浮体在大幅波浪中的运动和荷载计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船舶和海洋平台在波浪中运动和荷载的数值分析和研究,具有重要的理论意义和实用价值。随着我国国民经济持续高速增长,对水运和海洋工程的要求也曰益提高,新船型和新型海洋平台不断出现,原有的规范已经逐渐不能满足新型船舶和海洋结构物的安全性计算的需要。尤其是随着计算机技术的发展和结构分析方法的进步,为结构三维有限元分析和可靠性分析提供波浪载荷的要求越来越多。这就对波浪载荷和运动计算预报方法提出了新的要求。本文以势流理论为基础,开发了基于NURBS的边界元法计算程序,应用频域格林函数法和时域完全非线性方法,对船舶和海洋结构物在非线性波浪中产生的运动和载荷问题进行了理论研究和数值计算。
     浮体与波浪的相互作用计算十分复杂,尤其时域方法的计算量是十分巨大的。因此,提出和建立一个准确、高效的数值方法是十分必要的。本文首先开发了基于NURBS的边界元法计算程序。NURBS方法可以精确地表示复杂的三维空间物体,利用NURBS方法,可以方便准确的表达多种复杂的三维空间曲面和三维实体;应用基于NURBS的边界元法,能够保证面元边界上的几何连续性和物体表面速度势及其导数的连续性,并能方便的计算物体表面上的流体速度。基于NURBS的边界元法相对于传统的常数元方法计算结果更加精确,可以用较少的网格数量得到同样精度的结果,这样就降低了对CPU速度和内存的要求。目前,NURBS已经广泛的用于CAD软件中,并可方便的产生物体表面的网格,这些网格可直接作为面元用于流体力学计算,方便了CAD和CFD系统的集成。本文对基于NURBS的高阶边界元法进行了研究,建立和开发了高阶边界元方法计算程序,计算了无限域中物体绕流问题,对建立线性方程组的配置点法和Galerkin法进行了比较,并将计算结果与理论解进行了比较验证。
     应用基于NURBS的边界元法,本文对频域中浮体在波浪中的水动力系数、运动和荷载进行了计算,并同已有的数值结果和实验结果进行了比较。对于航行船舶的耐波性问题,由于频域三维移动脉动源格林函数的复杂性,目前在实际计算中应用很少,常用方法还是二维的切片法。本文对该格林函数的数值计算进行了研究,应用分区自适应步长辛普森法积分和积分变换的方法,得到了满足精度和速度要求的有效算法。对浮体在波浪中的荷载与波浪参数的关系进行了计算和对比分析,并对船舶遭遇海况的超越概率和波浪载荷的长期分布进行了计算。
     在时域计算中,本文采用混合欧拉—拉格朗日法对三维完全非线性波浪进行了分析。计算中每一时刻的边界条件在真实物面和自由表面上满足,使用基于NURBS的边界元法计算流场内的速度势,然后将得到的速度势带入自由表面条件和物体运动方程,采用四阶Adams-Bashforth-Moulton法和四阶库塔-龙格方法时间步进。辐射边界条件采用在外边界加人工阻尼层的方法处理。对于自山运动物体的受力计算中物面上速度势的时间导数的计算问题。使用迭代法建立求解物面上速度势的时间导数的积分方程,对于物面网格较多的模型,可以提高计算的速度。利用该数值模型对波浪水槽中的波浪产生和衰减,波浪与固定物体和运动物体的相互作用进行了计算研究。数值计算表明,该方法在数值上是稳定的,基于本方法实现的数值计算结果同实验结果以及相关文献给出的计算结果符合良好。
Numerical simulation and analysis of motions and loads of ship and ocean structure under waves with large amplitude are very important in theory and engineering application. With the development of Chinese economy, more and more new types of ship and ocean structure are developed. The new design method is required for achieving safe ships and ocean structures. With the wide use of the three-dimensional finite element method, the calculation of wave loads on floating body in the waves is in need more and more. In this paper, the interaction between non-linear waves and surface-piercing body with arbitrary shape in three dimensions is investigated on the basis of the potential theory. The Green-Function method both in frequency-domain and in time-domain with considering of fully non-linear effect is used in the calculation.As the wave simulation in the time-domain requires more memory and CPU-time than in the frequency-domain, an efficient NURBS approach based boundary element program is developed firstly in this paper. NURBS (Non-Uniform Rational B-Spline) is a new spline method that can express the complex three-dimensional surface exactly. By using the NURBS method, the continuity of potential function and its derivative between the grids can be affirmitived. And the fluid speed on boundary surface can be accurately calculated. Comparing with the traditional constant panel method, the NURBS based BEM is more accurate and can reduce the CPU time consuming and memory requirement. Now the NURBS method is widely used in the CAD software. The application of the NURBS based BEM can help the integration of CAD and CFD system. In this paper, the detail of NURBS based BEM is anylased and a computer program of NURBS based BEM is developed. The diffraction problem of body in infinity fluid is calculated. The computation result is compared with the analytic result satisfactorily.In this paper, the NURBS based BEM is used to calculate the wave-body interaction problem in the frequency-domain. By using the self-adaptive step size Simpson integral method and use a certain