面包酵母催化β-羰基酯类不对称还原研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
手性化合物的研究与开发已成为新药研究的热点和方向。具有光学活性的β-羟基酯类化合物是一类重要的化合物,其对映体通常被用来作为有机合成的手性砌块,或作为合成一些天然化合物和药物的中间体。在温和的条件下,利用面包酵母或其他微生物催化β-羰基酯类不对称还原可以得到具有手性的β-羟基酯类化合物。本文主要研究面包酵母催化羰基不对称还原的特点,提高酵母立体选择性的方法及机理,提高酵母的有机溶剂的耐受力,以及考察固定化酵母在水相中催化羰基不对称还原在工业生产上应用的可能性,并且利用呼吸缺陷型酵母考察呼吸链酶对不对称还原的影响。
     以乙酰乙酸甲酯为底物,从不同的酵母中筛选出面包酵母作为催化剂,合成(S)-β-羟基丁酸甲酯,考察了反应时间、菌体浓度、辅助底物葡萄糖、缓冲液的pH值、反应温度和底物浓度对反应的影响。结果表明,以面包酵母作催化剂,催化性能良好,较好的反应条件为反应时间4 h,菌体浓度75g/L,葡萄糖浓度为0.6 mol/L,底物浓度0.05 mol/L,pH值为7,温度为35℃。在该条件下,β-羟基丁酸甲酯的收率达57%,选择性达92%。
     以乙酰乙酸甲酯为模型底物,利用海藻酸钙胶珠包埋面包酵母,考察了固定化条件和在摇瓶中催化反应的条件,并设计了反应与酵母活性再生相耦合的固定床反应流程。实验结果表明,在合适条件下,用海藻酸钙固定化酵母进行催化产物的e.e.大于99%;经过2个固定床反应器共24批的反应,面包酵母的催化活性可以保持16天,收率可以达到80%,产物的e.e.保持在95%以上。
     以乙酰乙酸乙酯为模型底物,以丙烯酸、乙醚、二甲基亚砜、丙烯酰胺、正己烷等有机溶剂选择性地抑制酵母中R型酶,提高反应立体选择性。考察了不同有机溶剂浓度、不同预处理时间对催化能力的影响,结果表明经有机溶剂预处理后可以明显提高反应的立体选择性,能将S型产物的对映体过量值由70%左右提高到85%—98%,其中二甲基亚砜在提高立体选择性的同时,还能保持原有的产物收率,而其他4种有机溶剂的反应收率都有不同程度的下降。并且对3种烯丙基化合物—丙烯酰胺、烯丙基醇、烯丙基溴改变酵母立体选择性的机理进行了研究。结果表明,烯丙基类化合物对细胞及胞内酶系的活性抑制作用具有可逆性,且作用程度大小取决于烯丙基所带基团;细胞内水解酶和线粒体呼吸链酶复合体的活性都有不同程度的下降,琥珀酸脱氢酶或者其亚基可能是催化不对称还原的S型酶。
     通过在培养基中逐渐添加有机溶剂驯育得到能够耐受较高有机溶剂浓度的MAA酵母。用此酵母在水相中催化乙酰乙酸甲酯的还原,其得率较普通面包酵母要高。pH和温度对MAA酵母与普通面包都有相同的影响。低底物浓度时,催化4-氯乙酰乙酸乙酯和乙酰乙酸乙酯,同样可以提高反应的收率,但反应的立体选择性下降。但当乙酰乙酸甲酯的浓度达到0.4M时,可以得到相反构型的产物。另外,MAA酵母与面包酵母在形态上相似。
     通过诱变,得到了呼吸缺陷型酵母以此来考察呼吸链酶对酵母催化不对称还原反应的影响,发现将呼吸缺陷型酵母用于不对称还原反应,产物的对映体过量值有54%提高到72%;通过对线粒体呼吸链复合体酶活性的研究发现,复合体Ⅰ—Ⅳ的活性下降,表明立体选择性的提高并不一定是呼吸链某种酶活性的改变造成的。结果也表明添加外源电子受体可以增加酵母的生物量但不能提高酵母催化不对称还原的能力。
     本文研究的结果对选择和寻找高效率的活细胞催化剂以及研究酵母糖代谢与催化直接的关系有一定的参考价值。
The research and development of chiral compounds has become the hot field and prosperous direction of new drug internationally.β-hydroxy ester with optical activity, whose enantiomer was often used as chiral block in the organic synthesis and intermediate for drug production,was one of the important compounds.β-hydroxy ester having optical activity could be synthesized in asymmetric reduction by baker's yeast or other microorganisms under mild reaction condition.
     The main purpose of this work was to study the characteristics of asymmetric reduction catalyzed by baker's yeast,the method to improve stereo-selectivity of the reaction,the tolerance of the yeast to organic solvent,and the possibility to apply immobilized yeast in calcium alginate beads in industrial process. Respiratory-deficient yeast was also used to study the effect of enzyme in respiratory chain on the reaction.
     The(S)-methylβ-hydroxybutanoate(MHB)was synthesized from methyl acetoacetate(MAA)by different yeasts in aqueous phase.Effects of reaction time, yeast concentration,glucose concentration,buffer pH,reaction temperature and substrate concentration on both the yield and the stereo-selectivity of(S)-MHB were investigated.The results showed that Baker's yeast effectively catalyzed the reaction. The optimal condition was reaction time 4 h,Baker's yeas 75 g/L,glucose 0.6 mol/L, substrate MAA 0.05 mol/L,pH7,35℃.Under the condition,methylβ-hydroxybutanoate yield and enantiomeric excess(e.e.)57%and 92%,respectively.
