神经元线粒体电子传递链复合体抑制对持续和瞬态钠电流的影响及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在缺氧早期阶段,神经元发生的变化主要有线粒体呼吸链复合体抑制、细胞膜离子通道改变、神经递质释放增加、细胞内钙离子浓度增加和基因表达变化等,其中缺氧时线粒体呼吸链复合体抑制受到关注,因为近年研究发现这种抑制除了是细胞对缺氧的一种代偿反应外,它还可通过产生某些活性分子使细胞功能发生变化,从而对细胞产生保护或损伤作用。然而,目前对后一个途径还有许多不清楚的地方。本实验采用线粒体电子传递链复合体Ⅰ抑制剂rotenone、复合体Ⅱ抑制剂TTFA(TTFA, thenoyltrifluoroacetone)、复合体Ⅲ氧化中心抑制剂myxothiazol、复合体Ⅲ还原中心抑制剂antimycin A和ATP合成酶抑制剂oligomycin分别模拟缺氧时这些线粒体复合体所发生的抑制,用全细胞膜片钳技术研究这些线粒体复合体抑制后神经元持续钠电流、瞬态钠电流及细胞兴奋性的变化,并采用工具药和生化技术分析了其作用机制。结果发现:(1)线粒体电子传递链复合体Ⅰ抑制剂rotenone、复合体Ⅱ抑制剂TTFA和ATP合成酶抑制剂oligomycin对海马神经元持续钠电流无明显作用;复合体Ⅲ还原中心抑制剂antimycin A明显抑制持续钠电流,而氧化中心抑制剂myxothiazol明显增强持续钠电流;线粒体膜阴离子通道阻断剂DIDS可以阻断或翻转myxothiazol和antimvcin A的作用;抗氧化剂MPG和PHEN可以显著抑制antimycin A引起的持续钠电流减小,H_2O_2可以模拟antimycin A引起的持续钠电流减小;蛋白激酶C(PKC)抑制剂chelerythrine可以阻断myxothiazol引起的持续钠电流增大,myxothiazol可以显著提高PKC的活性。(2)复合体Ⅲ还原中心抑制剂antimycin A明显抑制瞬态钠电流,而氧化中心抑制剂myxothiazol仅略增强瞬态钠电流;抗氧化剂MPG和PHEN可以显著抑制antimycin A引起的瞬态钠电流减小、但PKC抑制剂chelerythrine对myxothiazol引起的瞬态钠电流增大无明显影响。(3)复合体Ⅲ还原中心抑制剂antimycin A明显抑制细胞的兴奋性,而氧化中心抑制剂myxothiazol则明显增强细胞的兴奋性。以上结果表明缺氧时神经元线粒体电子传递链复合体抑制对细胞功能影响非常复杂,而且它们的作用机制也可能不同,提示它们在缺氧时细胞的功能变化中可能具有重要作用。
In the initial stages of hypoxia, it has been known that cells undergo alterations in mitochondrial respiratory chain, membrane ion channels, neurotransmitters release, intracellular environment and gene expression, etc. Among them, the alterations in mitochondrial respiratory chain are one focus of study. The inhibition of the complex I. complex II,complex III and complex IV of the mitochondrial respiratory chain during hypoxia has been observed in different studies. However, the downstream signaling pathways of these inhibition remain to be studied. The present paper used the complex I inhibitor rotenone. the complex II inhibitor TTFA (TTFA: thenoyltrifluoroacetone). the complex III oxidation center inhibitor myxothiazol, the complex III reduction center inhibitor antimycin A and the ATP synthase inhibitor oligomycin to mimic the inhibition of mitochondrial electron transport complex and studied the effects of these inhibition on persistent sodium currents (Inap), transient sodium currents (I_NaT) and neuronal excitability in rat hippocampal CA1 cells in slices and in acutely dissociated cells using whole cell patch-clamp methods. Moreover, we further analyzed their possible mechanisms using pharmacological approaches and biochemical technique. The results showed (1) that the complex I inhibitor rotenone, the complex II inhibitor TTFA and the ATP synthase inhibitor oligomycin had no apparent effects on I_Nap. However, the complex III oxidation center inhibitor myxothiazol significantly increased I_nap- whereas the complex III reduction center inhibitor antimycin A apparently decreased I_nap- The mitochondrial anion channel blocker DIDS alone did not have effects on I_nap. In the presence of DIDS, the increasing effect of myxothiazol on I_nap was blocked, but the decreasing effect of antimycin A was reversed. The decreasing effect of antimycin A could be cancelled by pretreatment with the antioxidant 2-mercaptopropionylglycine or 1,10 phenanthroline and H2O2 could mimic the effect of antimycin A. The increasing effect of myxothiazol was blocked by the protein kinase C inhibitor chelerythrine and protein kinase C activity is significantly increased by myxothiazol, but the antioxidant 2-mercaptopropionylglycine or 1,10 phenanthroline had no significantly influence on the effect of myxothiazol.(2) The complex III reduction center inhibitor antimycin A