integral transform method, a numerical method for the calculation of the Green function of three dimensional translating and pulsing source is developed and used in the computation of wave loads. Numerical examinations on first-order wave forces, first-order body responses, velocities of fluid particle and second-order mean drift forces in the frequency-domain show that the NURBS based BEM is more accuracy and more computational efficient than conventional const panel BEM. The relationship between wave parameters and wave loads is investigated. The exceeding probability of design waves with different wavelength is calculated based on the wave data of long-term distribution.In this paper, the fully non-linear problem in the time-domain is analysed. By using the mix Eurian-Lagrange method, the free surface boundary condition is satisfied on the instance free surface and on body surface. The standard fourth order Runge-Kutta method and the fourth order Adams-Bashforth-Moulton method are used as the time step method. The
    
    NURBS based BEM method is used to calculate the velocity potential at each time step. An artificial damping zone is adopted as the far field radiation condition on the free surface to avoid the wave reflection from the outer boundary, and the present method is found to be numerically stable and accurate. The pressure on body can be obtained by solving a boundary integral equation of time derivative of velocity potential. The wave generation and attenuation in a numerical wave tank and the wave load on a cylinder are calculated. The time-domain wave-body interactive is also calculated in this paper. An iteration method is used in the calculation of time derivative of speed potential. The free motion of floating truncated cylinder and sphere is calculated and the results of wave forces and body motion are presented. All of the numerical results in this paper, including the time-domain results and the frequency-domain results, agree well with published e
引文
[1] Beck R. F., Reed A., Modern Seakeeping Computations for Ships, Proc. 23rd Symposium on Naval Hydrodynamics, Val de Reuil, France, 2000, 1-41.
    [2] Korvin-Kroukovsky B. V., Investigation of ship motions in regular waves, Trans. SNAME, 1955, 63, 386-435.
    [3] Korvin-Kroukovsky B. V., Jacobs, W. R., Pitching and heaving motioins of a ship in regular waves, Trans. SNAME, 1957, 65, 590-632.
    [4] Salvensen N., Tuck E. O., Faltinsen O. M., Ship motions and sea loads, Trans. SNAME, 1970, 78, 250-287.
    [5] Hachmarm, D., Calculation of Pressures a Ship's Hull in Waves, Ship Technology Research, 1991, 38(3), 111-132.
    [6] 钱昆,王言英,压力公式的修正及其在波浪荷载计算中的应用,海洋工程,1999,17(3),34-46.
    [7] Faltinsen O., Zhao R., Numerical prediction of ship motions at high forward speed. Philosophical Transactions of the Royal Society of London, 1991, Series A 334. 241-252.
    [8] Hermundstad O. A., Aarsnes J. V., Moan T., Linear hydroelastic analysis of high-speed catamarans and monohulls,. Journal of Ship Research, 1999, 43(1), 48-63.
    [9] 段文洋,贺五洲,高速排水型船的运动性能预报,清华大学学报,2001,41(12),82-85.
    [10] Hess J. L., Smith A. M. O., Calculation of non-lifting potential flow about arbitrary three-dimensional bodies, Journal of Ship Research, 1964, 8(2), 22-44.
    [11] 刘应中,缪国平,船舶在波浪上的运动理论,上海交通大学出版社.1987.
    [12] 戴遗山,舰船在波浪中运动的频域与时域势流理论,国防工业出版社,1998.
    [13] 李玉成,滕斌,波浪对海上建筑物的作用,海洋出版社,2002.
    [14] Newman J. N., Double-evaluation of the oscillatory source potential, Journal of Ship Research, 1984, 28(3), 151-154.