     Methyl 3-oxobutanoate was chosen as the model substrate,and the condition of immobilization and reaction in flask were investigated in details.A new fixed-bed process,which combined reaction function and cell-activity regeneration,was designed for the asymmetric reduction.The result showed that after immobilized in calcium alginate beads,yeast has high stereo-selectivity:e.e.of the product could achieve 99%under proper condition.Two fixed-bed reactors were able to work steadily for at least 16 days for reaction and regeneration alternately in 2 fixed-beds. The yield could achieve 80%and e.e.could keep above 95%in the fixed beds.
     In order to achieve high stereo-selectivity with yeast,ethyl acetoacetate was used as the model substrate,and a novel approach was proposed to selectively inhibit R-enzymes in yeast before reaction.In this method,Baker's yeast was pretreated with acrylic acid,ether,dimethylsulfoxide,acryl amide and hexane,respectively.After the pretreatment with organic solvents,the enantiomeric excess of S-product was raised from 70%to 85%-98%.Among these solvents,dimethylsulfoxide can improve the stereo-selectivity with the original yield while the other 4 solvents decreased the yield to different degrees.The mechanism on alteration of enantioselectivity by allyl compounds added in the reaction system was studied.The results showed that inhibition on enzymes system of yeast by allyl compounds was reversible,and the extent of inhibition was determined by the group linked to the allyl.The activities of intracellular hydrolases and mitochondrial complexes were decreased at different degree,respectively.Succinic acid dehydrogenase or its subunit in the mitochondrial might be the S-enzyme which catalyzes the asymmetric reduction.
     By gradually adding low-content of methyl acetoacetate into the solid medium,a new yeast strain,called MAA yeast,was separated from the commercial baker's yeast. The new yeast was used for catalyzing asymmetric reduction of methyl acetoacetate in aqueous phase,and results showed that it was more efficient than the regular baker's yeast in asymmetric reduction of methyl acetoacetate.The influence of external environment,pH and temperature on MAA yeast was as same as baker's yeast.When MAA yeast was used to catalyze other systems,such as reducing ethyl 4-chloro-3-oxobutanoate to ethyl(S)-4-chloro-3- hydroxybutanoate and ethyl acetoacetate to ethyl(S)-3-hydroxybutyrate,the yield also improved at various degrees.In addition,the main product was methyl(S)-β-hydroxybutanoate at low substrate concentration,however,methyl(R)-β-hydroxybutanoate would be produced when the concentration of substrate exceeded 0.4 M.The morphology of the new strain was as same as that of baker's yeast.
     By mutagenesis,respiratory-deficient(RD)yeast was prepared to study the effect of enzyme in respiratory chain on the reaction.The e.e.of product catalyzed with RD yeast was improved.The activity of complexesⅠ-Ⅳin mitochondrial were decreased,which means the improvement of e.e.was not caused by change of enzyme activity in respiratory chain.When extraneous electron acceptor was added,the biomass of RD yeast would increase,but no obvious improvement on the effect of asymmetric catalyzation was observed.
引文
[1].Blaser Hans-Alrich.The Chiral Pool as a Source of Enantioselective Catalysts and Auxiliaries.Chemical Reviews.1992;92(5):935-952.
    [2].汪秋安,麻秋娟,汤建国.不对称催化合成技术及其最新进展.工业催化.2003;11(5):1-6.
    [3].孙志浩.手性技术与生物催化.生物加工过程.2004;2(4):6-10.
    [4].张玉彬.生物催化的手性合成 北京:化学工业出版社;2001.
    [5].Nicholas M.Shaw,Karen T.Robins,Andreas Kiener.Lonza:20 years of biotransformations Advanced Synthesis & Catalysis 2003;35(4):425-435
    [6].刘如林.微生物工程概论.天津:南开大学出版社;1995.
    [7].梅乐和,姚善泾,林东强.生化生产工艺学.北京:科学出版社;1998.
    [8].Barman Thomas E.Handbook of Enzyme.Berlin:Springer Verlang;1985.
    [9].Wandrey Christian.Biochemical reaction engineering for redox reactions.The Chemical Record.2004;4:254-265.
    [10].肖斌,杨忠华.面包酵母在手性化合物不对称合成中的类型.天津化工.2003;6(11):10-13.
    [11].Andre Belan,Jean Bolte,Annie Fauve,Jean G.Gourcy,Henri Veschambre.Use of biological systems for the preparation of chiral molecules.3.Application in pheromone synthesis:preparation of sulcatol enantiomers.J.Org.Chem.1987;52(2):256-260.
    [12].Claude Le Drian,Andrew E.Greene.Efficient,stereocontrolled total syntheses ofracemic and natural brefeldin-A.J.Am.Chem.Soc.1982;104(20):5473.
    [13].Masaru Wada,Michihiko Kataoka,Hiroshi Kawabata,Yoshihiko Yasohara,Noriyuki Kizaki,Junzo Hasegawa,Sakayu Shimizu.Purification and characterization of NADPH-dependent carbonyl reductase,iInvolved in stereoselective reduction of ethyl 4-chloro-3-oxobutanoate,from Candida magnoliae.Bioscience,Biotechnology,and Biochemistry.1998;62(2):280-285.
    [14].杨忠华,姚善泾.水相中酵母细胞催化 4-氯乙酰乙酸乙酯不对称还原反应.催化学报.2004;25(6):436-438.
    [15].Ada Manzocchi,Alberto Fiecchi,Enzo Santaniello.Stereochemical control of bakers'yeast mediated reduction of a protected 2-hydroxy ketone J.Org.Chem.1988;53(18):4405-4407.
