,82(11):1572-1579.
    刘梦庚.中国南方脉型钨矿床的沙钨矿床的原生分带及其成因[M].钨矿地质讨论会论文集(中文版),地质出版社, 1981,221-231.
    刘志萍,徐勇.浒坑钨矿大脉区矿脉赋存规律及深部探矿方向[J].中国钨业, 2004,19(6),30-33.
    柳志清.脉状钨矿床成矿预测理论[M].科学出版社, 1980,72-77.
    楼法生,沈渭洲,王德滋,等.江西武功山穹窿复式花岗岩的锆石U-Pb年代学研究[J].地质学报, 2005,79(5),636-644.
    楼法生,舒良树,王德滋.武功山中生代花岗质穹隆伸展构造及岩石地球化学特征[J].地质通报, 2002, 21(4/5),264-269.
    楼法生,舒良树,王德滋.武功山中生代花岗质穹隆伸展构造及岩石地球化学特征[J].地质通报, 2002, 21(4/5),264-269.
    楼法生,舒良树,于津海,等.江西武功山弯隆花岗岩岩石地球化学特征与成因[J].地质论评, 2002, 48(1),80-88.
    鲁如魁,张国伟,钟华明,等.阿尔金断裂带西段磁组构特征及其构造意义[J].地球物理学报,2008,51(3),752-761.
    陆松年.新元古代时期Rodinia超大陆研究进展论评[J].地质论评, 1998,44(5),489-495.
    罗良,贾东,陈竹新,等.川西北磁组构演化及其揭示的应变特征[J].地质通报,2006,25(11):1342-1348.
    马天林,王连庆,孙立倩,等.磁组构分析在韧性变形带研究中的应用[J].地球学报, 2003,24(5),449-452.
    毛景文,谢桂青,郭春丽,陈毓川.南岭地区大规模钨锡多金属成矿作用:成矿时限及地球动力学背景[J].岩石学报, 2007,23(20) ,2329-2338.
    毛景文,谢桂青,李晓峰,等.华南地区中生代大规模成矿作用与岩石圈多阶段伸展[J].地学前缘, 2004,11(1),45-55.
    牛津仪器.电子背散射衍射系统(EBSD)[EB/OL].[2008-02-29].http://www.oichina.cn/
    任纪舜,陈廷愚,刘志刚,等.华南大地构造的几个问题.地质通报,1986,(1):49-51
    任纪舜,陈廷愚,刘志刚,等.中国东部构造单元划分的几个问题.地质论评,1984,30(4):382-385.
    沈忠悦,方大钧,叶瑛,等.江山-绍兴碰撞带的磁组构特征及其构造地质意义[J].科学通报, 1999,44(10),1093-1098.
    盛田坤.浒坑脉状钨矿区旋钮构造的研究.内部资料, 1979,1~5.
    舒斌,马天林,陈宣华,等.东天山康古尔塔格金矿田控矿构造特征[J].地质通报,2007,26(2):166-173.
    舒良树,孙岩,王德滋,等.华南武功山中生代伸展构造[J].中国科学(D辑), 1998,28(5),431-438.
    舒良树,王德滋,沈渭洲.江西武功山中生代变质核杂岩的花岗岩类Nd—Sr同位素研究[J].南京大学学报(自然科学), 2000,36(3),306-311.
    汤加富,王希明,刘芳宇,等.武功山变质岩区构造变形与地质填图[M].武汉:中国地质大学出版社, 1991,1-24.
    腾吉文,曾融生,闫雅芬,等.东亚大陆及周边海域Hoho界面深度分布和基本构造格局.中国科学(D辑),2002,32(2):89-100.
    王德滋,刘昌实,沈渭洲,等.桐庐I和相山S型两类碎斑熔岩对比.岩石学报,1993,9(1):44-53.
    王德滋,沈渭洲,刘昌实,等.江西岩背火山侵入杂岩的地球化学特征和成因. 1994,24(5):531-538.
    王光杰,陈东,赵爱华,等.多波多分量地震探测技术.地球物理学进展,15(1):54-60.
    吴富江,钟春根,钟达洪.江西武功山岩浆热穹窿伸展滑覆构造的基本特征及形成时代[J].江西地质, 2001,15(3),161-165.
    徐兴旺.新疆觉罗塔格韧性挤压带形成演化及金矿成矿作用.中国地质科学院研究生部研究生学位论文,1996.
    许靖华.薄壳板块构造模式和冲撞造山运动.中国科学,1980,(11):1081-1089.
    许靖华.中国南方大地构造的几个问题.地质科技情报,1987,6(2):13-27.
    许顺山,陈柏林.应用岩石磁性组构研究动力变形作用[J].地球学报,1998,19(1),19-24.
    杨朝斌,朱大岗,孟宪刚,等.西藏阿里雅鲁藏布江缝合带韧性剪切带的磁组构特征[J].地学前缘,2006,13(4),168-173.
    余钦范,郑敏.岩石磁组构分析及其在地学中的应用[M].地质出版社,1992,1-20.
    袁学诚,李普.古地磁学原理及其应用[M].北京:地质出版社,1991,1-230.
    翟裕生,林新多.矿田构造学[M].地质出版社, 1993,158-161.
    张拴宏,田晓娟,周显强.鲁西地区韧性剪切带岩石磁组构分析及其构造意义[J].物探化探计算技术, 1999,21(1):66-72.
    张文佑,张步春,李萌槐,等.中国大地构造基本特征及其发展的初步探讨.地质科学,1974,(1):1-15.
    章伟,陈懋弘,叶会寿,等.江西浒坑钨矿含矿石英脉的地质特征及成矿构造演化[J].地质学报,2008,82(11):1533-1539.
    郑伯让,金淑燕.构造岩岩组学[M].中国地质大学出版社,1989.
    郑圻森,朱介寿,宣瑞卿,等.华南地区地壳速度结构分析.沉积与特提斯地质,2003,23(4):9-13.
    中华人民共和国冶金工业部地质局江西分局212队.中华人民共和国浒坑钨矿地质勘探总结报告书.内部资料, 1957,12-88.
    钟增球,郭宝罗.构造岩与显微构造[M].中国地质大学出版社,1991.
    周伟新,万天丰.玲珑花岗岩体的变形磁组构特征及其与金矿的关系[J].地质科学, 2000,35(4):385-395.
    周伟新.玲珑花岗岩基的磁化率各向异性及其与金矿的关系[J].地质科技情报, 1999,18(3):60-62.
    周新民,李武显.中国东南部晚中生代火成岩成因:岩石圈消减和玄武岩底侵相结合的模式.自然科学发展,2000,10(3):240-247.
    周勇,许荣华,阎月华,等.喀喇昆仑断裂带磁组构特征及其构造意义[J].岩石学报, 2000,16(1):134-144.
    朱炎龄,李崇佑,林运淮.赣南钨矿地质[M].江西人民出版社, 1981,323-386.
    朱志新,张建东,李锦轶,等.新疆东天山却勒塔格地区韧变形带识别及其意义[J].新疆地质,2004,22(4),351-356.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700