    [15] Newman J. N., Algorithms for the free-surface Green function, Jour. Eng. Math., 1985, 19, 57-67.
    [16] Newman J. N., Evaluation of the Wave-Resistance Green Function, Part 1-The Double Integral, Journal of Ship Research, 1987, 31 (2), 79-90.
    [17] Newman J. N., Evaluation of the Wave-Resistance Green Function, Part 2-The Single Integral, Journal of Ship Research, 1987, 31(3), 191-204.
    [18] Noblesse F., The Green function in the theory of radiation and diffraction of regular water waves by a body, Jour. Eng. Math., 1982, 16, 137-169.
    [19] Noblesse F., Integral identities of potential theory of radiation and diffraction of regular water waves by a body, Jour. Eng. Math., 1983, 17, 1-13.
    [20] Telste J. G. and Noblesse, F., Numerical Evaluation of the Green Function of Water-Wave Radiation and Diffration, Journal of Ship Research, 1986, 30(2), 69-84.
    [21] Haskind, M. D., The hydrodynamic theory of ship oscillations in rolling and pitching, Prikl. Mat. Mekh, 1946. 10, 33-36, English translation, Technical Research Bulletin, 1953, 1(12), 3-43.
    [22] Havelock T. H., The effect of speed on advance upon the damping of heave and pitch, Trans. RINA, 1958, 100, 131-135.
    [23] Bessho M., On the fundamental singularity in the theory of ship motion in a seaway. Memoirs of the Defense Academy Japan, 1977, 17(8), 95-105.
    [24] 缪国平,刘应中,杨勤正,刘滋源,三维移动脉动源的Michell型表达式,中国造船,1995,131, 1-11.
    [2
    
    [25] Inglis R. B., Price W. G., Calculations of the velocity potential of a translating, pulsating source, Trans. RINA, 1980, 76-87.
    [26] Inglis R, B., Price, W. G., A three-dimensional ship motion theory: Comparison between theoretical predictions and experimental data of the hydrodynamic coefficients with forward speed, Trans. RINA, 1981, 123-137.
    [27] 宗智,黄鼎良,三维移动脉动源速度势的数值研究,水动力学研究与进展,1991,6(SUP),56-63.
    [28] 叶伟,陆鑫森,频域有航速Green函数及其梯度的数值计算方法,上海交通大学学报,1996,30(10),1-8.
    [29] 卢晓平,叶恒奎,张纬康,石仲坤,Haskind源格林函数的奇异性研究与数值积分方法,水动力学研究与进展,1999,14(4),444-453.
    [30] Ba M., Guilbaud M., A Fast Method of Evaluation for the Translating and Pulsating Green's Function, Ship Technology Research, 1995, 42(2), 68-79.
    [31] Noblesse F., Chen X. B., Decomposition of free surface effects into wave and nearfield components. Ship Technology Research, 1995, 42(4), 167-185.
    [32] Ohkusu Makoto, Effect of interaction of wave and forward speed on hydrodynamic forces on marine structures, International Journal of Offshore and Polar Engineering, 1991, 1(1), 58-63.
    [33] Iwashita Hidersugu, Ohkusu Makoto, The Green function method for ship motions at forward speed, Ship Technology Research, 1992, 39(1), 3-21.
    [34] 杜双兴,吴有生,Bessho型移动脉动源格林函数快速数值积分方法,中国造船,1998,141,40-48.
    [35] 杜双兴,吴有生,航行船体周围稳态流场计算的双重面积分法,中国造船,1998,141(2),32-39.
    [36] 吴有生,杜双兴,航速及定常流场对航行船体结构水弹性力学特性的影响,中国造船,1998,141(S1),90-99.
    [37] Noblesse F., Chen X. B., Yang C., Generic super green functions, Ship Technology Research, 1999, 46(2), 81-92.
    [38] 周正全,顾懋祥,孙伯起,董慎言,预报船舶在波浪中航行时相对运动的三维模型,中国造船,1992,117,1-10.
    [39] 邹元杰,段文洋,任慧龙,宋竞正,船舶在波浪中脉动压力预报的三维方法,哈尔滨工程大学学报,2002,3(1),20-25.
    [40] 贺五洲,戴遗山,简单Green函数法求解三维水动力系数,中国造船,1986,93(2),1-15.
    [41] 李宜乐,刘应中,缪国平,Rankine源高阶边界元法求解势流问题,水动力学研究与进展,1999,14(1),80-89.