    [16].J.Bolte,J-G Gourcy,Veschambre H.Utilisation des methodes biologiques pour la preparation de synthons chiraux:I-reduction de β-dicetones acycliques par Saccharomyces cerevisiae(levure de boulanger).Tetrahedron Lett.1986;27(5):565-568.
    [17].Robert P.Short,Robert M.Kennedy,Satoru Masamune.An improved synthesis of (-)-(2R,5R)-2,5-dimethyi-pyrrolidine.J.Org.Chem.1989;54(7):1755-1756.
    [18].Paola Gramatica,Paolo Manitto,Diego Monti,Giovanna Speranza.Stereoselective total synthesis of natural phytol via double bond reductions by Baker's yeast.Tetrahedron.1987;43(19):4481-4486.
    [191.杨忠华,姚善泾,赵珺.活性酵母细胞不对称催化苯乙酮还原及树脂吸附对反应的促进作用.催化学报.2005;26(10):895-899.
    [20].应小蛟,姚善泾,关怡新.高压CO2条件下粗状假丝酵母催化苯乙酮不对称还原合 成α-苯乙醇.催化学报.2006:27(7):631-635.
    [21].Alan P.Kozikowski,B.B.Mugrage,C.S.Li,L.Felder.Chemistry of Baker's yeast reduction products:Use of optically active S-(+)-(P-toluenesulfonyl)propan-2-ol and S-(+)-1-(phenylsulfonyl)propan-2-ol in sythesis.Tetrahedron Letter.1986;27(40):4817-4820.
    [22].Katja Goldberg,Kirsten Schroer,Stephan Lütz,Andreas Liese.Biocatalytic ketone reduction-a powerful tool for the production of chiral alcohols-part Ⅱ:whole-cell reductions.Applied Microbiology and Biotechnology.2007;76(2):249-255.
    [23].Dee W.Brooks,Hormoz Mazdiyasni,Paul G.Grothaus.Asymmetric microbial reduction of prochiral 2,2,-disubstituted cycloalkanediones.J.Org.Chem.1987;52(15):3223-3232.
    [24].Wolfgang Kroutil,Harald Mang,Klaus Edegger,Kurt Faber.Recent advances in the biocatalytic reduction of ketones and oxidation of sec-alcohols.Current Opinion in Chemical Biology.2004;8(2):120-126.
    [25].Rita Mertens,Lasse Greiner,Eyke C.D.Van Den Banb,Huub B.C.M.Haaker,Andreas Liese.Practical applications of hydrogenase I from Pyrococcus furiosus for NADPH generation and regeneration.Journal of Molecular Catalysis B:Enzymatic.2003;24-25:39-52.
    [26].Akinobu Matsuyama,Hiroaki Yamamoto,Yoshinori Kobayashi.Practical application of recombinant whole-cell biocatalysts for the manufacturing of pharmaceutical intermediates such as chiral alcohols.Org.Proc.Res.Dev.2002;6(4):558-561.
    [27].Neeta A.Salvi,Subrata Chattopadhyay.Rhizopus arrhizus mediated asymmetric reduction of alkyl 3-oxobutanoates.Tetrahedron:Asymmetry.2004;15(21):3397-3400.
    [28].Francesco Molinari,Raffaella Gandolfi,Raffaella Villa,Ernesto G.Occhiato.Lyophilised yeasts:easy-to-handle biocatalysts for stereoselective reduction of ketones.Tetrahedron:Asymmetry.1999;10(18):3515-3520.
    [29].颜承农,刘义,宋昭华,屈松生.细胞不同代谢类型的量热学研究Ⅱ静息细胞有氧非生长代谢特征.物理化学学报.1997;13(5):447450.
    [30].Chang-Li Xie,Day-Ung Sun,Zhau-Hua Song,Song-Sheng Qu,Yao-Ting Liao,Hai-Shui Liu.Thermochemical studies on cell metabolism:Part Ⅰ.Thermal equations for the metabolism of resting cells.Thermochimica Acta.1990;158(1):187-193.
    [31].Qing Xie,Jianping Wu,Gang Xu,Lirong Yang.Asymmetric Reduction of oChloroacetophenone with Candida pseudotropicalis 104.Biotechnolgy Progress.2006;22(5):1301-1304.
    [32].Zhong-Hua Yang,Shan-Jing Yao,Yi-Xin Guan.A complex process of asymmetric synthesis of β-hydroxy ester by Baker's yeast accompanied by resin adsoption.Industrial and Engineering Chemistry Research 2005;44:5411-5416.
    [33].Kaoru Nakamura,Yasushi Kawai,Nobuyoshi Nakajima,Atsuyoshi Ohno.Stereochemical control of microbial redcuction.17.A mothod for conrolling the enantioselectivity of redutiong with Baker's yeast.J.Org.Chem.1991;56(15):4778-4783.
    [34].Kaoru Nakamura,Shin-lchi Kondo,Nobuyoshi Nakajima,Atsuyoshi Ohno.Study for stereochemical control of microbial reduction of α-keto esters in an organic s olvent.Tetrahedron.1995;51(3):687-694.
    [35].马小魁,王喆之,陈五岭.酵母发酵液卣接催化4-氯-乙酰乙酸乙酯不对称还原生成4-氯-3-羟基木酸乙酯.催化学报.2006;27(4):314-318.
    [36].L.Q.Gu.Bioreduction of quinone derivatives by immobilized Baker's yeast in hexane.Chinese Journal of Chemistry.1998;16(1):45-50.