引文
1. Boutilier R. G. Mechanisms of cell survival in hypoxia and hypothermia. J Exp Biol 2001;204:3171-3181
    2. Lipton P. Ischemic cell death in brain neurons. Physiol Rev 1999;79, 1431-1568.
    3. Nicholls D. G. and Budd S. L. Mitochondria and neuronal survival. Physiol Rev 2000;80:315-360
    4. Brown G. C. and Borutaite V. Nitric oxide, cytochrome c and mitochondria. Biochem Soc Symp1999; 66:17-25
    5. Brooks K. J., Hargreaves I. P.. and Bates T. E. Nitric-oxide-induced inhibition of mitochondrial complexes following aglycaemic hypoxia in neonatal cortical rat brain slices. Dev Neurosci 2000;22:359-365
    6. Bolanos J. P., Almeida A., and Medina J. M. Nitric oxide mediates brain mitochondrial damage during perinatal anoxia. Brain Res 1998;787:117-122
    7. Dagani F., Curti D., and Marzatico F. Effect of Ca2+-homopantothenate and mild hypoxia on some enzyme activities evaluated in subcellular fractions from different rat brain regions. Mol Chem Neuropathol 1989;10:157-169
    8. Delgado-Esteban M., Almeida A., and Medina J. M. Tetrahydrobiopterin deficiency increases neuronal vulnerability to hypoxia. J Neurochem 2002;82: 1148-1159
    9. Horakova L., Stolc S.. Chromikova Z.. Pekarova A., and Derkova L. Mechanisms of hippocampal reoxygenation injury. Mol Chem Neuropathol 1998;33:223-236
    10. Vaux E. C, Metzen E., Yeates K. M., and Ratcliffe P. J. Regulation of hypoxia-inducible factor is preserved in the absence of a functioning mitochondrial respiratory chain. Blood 2001;98:296-302
    11. Almeida A., Delgado-Esteban M., Bolanos J. P., and Medina J. M. Oxygen and glucose deprivation induces mitochondrial dysfunction and oxidative stress in neurones but not in astrocytes in primary culture. J Neurochem 2002;81:207-217
    12. Agani F. H., Pichiule P., Chavez J. C, and LaManna J. C. The role of mitochondria in the regulation of hypoxia-inducible factor 1 expression during hypoxia. J Biol Chem 2000;275:35863-35867
    13. Chavez J. C, Pichiule P., Boero J., and Arregui A. Reduced mitochondrial respiration in mouse cerebral cortex during chronic hypoxia. Neurosci Lett 1995r193:169-172
    14. Srinivas V., Leshchinsky I., Sang N., King M. P., Minchenko A., and Caro J. Oxygen sensing and HIF-1 activation does not require an active mitochondrial respiratory chain electron-transfer pathway. J Biol Chem 2001;276:21995-21998
    15. Wagner K. R... Kleinholz M.. and Myers R. E. Delayed onset of neurologic deterioration following anoxia/ischemia coincides with appearance of impaired brain mitochondrial respiration and decreased cytochrome oxidase activity. J Cereb Blood Flow Metab 1990; 10: 417-423
    16. Chandel N. S.. McClintock D. S.. Feliciano C. E., Wood T. M.. Melendez J. A., Rodriguez A. M, and Schumacker P. T. Reactive oxygen species generated at mitochondrial complex Ⅲ stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of 02 sensing. J Biol Chem 2000; 275:25130-25138
    17. Chen Q., Vazquez E. J., Moghaddas S., Hoppel C. L., and Lesnefsky E. J. Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem 2003;278:36027-36031
    18. Chandel N. S., Budinger G. R., Choe S. H., and Schumacker P. T. Cellular respiration during hypoxia. Role of cytochrome oxidase as the oxygen sensor in hepatocytes. J Biol Chem 1997;272:18808-18816
    19. Hammarstrom A. K. and Gage P. W. Inhibition of oxidative metabolism increases persistent sodium current in rat CA1 hippocampal neurons. J Physiol 1998a;510 (Pt 3):735-741
    20. Kawai Y., Qi J.. Comer A. M., Gibbons H., Win J., and Lipski J. Effects of cyanide and hypoxia on membrane currents in neurones acutely dissociated from the rostral ventrolateral medulla of the rat Brain Res 1999;830:246-257
    21. Brown A. M., Schwindt P. C, and Crill W. E. Different voltage dependence of transient and persistent Na+ currents is compatible with modal-gating hypothesis for sodium channels. J Neurophysiol 1994;71:2562-2565
    22. Connors B. W., Gutnick M. J., and Prince D. A. Electrophysiological properties of neocortical neurons in vitro. J Neurophysiol 1982;48:1302-1320
    23. Stafstrom C. E., Schwindt P. C, and Crill W. E. Negative slope conductance due to a persistent subthreshold sodium current in cat neocortical neurons in vitro. Brain Res 1982;236:221-226
    24. Hammarstrom A. K. and Gage P. W. Hypoxia and persistent sodium current. Eur Biophys J 2002;31:323-330
    25. Stys P. K... Sontheimer H., Ransom B. R., and Waxman S. G. Noninactivating,
     tetrodotoxin-sensitive Na+ conductance in rat optic nerve axons. Proc Natl Acad Sci U S A 1993;90:6976-6980
    26. Urenjak J. and Obrenovitch T. P. Pharmacological modulation of voltage-gated Na+ channels: a rational and effective strategy against ischemic brain damage. Pharmacol Rev 1996; 48:21-67