    [42] Nakos D. E., and Sclavounos P. D., On steady and unsteady ship wave patterns, Journal of Fluid Mechanics, 1990, 215, 263-288.
    [43] Sclavounos P. D., Nakos D. E., Stability analysis of panel methods for free-surface flows with forward speed, Proc. 17th Symposium on Naval Hydrodynamics, The Hague, The Netherlands, 1988, 29-48.
    [44] Nakos D. E., Sclavounos P. D., Ship motions by a three-dimensional Rankine panel method, Proc. 18th Symp. On Naval Hydrodynamics, Ann Arbor, Michigan, USA, 1990, 21-40.
    [45] Maruo H., The drift of a body floating on waves, Journal of Ship Research, 1960, 4(1), 1-10.
    [46] Newman J. N., The drift force and moment on ships in waves, Journal Ship Research, 1967, 11(1), 51-60.
    [47] Ogilvie T. F., Second-order hydrodynamic effects on ocean platforms, Proc. Int. Workshop on Ship and Platform Motions, 1983, 205-265.
    [4
    
    [48] 陈徐均,吴有生,崔维成,陈云鹤,海洋浮体二阶非线性水弹性力学分析——基本理论,船舶力学,2002,6(4),33-44.
    [49] 陈徐均,吴有生,崔维成,陈云鹤,海洋浮体二阶非线性水弹性力学分析——系泊浮体主坐标响应的频率特征,船舶力学,2002,6(5),44-57.
    [50] 陈徐均,吴有生,崔维成,陈云鹤,海洋浮体二阶非线性水弹性力学分析——二阶力对浮体振动时间响应的影响,船舶力学,2003,7(2),11-20.
    [51] 贺五洲,戴遗山,求解零航速物体水动力的简单Green函数方法,水动力学研究与进展,1992,7(4),449-454.
    [52] Eatock Taylor R., Hung S. M., Second-order diffraction forces on a vertical cylinder in irregular waves, Applied Ocean Research, 1987, 9(1), 19-30.
    [53] Eatock Taylor R., Hung S. M., Chau F. P., On the distribution of second order pressure on a vertical circular cylinder, Applied Ocean Research, 1989, 11 (4), 183-193.
    [54] Kim M. H., Yue D. K. P., The complete second-order diffraction solution for an axisymmetric body. Part 1. Monochromatic incident waves, Jour. Fluid Mech., 1989, 200, 235-264.
    [55] Kim M. H., Yue D. K. P., The complete second-order diffraction solution for an axisymmetric body. Part 1. Bonochromatic incident waves and body motions, Jour. Fluid Mech., 1990, 211, 557-593.
    [56] 缪国平,刘应中,大直径圆柱上的二阶波浪力,中国造船,1987,98,12-24.
    [57] Newman J. N., Second-harmonic wave diffraction at large depths, Jour. Fluid Mech., 1990, 213, 59-70.
    [58] 缪国平,刘应中,二阶慢漂力的理论研究,中国造船,1991,115(4),27-33.
    [59] 缪国平,刘应中,糜振星,二阶波浪力的切片理论与潜体上的垂向定常力,水动力学研究与进展,1993,8(4),435-447.
    [60] 缪国平,刘应中,王海平,细长体上二阶波浪力的切片理论,自然科学进展—国家重点实验室通讯,1996,6(3),295-302.
    [61] Huang J. B., Eatock Taylor R., Semi-analytical solution for second-order wave diffraction by a truncated circular cylinder in monochromatic waves, Jour. Fluid Mech., 1996, 319, 171-196.
    [62] 滕斌,波浪对三维浮体的二阶作用,水动力学研究与进展,1995,10(3),316-327.
    [63] Teng B., Li Y. C., Dong G. H., A method for third order force on axisymmetric bodies, Journal of Hydrodynamics, Ser. B, 1999, 11(4). 109-117.
    [64] 林青山,缪国平,李宜乐,刘应中,潜体在不同浪向的双色波受到的二阶慢漂力,上海交通大学学报,2000,34(1),1-5.
    [65] Cummins W. E., The impulse response function and ship motions. Schiffstechnik, 1962, 9, 101-109.
    [66] Ogilvie T. F., Recent progress toward the understanding and prediction of ship motions, Proc. 5th Symposium on Naval Hydrodynamics, Bergen, Norway, 1964, 3-80.