    [37].Qun Jiang,Shanjing Yao,Lehe Mei.Tolerance of immobilized baker's yeast in organic solvents.Enzyme and Microbial Technology.2002;30(6):721-725.
    [38].T.R.Gervais,G.Carta,J.L.Gainer.Effect of aeration during cell growth on ketone reactions by immobilized yeast.Biotechnology Progress.2000;16(2):208-212.
    [39].Daniel R.Griffin,John L.Gainer,Giorgio Carta.Asymmetric ketone reduction with immobilized yeast in hexane:Biocatalyst deactivation and regeneration.Biotechnol.Prog.2001;17(2):304-310.
    [40].E.M.Buque.Immobilization affects the rate and enantioselectivity of 3-oxo ester reduction by baker's yeast.Enzyme and Microbial Technology.2002;31(5):656-664.
    [41].W.Y.Lou.Asymmetric microbial reduction of organosilyl ketone with immobilized Saccharomyces cerevisiae cells in water/organic solvent biphase system.Progress in Biochemistry and Biophysics.2002;29(2):297-301.
    [42].Kaoru Nakamura,Yasushi Kawai,Shinzaburo Oka,Atsuyoshi Ohno.A new method for stereochemical control of microbial reduction.Reduction of β-keto esters with bakers'yeast immobilized by magnesium alginate.Tetrahedron Letters 1989;30(17):2245-2246
    [43].M.Christen,D.H.G.Crout.Enzymatic reduction of beta-keto esters using immobilized yeasts.Paper presented at:Proceedings of the International Conference on Bioreactors and Biotransformations,1987;Gleneagles,UK.
    [44].T.Kanda.Doubly entrapped baker's yeast survives during the long-term stereoselective reduction of ethyl 3-oxobutanoate in an organic solvent.Applied Microbiology and Biotechnology.1998;49(4):377-381.
    [45].K.Nakamura,M.Higaki,K.Ushio,S.Oka,A.Ohno.Stereochemical control of microbial reduction.Part 2.Reduction of β-keto esters by immobilized baker's yeast.Tetrahedron Letter.1985;26:4213-4216.
    [46].R.Wendhausen.Continuous process for large-scale preparation of chiral alcohols with baker's yeast immobilized on chrysotile fibers.Journal of Molecular Catalysis B:Enzymatic.1998;5(1-4):69-73.
    [47].季艳艳.NaCS-PDMDAAC微胶囊固定化粗壮假丝酵母的应用,硕士学位论文.杭州:浙江大学;2006.
    [48].M.Bertau,D.Scheller.Equilibrium-dependent hydration of ethyl 4.4,4-trifluoro-acetoacetate in aqueous solutions and consequences for the whole-cell biotransformation with Saccharomyces cerevisiae.Enzyme and Microbial Technology.2003;(32):491-497.
    [49].J.Klein,B.Kressdorf.Improvement of productivity and efficiency in ethanol production with ca-alginate immobilized zymomonas mobilis.Biotechnology Letters.1983;5(8):497-502.
    [50].Marek Staniszewski,Wojciech Kujawski,Matgorzata Lewandowska.Ethanol production from whey in bioreactor with co-immobilized enzyme and yeast cells followed by pervaporative recovery of product - Kinetic model predictions.Journal of Food Engineering.2007;82(4):618-625.
    [51].Nikolaos Kopsahelis,Maria Kanellaki,Argyro Bekatorou.Low temperature brewing using cells immobilized on brewer's spent grains.Food Chemistry.2007;104(2):480-488.
    [52].J.E.Nava Saucedo,J.-N.Barbotin,D.Thomas.Continuous production of gibberellic acid in a fixed-bed reactor by immobilized mycelia of Gibberetla fujikuroi in calcium alginate beads.Applied Microbiology and Biotechnology.1989;30(3):226-233.
    [53].K.Bandhyopadhyay,D.Das,P.Bhattacharyya,B.R.Maiti.Reaction engineering studies on biodegradation of phenol by Pseudomonas putida MTCC 1194 immobilized on calcium alginate.Biochemical Engineering Journal.2001;8(3):179-186.
    [54].A.Sheoran,B.S.Yadav,P.Nigam,D.Singh.Continuous ethanol production from sugarcane molasses using a column reactor of immobilized Saccharomyces cerevisiae HAU-1.J.Basic Microbiol.1998;38(2):123-128.
    [55].Marian Vermue,Jan Sikkema,Annette Verheul,Rudolf Bakker,Johannes Tramper.Toxicity of homologous series of organic solvents for the gram-positive bacteria Arthrobacter and Nocardia Sp.and the gram-negative bacteria Acinetobacter and Pseudomonas Sp.Biotechnology and Bioengineering.1993;42(6):747-758.
    [56].H.M.S.Milagre,C.D.F.Milagre,P.J.S.Moran,M.H.A.Santana,J.A.R.Rodrigues.Reduction of ethyl benzoylformate mediated by Saccharomyces cerevisiae entrapped in alginate fibers with double gel layers in a continuously operated reactor.Enzyme and Microbial Technology.2005;37(1):121-125.
    [57].Woanru Shieh,Aravamudan S.Gopalan,Charles J.Sih.Stereochemical control of yeast reductions.5.Characterization of the oxidoreductases involved in the reduction of beta-keto esters.J.Am.Chem.Soc.1985;107(10):2993-2994.
    [58].于明安,朱晓冰,祁巍,赵领,魏郁梦.CTAB透性化酵母细胞生物催化合成(S)-(+)-3-羟基丁酸乙酯.催化学报.2005;26(7):609-613.
    [59].高惠玲,袁其朋,周延,钱忠明.用透性化细胞技术合成海藻糖.微生物学通报.2004;3 1(3):92-96.