    27. Lee H. C. and Wei Y. H. Role of Mitochondria in Human Aging. J Biomed Sci 1997;4:319-326
    28. Lee H. C. and Wei Y. H. Mitochondrial role in life and death of the cell. J Biomed Sci 2000;7:2-15.
    29. Moini H., Packer L., and Saris N. E. Antioxidant and prooxidant activities of alpha-lipoic acid and dihydrolipoic acid. Toxicol Appl Pharmacol 2002; 182: 84-90
    30. Wei Y. H. and Lee H. C. Oxidative stress, mitochondrial DNA mutation, and impairment of antioxidant enzymes in aging. Exp Biol Med (Maywood ) 2002;227: 671-682
    31. A.R. Kay, R.K.S. Wong, Isolation of neurons suitable for patch clamping from adult mammalian central nervous system. J. Neurosci. Meth. 1986; 16:227-238
    32. French C. R., Sah P., Buckett K. J., and Gage P. W. A voltage-dependent persistent sodium current in mammalian hippocampal neurons. J Gen Physiol 1990;95: 1139-1157
    33. Alzheimer C, Schwindt P. C, and Crill W. E. Postnatal development of a persistent Na+ current in pyramidal neurons from rat sensorimotor cortex. J Neurophysiol 1993; 69:290-292
    34. Alzheimer C. (1994) A novel voltage-dependent cation current in rat neocorticalneurones. J Physiol 479 (Pt 2), 199-205.
    35. Sorgato MC, Moran O.Channels in mitochondrial membranes: knowns, unknowns, and prospects for the future. Crit Rev Biochem Mol Biol. 1993;28(2): 127-71
    36. Crompton M, Virji S, Ward JM. Cyclophilin-D binds strongly to complexes of the voltage- dependent anion channel and the adenine nucleotide translocase to form the permeability transition pore. Eur J Biochem. 1998 ;258(2):729-35
    37. Gunter, TE, Gunter, KK, Sheu, SS and Gavin, CE Mitochondrial calciumtransport: physiological and pathological relevance. J. Physiol.. 1994;267, C313-339
    38. Bernardi P, Broekemeier KM, Pfeiffer DR. Recent progress on regulation of the mitochondrial permeability transition pore; a cyclosporin-sensit ive pore in the inner mitochondrial membra- ne. J Bioenerg Biomembr. 1994 ;26(5):509-17
    39. Mario Zoratti and lldiko Szabo The mitochondrial permeability transition BBA Reviews on Biomembranes, 1995,1241: 139-176
    40. Bernardi P, Petronilli V. The permeability transition pore as a mitochondrial calcium release channel: a critical appraisal. J Bioenerg Biomembr. 1996 ;28(2):131-8
    41. Alvarez S, Valdez LB, Zaobornyj T & Boveris A (2003). Oxygen dependence of mitochondrial nitric oxide synthase activity. Biochem Biophys Res Commun 305, 771 - 775.
    42. Cassina A, Radi R.Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys. 1996 Apr 15;328 (2):309-16
    43. Hammarstrom AK. Gage PW. Nitric oxide increases persistent sodium current in rat hippocampal neurons. J Physiol. 1999;520 Pt 2:451-61
    44. Chen Q.. Vazquez E. J., Moghaddas S.. Hoppel C. L., and Lesnefsky E. J. Production of reactive oxygen species by mitochondria: central role of complex Ⅲ. J Biol Chem 2003:278:36027-36031
    45. Junemann S., Heathcote P., and Rich P. R. On the mechanism of quinol oxidation in the bc1 complex. J Biol Chem 1998; 273:21603-21607
    46. Raha S., McEachern G. E.. Myint A. T.. and Robinson B. H. Superoxides from mitochondrial complex Ⅲ: the role of manganese superoxide dismutase. Free Radic Biol Med 2000:29:170-180
    47. Turrens J. F., Alexandre A., and Lehninger A. L. Ubisemiquinone is the electron donor for superoxide formation by complex Ⅲ of heart mitochondria. Arch Biochem Biophysl985: 237:408-414
    48. Matsuno-Yagi A. and Hatefi Y. Ubiquinol-cytochrome c oxidoreductase. The redox reactions of the bis-heme cytochrome b in ubiquinone-sufficient and ubiquinone-deficient systems. J Biol Chem 1996;271:6164-6171
    49. Matsuno-Yagi A. and Hatefi Y. Ubiquinol:cytochrome c oxidoreductase (complex Ⅲ). Effect of inhibitors on cytochrome b reduction in submitochondrial particles and the role of ubiquinone in complex Ⅲ. J Biol Chem 2001;276:19006-19011
    50. Yu C. A.. Xia D., Kim H., Deisenhofer J., Zhang L, Kachurin A. M., and Yu L.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700