    [67] Fang M. C., Lee M. L., Lee C. A., Time simulation of water shipping for a ship advancing in large longitudinal waves, Journal of Ship Research, 1993, 38(2), 89-103.
    [68] 贺五洲,周正全,程军,水面舰船迎浪航行时大幅运动预报的切片算法,中国造船,1998,140,42-51.
    [69] 宋竞正,任慧龙,戴仰山,船舶非线性波浪载荷的水弹性分析,中国造船,1995,129,22-31.
    [70] 段文洋,戴遗山,二维时域格林函数的数值计算,水动力学研究与进展,1996,11(3),330-335.
    [71] 段文洋,戴遗山,二维浮体大幅运动水动力物面非线性时域解,哈尔滨工程大学学报,1997,18(50),1-7.
    [72] Duan W. Y., Dai Y. S., Time-domain calculation of hydrodynamic forces on ships with large flare, International Shipbuilding Progress, 1999, 46, No. 446, 209-221.
    
    [73] 戴遗山,段文洋,不规则频率对时域积分方程解的影响,中国造船,1998,1998(S1),67-80.
    [74] Fonseca N., Soares G. C., Time-domain analysis of large-amplitude vertical ship motions and wave loads, Journal of Ship Research, 1998, 42(2), 139-153.
    [75] Beck R. F., Liapis S., Transit motions of floating bodies at zero forward speed, Journal of Ship Research, 1987, 31(3), 164-176.
    [76] Beck R. F., Time-domain computations for floating bodies, Application Ocean Research, 1994, 16(5), 267-282.
    [77] King B. K., Beck R. E, Magee A. R., Seakeeping calculations with forward speed using time domain analysis, Proc. 17th Symposium on Naval Hydrodynamics, The Hague, The Netherlands, 1988, 577-596.
    [78] 黄德波,时域格林函数及其导数的数值计算,中国造船,1992,119,16-25.
    [79] Damaren J. D., Transient free-surface hydrodynamics using rational approximation of the Green's function, Journal of Ship Research. 1999, 43(2), 95-106.
    [80] 张亮,戴遗山,近水面航行物体绕射问题的时域解,中国造船,1992,119,1-16.
    [81] 周正全,张亮,戴遗山,船舶在波浪中航行时绕射问题的线性时域解,中国造船,1993,,122,1-25.
    [82] 王大云,三维船舶水弹性力学的时域分析方法,博士论文,中国船舶科学研究中心,1996.
    [83] Chapman R. B., Large amplitude transient motion of two-dimensional floating bodies, Journal of Ship Research, 1979, 29(1), 20-31.
    [84] Lin W. M., Yue D. K., Numerical solutions for large amplitude ship motions in the time domain, Proc. 18th Symposium on Naval Hydrodynamics, Ann Arbor, Michigan, USA, 1990, 41-66.
    [85] 戴遗山,张亮,倪绍毓,作用于运动潜体的波浪力,中国造船,1993,123,1-15.
    [86] 张亮,李云波,黄德波,水线积分项对运动浮体波浪绕射力的影响,哈尔滨工程大学学报,1998,19(2),1-7.
    [87] 蔡泽伟,刘应中,严乃长,近水面三维物体运动的时域计算,水动力学研究与进展,1989,4(1),32-41.
    [88] 蔡泽伟,陈耀松,刘应中,三维水面波动过程的计算方法,水动力学研究与进展,1989,4(1).43-49
    [89] Kring D. C., Ship seakeeping through the τ=1/4 critical frequency, Journal of Ship Research, 1998, 42(2), 113-119.
    [90] Ferrant P., Three-dimensional unsteady wave-body interactions by a Rankine boundary element method, Ship Technology Research, 1993, 40(3), 165-175.
    [91] Kring D. C., Sclavounos P. D., Numerial stability analysis for time-domain ship motion simulations. Journal of Ship Research, 1995, 39(4), 313-320.
    [92] Kring D. C., Huang Y. F., Sclavounos P., Time domain ship motions with a nonlinear extension, 10th WWWFB, 1995, 135-139.
    [93] Huang Y. F., Nonlinear ship motions by a Rankine panel method, Ph. D. Thesis, MIT, 1997.
    [94] Kring D. C., Huang Y. F., Sclavounos P., Braathen A., Vada T., Nonlinear ship motions and wave-induced loads by a Rankine method, Proc. 21th Symposium on Naval Hydrodynamics, Trondheim, Norway, 1996, 45-63.