    [60].杨忠华,姚善泾.水相中酵母细胞催化4-氯乙酰乙酸乙酯不对称还原反应.催化学报. 2004;25(6):434-438.
    [61].Duc Hai Dao,Mutsuo Okamura,Takeshi Akasaka,Yasushi Kawai,Kouichi Hida,Atsuyoshi Ohno.Stereochemical control in microbial reduction.Part 31:Reduction of alkyl 2-oxo-4-arylbutyrates by baker's yeast under selected reaction conditions.Tetrahedron:Asymmetry.1998;9(15):2725-2737.
    [62].Kazutoshi Ushio,Junya Hada,Yuji Tanaka,Kouichi Ebara.Allyl bromide,a powerful inhibitor against R-enzyme activities in Bakers' yeast reduction of ethyl 3-oxoalkanoates.Enzyme and Microbial Technology.1993;15(3):222-228.
    [63].Van T.Pham,Robert S.Phillips,Lars G.Ljungdahl.Temperature-dependent enantiospecificity of secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus.J.Am.Chem.Soc.1989;111(5):1935-1936.
    [64].Ramesh N.Patel,Clyde G.Mcnamee,Amit Banerjee,Jeffrey M.Howell,Robert S.Robison,Laszlo J.Szarka.Stereoselective reduction of β-keto esters by Geotrichum candidum.Enzyme and Microbial Technology.1992;14(9):731-738.
    [65].Allan C.Dahl Morten Fjeldberg,Jorgen φgaard Madsen.Baker's yeast:improving the D-stereoselectivity in reduction of 3-oxo esters.Tetrahedron:Asymmetry.1999;10:551-559.
    [66].Sherman Freddie.The effects of elevated temperatures on yeast.Ⅱ.Induction of respiratory-deficient mutants.Journal of cellular and comparative physiology.1959:37-52.
    [67].Ryuuichirou Hayakawa,Makoto Shimizu,Tamotsu Fujisawa.The baker's yeast reduction of 1-acetoxy-2-alkanones in the presence of a sulfur compound.Tetrahedron:Asymmetry.1997;8(19):3201-3204.
    [68].Yoshinobu Naoshima Jusei Maeda,Yoshihito Munakata.Control of the enantioselectivity of the bioreduction with immobilized Bakes' yeast in a hexane solvent system.Journal of the Chemical Society:PERKIN TRANSACTIONS 1.1992:659-660.
    [69].Rotthaus Olaf,Doris Krtiger,Martin Demuth,Kurt Schaffner,Reductions of keto esters with Baker's yeast in organic solvents - A comparison with the results in water.Vol 53:Elsevier Science;1997.
    [70].S.Shimizu,M.Kataoka,A.Morishitu,M.Katoh,Ta-I Morikawa,T.Miyoshi,H.Yamada.Microbial asymmetric reduction of ethyl 4-chloro-3-oxobutanoate to optically active ethyl-4-chloro-3-hydroxybutanoate.Biotechnology Letters.1990;12(8):593-596.
    [71].Keju Jing,Zhinan Xu,Ying Liu,Xiaoxia Jiang,Li Peng,Peilin Cen.Efficient production of recombinant aldehyde reductase and its application for asymmetric reduction of ethyl 4-Chloro-3-oxobutanoate to ethyl(R)-4-Chloro-3-hydroxybutanoate preparative.Biochemistry and Biotechnology.2005;35(3):203-215.
    [72].敬科举,徐志南,林建平,岑沛霖.重组人肠杆菌细胞不对称还原4-氯乙酰乙酸乙酯合成(R)-(+)4-氯-3-羟基丁酸乙酯.催化学报.2005;26(11):993-998.
    [73].H.Yamamoto,A.Matsuyama,Y.Kobayashi.Synthesis of ethyl(S)-4-chloro-3-hydroxybutanoate using fabG-homologues.Applied Microbiology and Biotechnology.2003:61(2):133-139.
    [74].Ute Vitinius,Kurt Schaffner,Martin Demuth.New strategies improve the efficiency of the Baker's yeast reduction of ketoesters:near UV irradiation and a two-substrate application.Journal of Photochemistry and Photobiology A:Chemistry.2005;169(2):197-210.
    [75].杨忠华.水相中酵母细胞催化前手性羰基不对称还原合成手性醇的研究,博士学位论文.杭州:浙江大学;2004.
    [76].Masaru Wada,Hiroshi Kawabata,Michihiko Kataoka,Yoshihiko Yasohara,Noriyuki Kizaki,Junzo Hasegawa,Sakayu Shimizu.Purification and characterization of an aldehyde reductase from Candida magnoliae.Journal of Molecular Catalysis B:Enzymatic.1999;6(3):333-339.
    [77].Hideaki Yamada,Sakayu Shimizu,Michihiko Kataoka,Hiromi Sakai,Teruzo Miyoshi.A novel NADPH-dependent aldehyde reductase,catalyzing asymmetric reduction of β-keto acid esters,from Sporobolomyces salmonicolor:purification and characterization.FEMS Microbiology Letters.1990;70(1):45-48.
    [78].Michihiko Kataoka,Hiromi Sakai,Ta-I Morikawa,Masaaki Katoh,Teruzo Miyoshi,Sakayu Shirnizu,Hideaki Yamada.Characterization of aldehyde reductase of Sporobolomyces salmonicolor.Biochimica et Biophysica Acta(BBA)- Protein Structure and Molecular Enzymology.1992;1122(1):57-62.