    [95] Huang Y. F., Sclavounos P. D., Nonlinear ship motions, Journal of Ship Research, 1998, 42(2), 120-130.
    [96] Issacson M., Cheung K. F., Second order wave diffraction around two-dimensional bodies by time-domain method, Applied Ocean Research, 1991, 13(4), 175-186.
    [97] Issacson M., Cheung K. F., Time-domain solution for wave-current interactions with a twodimensional body, Applied Ocean Research, 1993, 15(1), 39-52.
    
    [98] Issacson M., Cheung K. E, Time-domain second order wave diffraction in three dimensions, J. waterway, Port, Coastal & Ocean Eng. ASCE, 1992, 118(5), 496-516.
    [99] Issacson M., Ng J. Y. T., Second-order wave radiation of three-dimensional bodies by time-domain method, Int. Jour. Of Offshore and Polar Eng., 1993, 3(4), 264-272.
    [100] Issacson M., Ng J. Y. T., Time-domain second-order wave interaction with three-dimensional floating bodies, Int. Jour. Of Offshore and Polar Eng., 1995, 5(3), 171-179.
    [101] Cheung K. E, Issacson M., Lee J W. Wave diffraction around three-dimensional bodies in a current, Jour. of Offshore Mech. Arc. Eng., 1996, 118, 247-252.
    [102] Kim D. S., Iwata K., Nonlinear interaction of second order stokes waves and two-dimensional submerged moored floating structure, Int. Jour. Of Offshore and Polar Eng., 1994, 4(2), 89-96.
    [103] Kim D. J., Kim M. H., Wave-current interaction with a large three-dimensional body by THOBEM, Journal of Ship Research, 1997, 41(4), 273-285.
    [104] Buchmann B., Skourup J., Cheung K. E, Run-up on a structure due to second-order waves and a current in a numerical wave tank, Application Ocean Research, 1998, 20(5), 297-308.
    [105] Bai W., Teng B., Second-order wave diffraction around 3-D bodies by a time-domain method, China Ocean Engineering, 2001, 15(1), 73-85.
    [106] 柏威,非线性波浪与任意三维物体的相互作用,博士论文,大连理工大学,2001.
    [107] 柏威,滕斌,邱大洪,三维浮体二阶辐射问题的实时模拟,2003,水动力学研究与进展,18(4),489-498.
    [108] Longuet-Higgins M. S., Cokelet C. D., The deformation of steep surface waves on water: I. A numerical method of computation. Proc. R. Soc., London, 1976, A350, 1-26.
    [109] Cointe R., Numerical simulation of a wave channel, Eng. Analysis with Boundary Elements. 1990, 7(4), 167-177.
    [110] Dommermuth D. G., Yue D. K. P., Numerical simulations of nonlinear axisymmetric flows with a free surface, Jour. Fluid Mech. 1987, 178, 195-219.
    [111] Grilli S. T., Skourup J., Svendsen I. A., An efficient boundary element for nonlinear water waves, Eng. Analysis with Boundary Elements. 1989, 6(2), 97-107.
    [112] Issacson M., Nonlinear-wave effects on fixed and floating bodies, Jour. Fluid Mech., 1982. 120, 267-281.
    [113] 贺五洲,段文洋,1996.摇板式造波机所造二维波的完全非线性解,水动力学研究与进展,11(1),35-42.
    [114] Tanizawa K., A nonlinear simulation method of 3D body motions in waves, Journal of Society of Naval Architecture Japan, 1995, 178, 179-191.
    [115] Tanizawa K., Long time fully nonlinear simulation of floating body motions with artificial damping zone, Journal of Society of Navai Architecture Japan, 1996, 180, 311-319.
    [116] Tanizawa K., Sawada H., A numerical method for non-linear simulation of 2-D body motions in waves by means of BEM, Journal of Society of Naval Architecture Japan, 1990, 168, 223-228.
    [117] Tanizawa K., Minami M., Development of a 3D-NWT for simulation of rurming ship motions in waves, 16th International Workshop on Water Waves and Floating Bodies, Hiroshima, Japan, 2001, 22-25.
    [118] Celebi M. S., Kim M. H., Beck R. F., Fully nonlinear 3D numerical wave tank simulation, Journal of Ship Research, 1998, 42(1), 33-45.
    [119] Celebi M. S., Beck R. F., Geometric modeling for fully nonlinear ship-wave interactions, Journal of Ship Research, 1997, 41(1), 17-25.
    [120] Kim M. H., Celebi M. S., Kim D. J., Fully nonlinear interactions of waves with a three-dimensional body in uniform currents, Applied Ocean Research, 1998, 20(4), 309-321.
    
    [121] Kim C. H., Clement A. H., Tanizawa K., Recent research and development of numerical wave tanks-a review, International Journal of Offshore and Polar Engineering, 1999, 9(4), 241-256.
    [122] Orlansky I., A simple boundary condition for unbounded hyperbolic flows, Jour. Comp. Phy., 1976, 21, 251-269.
    [123] Jagaunathan S., Nonlinear free surface flows and an application of the Orlanski boundary condition, International Journal of Numerical Method in Fluids. 1988, 8(9), 1051-1070.
    [124] Lee J. F., Leonard J. W., A time-dependent radiation condition for transient wave-structure interactions, Ocean Eng. 1987, 14(6), 469-488.
    [125] Clement A., Coupling of two absorbing boundary conditions for 2D time-domain simulations of free surface gravity waves, Jour. Comp. Phy., 1996, 126, 139-151.
    [126] 王赤忠,叶恒奎,石仲坤,用时域法求解二维二阶非线性水波,海洋工程,1999,17(1),8-16.
    [127] 王赤忠,叶恒奎,石仲坤,三维二阶水波绕射问题的有限元时域计算,海洋工程,2000,18(1),13-19.
    [128] Greaves D. M., Borthwick A. G. L., Wu G. X., Eatock Taylor R., A moving boundary finite element method for fully nonlinear wave simulations, Journal of Ship Research, 1997, 41 (3), 181-194.
    [129] Turnbull M. S., Borthwick A. G. L., Eatock Taylor R., Numerical wave tank based on ad σ-transformed finite element inviseid flow solver, International Journal for Numerical Methods in Fluids, 2003, 42(6), 641-663.
    [130] 孙大鹏,李玉成,三维数值波动水槽波浪变型计算的0—1混合型边界元方法,水动力学研究与进展,1999,14(4),429-437.
    [131] Liu Y. H., Kim C. H., Lu X. S., Comparison of higher-order boundary element method and constant panel methods for hydrodynamics loadings, International Journal of Offshore and Polar Engineering, 1991, 1(1), 8-17.
    [132] 刘勇辉,陆鑫森,边界元法中奇异积分计算的极坐标变换法,应用数学和力学,1988,9(10),899-907.
    [133] 滕斌,波浪力计算中的一个新边界元方法,水动力学研究与进展,1994,9(2),215-223.
    [134] 滕斌,李玉成,波浪问题中唯一可解的高阶边界元方法,海洋工程,1996,14(1),30-38.
    [135] Maniar H. D., A B-spline based higher order method in 3D, 10th International Workshop on Water Waves and Floating Bodies, Oxford, UK, 1995, 153-158.
    [136] Teng B., Bai W., A B-spline based BEM and its application in predicting wave force on 3D bodies, China Ocean Engineering, 1999, 13(3), 257-264.
    [137] Landrini M., Grytoyr G., Faltinsen O. M., A B-Spline based BEM for Unsteady free-surface flows, Journal of Ship Research. 1999, 43(1), 13-24.
    [138] 杜双兴,殷学文,李琪华,B-Spline高阶元方法在三维水弹性力学中的应用,船舶力学,2000,4(1),17-23.
    [139] Kouh J. S., Suen J. B., A 3D potential-based and desingularized high order panel method, Ocean Engineering, 2001, 28, 1499-1516.
    [140] Qiu W., Hsiung C. C., A Panel-Free Method for Time-Domain Analysis of Radiation Problem, Ocean Engineering, 2002, 29(12), 1555-1567.
    [141] Buehmann B., Theory and applications in stability of free-surface time-domain boundary element models, International Journal for Numerical Methods in Fluids, 2001, 37(3), 321-339.
    [142] Buchmann B., Skourup J., Stability of time-domain boundary element models; theory and applications, Proc. 14th International Workshop on Water Waves and Floating Bodies, Port Huron, Michigan, USA, 1999, 13-16.
    [143] Phillips, J. R. and White, J. K., A precorrected-FFT Method for electrostatic analysis of complicated 3-D structures. IEEE Trans. on Computer-Aided Design, 1997, 16(10), 1059-1072.