    [79].K.Kita,K.Matsuzaki,T.Hashimoto,H.Yanase,N.Kato,M.C.-M.Chung,M.Kataoka,S.Shimizu.Cloning of the aldehyde reductase gene from a red yeast,Sporobolornyces salmonicolor,and characterization of the gene and its product.Applied and Environmental Microbiology.1996;62(7):2303-2310.
    [80].Keiko Kita,Koh-Ichi Nakase,Hideshi Yanase,Michihiko Kataoka,Sakayu Shimizub.Purification and characterization of new aldehyde reductases from Sporobolornyces salmonicolor AKU4429.Journal of Molecular Catalysis B:Enzymatic.1999;6(3):305-313.
    [81].S.Shimizu,M.Kataoka,M.Katoh,T.Morikawa,T.Miyoshi,H.Yamada.Stereoselective reduction of ethyl 4-chloro-3-oxobutanoate by a microbial aldehyde reductase in an organic solvent-water diphasic system.Applied and Environmental Microbiology.1990;56(8):2374-2377.
    [82].羊明,徐岩,穆晓清,肖荣.一种新的高立体选择性羰基还原酶的性质及分离.化工进展.2006;25(9):1082—1088.
    [83].Hiroaki Yamamoto,Norihiro Kimoto,Akinobu Matsuyama,Yoshinori Kobayashi.Purification and properties of a carbonyl reductase useful for production of ethyl (S)-4-chloro-3- hydroxybutanoate from Kluyveromyces lactis.Bioscience,Biotechnology,and Biochemistry.2002;66(8):1775-1778.
    [84].羊明,徐岩,穆晓清,肖荣.近平滑假丝酵母NAD(H)依赖型次级醇脱氢酶的分离纯化及酶学性质.应用与环境生物学报.2007;13(1):121-125.
    [85].敬科举.双重组组耦合不对称还原生产(R)-或(S)-4-氯-3-羟基丁酸乙酯的研究 博士学何论文.杭州:浙江大学;2005.
    [86].陈龙节.对呼吸缺陷型酵母的认识.啤酒科技.2005(3).45
    [87].S.Nagai,N.Yanagishima,H.Nagai.Advances in the study of respiration-deficient(RD)mutation in yeast and other microorganisms.Microbiology and Molecular Biology Reviews.1961;25(4):404-426.
    [88].冯友军,黄艳,张会敏,唐昭,马光庭.酒精酵母的紫外诱变呼吸缺陷型突变株的筛选.广西轻工业.2002(5):17-19.
    [89].毛淑红,靳根明,卫增泉,颉红梅,顾盈,马秋峰.呼吸缺陷型啤酒酵母菌株的重离子束辐照诱变筛选及其线粒体的限制性酶切分析.核技术.2005;28(11):847-851.
    [90].毛淑红,靳根明,卫增泉,颉红梅,张红.重离子束诱变呼吸缺陷型酵母菌株的筛选与快速鉴定.同位素.2006;19(1):44-47.
    [91].Sherman Freddie.The heat inactivation and production of cytochrome deficiency in yeast.Experimental Cell Research.1956;11(3):659-660.
    [92].C.R.Hebb,J.D.Montgomery,J.Slebodnik.Particles exhibiting oxidative enzyme activity in yeast.Experimental cell research.1958;14(3):495-509.
    [93].C.C.Lindegren,S.Hino.The effect of anaerobiosis on the origin of respiratory-deficient yeast.Experimental cell research.1957;12(1):163-168.
    [94].毛淑红,靳根明,卫增泉,颉红梅.呼吸缺陷型酵母菌株的离子束辐射敏感性研究.原子核物理评论.2006;23(3):322-325.
    [95].刘立明,陈坚,李华钟,李寅.降低光滑球拟酵母电子传递链活性加速丙酮酸合成.微生物学报.2004;44(6):800-804.
    [96].王瑞明,汤克霞,马美荣,巩桂英,于静.异汉逊酵母呼吸缺陷型产酯代谢规律的探讨.山东轻工业学院学报.1997;11(2):52-55.
    [97].N.Yanagishima.On the variant of yeast,with special reference to its appearance and character.Jour.Inst.Polytech.Osaka City Univ.1956(7):131-146.
    [98].C.C.Lindegren,S.Nagai,H.Nagai.Induction of respiratory deficiency in yeast by manganese,copper,cobalt and nickel.Nature.1958;182:446-448.
    [99].吕艳蓓,王吕禄,陈军.酿酒酵母菌单倍体分离及其呼吸缺陷型的选育.酿酒科技,2005(5):45-47.
    [100].江芝蓉.呼吸缺陷型酵母的分离和筛选.啤酒科技.1997(4):12.
    [101].金建玲,刘巍峰,高东.酿酒酵母呼吸缺陷型和野生型酒精发酵特性的比较分析.微生物学通报 2003;30(5):9—14.
    [102].夏淑兰.现代应用微生物学实验技术.北京:轻工业出版社;1988.
    [103].Maurice Ogur,Ralph St.John.A differential and diagnostic plating method for populationstudies of respiration deficiency in yeast,Journal of Bacteriology.1956;72(4):500-504.
    [104].楼纯菊,白沂涛,焦瑞身.酵母菌小菌落突变株酒精发酵的研究——Ⅰ.菌种的选育及其生理特性.微生物学通报.1984;11(2):58-61.
    [105].楼纯菊,白沂涛,焦瑞身,张欣乔,林兰英,沈克强.酵母小菌落突变株酒精发酵的研究——Ⅱ.sb724菌株发酵条件及产量稳定.微生物学通报.1984;11(3):102-104.