    
    [144] Korsmeyer, F.T. Klemas, T.J., White, J.K and Phillips, J.R., Fast Hydrodynamic Analysis of Large Offshore Structures. Proceedings of 9th ISOPE, 1999, 27-34.
    [145] Scorpio, S. M., Beck, R. F., Korsmeyer, F., Nonlinear water wave computations using a multipole accelerated, desingularized method. Proc. 21st Symposium on Naval Hydrodynamics, Trondheim, Norway, 1996, 64-74.
    [146] Scorpio, S. M., Beck, R. F., A multipole accelerated desingularized method for computing nonlinear wave forces on bodies. J. Offshore Mech. Arctic Eng., 1998, 120(2), 71-6.
    [147] Kring D., Korsmeyer T., Singer J., White J., Analyzing mobile offshore bases using accelerated boundary-element methods, Marine Structures, 2000, 13, 301-313.
    [148] 戴愚志,宋竞正,曾骥,陈曙梅,预修正快速傅里叶变换方法在波物相互作用分析中的应用,水动力学研究与进展,2004,19(3),361-369.
    [149] 戴愚志,宋竞正,戴仰山,面元法的快速算法与B样条高阶方法综述,海洋工程,2003,21(03),115-120.
    [150] Piegl L., A geometric investigation of the rational Bezier scheme of computer aided design, Compu-ter in industry, 1986, 7(5), 401-410.
    [151] Piegl L., On the use of infinite control points in CAGD, Computer Aided Geometric Design, 1987, 4(1), 155-166.
    [152] Piegl L. and Tiller W., Curve and surface constructions using rational B-Splines, Computern Aided Design, 1987, 19(9), 485-498
    [153] Tiller W., Rational B-spline for curve and surface representation, IEEE Computer Graphics and Applications, 1983, 3(6), 61-69
    [154] Tiller W., Knot-removal algorithms for NURBS curves and surfaces, Computer-Aided Design, 1992, 24(8), 445-453
    [155] 孙家广,杨长贵,计算机图形学(第三版),清华大学出版社,1999.
    [156] Lee, E. T. Y., Energy, fairness, and a counterexample. Computer-Aided Design, 1990, 22(1), 37-40.
    [157] Li H. B., Han G. M., Mang H. A., A new method for evaluating singular integral in stress analysis of solids by the direct boundary element method, Int. Jour. for Num. Math. In Eng., 1985, 211, 2071-2075.
    [158] Wehausen J. V., Laitone E. V., Surface Waves, Handbuch der Physik (ed. S. Flu"gge), Springer-Verlag, 1960, Vol. 9.
    [159] MacCamy R. C., Fuchs R. A., Wave force on piles: A diffraction theory. US Army Coastal Engineering Research Center, Technology Memory, 1954, 69.
    [160] Faltinsen O. M., Michelsen F. C., Motions of large structure in waves at zero Froude Number, Proc. Int. Symp. on the Dynamics of Marine Verhicles and Structure in Waves, University College London, 1974, 91-106.
    [161] Gerritsma J., Motions, wave loads and added resistance in waves of two Wigley hull forms, 1988, Rep. No. 804 Technical University of Delft, Netherlands.
    [162] ITTC, Report ofseakeeping committee, Proc. of 17th ITTC, Goteborg Sweden, 1984, 458-534.
    [163] 徐能兹,沈进威,陈瑞章,戴仰山,宋竞正,王兴飞,S-175集装箱船舶波浪载荷的船模试验与线性切片理论计算的比较,中国造船,1984,21,67-78.
    [164] Huang Y. F., Nonlinear ship motions by a rankine panel method, PhD thesis, MIT, 1997, 60-63.
    [165] Boo S. Y., Kim C. H., Kim M. H., A numerical wave tank for nonlinear irregular waves by 3-D higher order boundary element method, Int. Jour. Of Offshore and Polar Eng., 1994, 4(4), 265-272.
    [166] Saad Y., Schultz H., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Comput., 1986, 7(3) 856-869.
    [167] 蔡大用,白峰斌,现代科学计算,科学出版社,2001.
    
    [168] Sen D., Numerical simulation of motions of two-dimensional floating bodies, Journal of Ship Research, 1993, 37(4), 307-330.
    [169] Newman J. N., Transient axisymmetric motion of a floating cylinder, Jour. Fluid Mech., 1985, 157, 17-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700