    [106].A.Hutter,S.G.Oliver.Ethanol production using nuclear petite yeast mutants.Applied Microbiology and Biotechnology.1998;45(5):511-516.
    [1].Neeta A.Salvi,Subrata Chattopadhyay.Rhizopus arrhizus mediated asymmetric reduction of alkyl 3-oxobutanoates.Tetrahedron:Asymmetry.2004;15(21):3397-3400.
    [2].杨忠华,姚善泾.水相中酵母细胞催化4-氯乙酰乙酸乙酯不对称还原反应.催化学报.2004;25(6):434-438.
    [3].Ifoeng ChinJoe,Jürgen Haberland,Adrie J.J.Straathof,Jaap A.Jongejan,Andreas Liese,Joseph J.Heijnen.Reduction of ethyl 3-oxobutanoate using non-growing baker's yeast in a continuously operated reactor with cell retention.Enzyme and Microbial Technology.2002;31:665-672.
    [4].陈静,童进,傅宏祥.环氧丙烷羰基化制备β-羟基丁酸甲酯的方法.CN 1401625A,2003.
    [5].W.F.H.Sybesma,A.J.J.Straathof,J.A.Jongejan,J.T.Pronk,J.J.Heijnen.Reductions of 3-oxo esters by baker's yeast:current status.Biocatalysis and Biotransformation.1998;16(2):95-134.
    [6].Kaom Nakamura,Shin-Ichi Kondo,Nobuyoshi Nakajima,Atsuyoshi Ohno.Study for stereochemical control of microbial reduction of α-keto esters in an organic solvent.Tetrahedron.1995;51(3):687-694.
    [7].Ifoeng Chin-Joe,Pieter M.Nelisse,Adrie J.J.Straathof,Jaap A.Jongejan,Jack T.Plonk,Joseph J.Heijnen.Hydrolytic activity in Baker's yeast limits the yield of asymmetric 3-oxo ester reduction.Biotechnology and Bioengineering.2000;69(4):370-376.
    [8].Jinsheng Wang,Tetsuya Araki,Takahira Ogawa,Masayoshi Matsuoka,Hideo Fukuda.A method of graphically analyzing substrate-inhibition kinetics.Biotechnology and Bioengineering 1999;62(4):402-411.
    [9].Robert Lortie,Gérald André.On the use of apparent kinetic parameters for immobilized enzyme with noncompetitive substrate inhibition.Enzyme and Microbial Technology.1991;13(12):960-963.
    [10].Jer-Yiing Houng,Jia-Sheng Liau.Mathematical modeling of asymmetric reduction of ethyl 4-chloro acetoacetate by Baker's yeast.Enzyme and Microbial Technology.2006;38(7):879-886.
    [11].S.Rodriguez,K.T.Schroeder,M.Kayser,J.D.Stewart.Asymmetric synthesis of β-hydroxy esters and -alkyl-hydroxy esters by recombinant Escherichia coli expressing enzymes from Baker's yeast.J.Org.Chem.2000;65(8):2586-2587.
    [1].Buque Evelyn M.,Ifoeng Chin-Joe,Adrie J.J.Straathof,Jaap A.Jongejan,Joseph J.Heijnen.Immobilization affects the rate and enantioselectivity of 3-oxo ester reduction by baker's yeast.Enzyme and Microbial Technology.2002;31:656-664.
    [2].陈静,童进,傅宏祥.环氧丙烷羰基化制备β-羟基丁酸甲酯的方法.CN 1401625A,2003.
    [3].Allan C.Dahl,Morten Fjeldberg,Jorgen φgaard Madsen.Baker's yeast:improving the D-stereoselectivity in reduction of 3-oxo esters.Tetrahedron:Asymmetry.1999;10:551-559.
    [4].Nakamura K.,Higaki M.,Ushio K.,Oka S.,Ohno A.Stereochemical control of microbial reduction.Part 2.Reduction of β-keto esters by immobilized baker's yeast.Tetrahedron Letter.1985;26:4213-4216.
    [5].Martinsen Anita,Ivar Storro,Gudmund Skjark-Br(?)k.Alginate as immobilization material:Ⅲ.Diffusional properties.Biotechnology and Bioengineering.1992;39(2):186-194.
    [6].Wendhausen R.Continuous process for large-scale preparation of chiral alcohols with baker's yeast immobilized on chrysotile fibers.Journal of Molecular Catalysis B-Enzymatic.1998;5(1-4):69-73.
    [7].Gu L.Q.Bioreduction of quinone derivatives by immobilized Baker's yeast in hexane.Chinese Journal of Chemistry.1998;16(1):45-50.
    [8].T.Kanda,N.Miyata,T.Fukui,T.Kawamoto,A.Tanaka.Doubly entrapped baker's yeast survives during the long-term stereoselective reduction of ethyl 3-oxobutanoate in an organic solvent.Applied Microbiology and Biotechnology.1998;49(4):377-381.
    [9].蒋群.有机相微生物活细胞催化羰基还原反应的研究.杭州,浙江大学博士论文;2002.
    [10].J.Klein,B.Kressdorf.Improvement of productivity and efficiency in ethanol production with ca-alginate immobilized zymomonas mobilis Biotechnology Letters.1983;5(8):497-502.
    [11].J.E.Nava Saucedo,J.-N.Barbotin,D.Thomas.Continuous production of gibberellic acid in a fixed-bed reactor by immobilized mycelia of Gibberella fujikuroi in calcium alginate beads.Applied Microbiology and Biotechnology.1989;30(3):226-233.
    [12].K.Bandhyopadhyay,D.Das,P.Bhattacharyya,B.R.Maiti.Reaction engineering studies on biodegradation of phenol by Pseudomonas putida MTCC 1194 immobilized on calcium alginate.Biochemical Engineering Journal.2001;8(3):179-186.
    [13].H.M.S.Milagre,C.D.F.Milagre,P.J.S.Moran,M.H.A.Santana,J.A.R.Rodrigues.Reduction of ethyl benzoylformate mediated by Saccharomyces cerevisiae entrapped in alginate fibers with double gel layers in a continuously operated reactor.Enzyme and Microbial Technology.2005;37(1):121-125.
    [14].D.R.Griffin,J.L.Gainer,G.Carta.Asymmetric ketone reduction with immobilized yeast in hexane:Bioncatalyst deactivation and regeneration.Biotechnol.Prog.2001;17:304-310.
    [15].A.Martinsen,G.Skja-Brak,O.Smidsrod.Alginate as immbilization material:Ⅰ.Correlation between chemical and physical properties of alginate gel beads.Biotechnology and Bioengineering.1989;33:79-89.
    [1].于平.酵母还原乙酰乙酸乙酯制备(S)-3-羟基丁酸乙酯的研究.菌物系统.2003;22(3):430-435.
    [2].于明安,朱晓冰,祁巍,赵领,魏郁梦.CTAB透性化酵母细胞生物催化合成(S)-(+)-3-羟基丁酸乙酯.催化学报.2005;26(7):609-613.
    [3].朱文洲,许建和,俞俊棠.面包酵母催化乙酰乙酸乙酯的不对称还原反应.华东理工大学学报 2000;26(2):154-156.
    [4].Kaoru Nakamum,Shin-Ichi Kondo,Nobuyoshi Nakajima,Atsuyoshi Ohno.Study for stereochemical control of microbial reduction of α-keto esters in an organic solvent.Tetrahedron.1995;51(3):687-694.
    [5].Sonia Rodri' Guez,Margaret M.Kayser,Jon D.Stewart.Highly stereoselective reagents for α-keto ester reductions by genetic engineering of Baker's yeast.Journal of the American Chemical Society.2001;123(8):1547-1555.
    [6].E.Boccu,C.Ebert,L.Gardossi,T.Gianferrara,P.Linda.Chemometric optimization of an asymmetric reduction catalyzed by baker's yeast.Biotechnology and Bioengineering.1990;39(9):928-934.
    [7].何成,许建和,刘幽燕,庄英萍.固定化酵母非水相催化羰基不对称还原反应的研究化学研究与应用.2001;13(6):632-635.
    [8].Yoshinobu Naoshima,Jusei Maeda,Yoshihito Munakata.Control of the enantioselectivity of the bioreduction with immobilized Bakes' yeast in a hexane solvent system.Journal of the Chemical Society:PERKIN TRANSACTIONS 1.1992:659-660.
    [9].Olaf Rotthaus,Doris Krüger,Martin Demuth,Kurt Schaffner.Reductions of keto esters with Baker's yeast in organic solvents - A comparison with the results in water.Tetrahedron.1997;53(3):935-938.
    [10].Jer-Yiing Houng,Jia-Sheng Liau.Applying slow-release biocatalysis to the asymmetric reduction of ethyl 4-chloroacetoacetate.Biotechnology Letters.2003;25:17-21.
    [11].Yasushi Kawai,Shin-Ichi Kondo,Munekazu Tsujimoto,Kaoru Nakamura,Atsuyoshi Ohno.Stereochemical control in microbial reduction.ⅹⅹⅢ.Thermal treatment of Bakers's yeast for controlling the stereoselectivity of reductions.Bulletin of the Chemical Society of Japan.1994;67(8):2244-2247.
    [12].Kaoru Nakamura,Yasushi Kawai,Atsuyoshi Ohno.Stereochemical control in microbial reduction.19.effect of heat-treatment on the diastereoselectivity in the reduction with Baker's yeast.Tetrahedron Letters.1991;32(25):2927-2928.
    [13].杨忠华,姚善泾.有效控制活性酵母细胞催化β-羰基酯不对称还原反应立体选择性的研究.催化学报.2004;25(10):805—808.
    [14].Kaoru Nakamura,Kiyoko Inoue,Kazutoshi Ushio,Shinzaburo Oka,Atsuyoshi Ohno.Effect of allyl alcohol on reduction of β-keto esters by Bakers' yeast.Chemistry Letters.1987(4):679-682.
    [15].Allan C.Dahl Morten Fjeldberg,Jφrgen φgaard Madsen.Baker's yeast:improving the D-stereoselectivity in reduction of 3-oxo esters.Tetrahedron:Asymmetry.1999;10:551-559.
    [16].Jing-Nan Cui,Ryoji Teraoka,Tadashi Ema,Takashi Sakai,Masanori Utaka.Highly regioand enantioselective reduction of 1-chloro-2,4-alkanediones using Baker's yeast:effects of organic solvents as additives.Tetrahedron Letters.1997;38(17):3021-3024.
    [17].何成,许建和,刘幽燕,庄英萍.固定化酵母非水相催化羰基不对称还原反应的研究.化学研究与应用.2001;13(6):632-635.
    [18].Kaoru Nakamura,Kiyoko Inoue,Kazutoshi Ushio,Shinzaburo Oka,Atsuyoshi Ohno.Stereochemical control on yeast reduction of α-keto esters.Reduction by immobilized bakers' yeast in hexane J.Org.Chem.1988;53(11):2589-2593..
    [19].杨忠华.水相中酵母细胞催化前手性羰基不对称还原合成手性醇的研究.博士论文.杭州:浙江大学;2004.
    [1].K.Nakamura,Y.Kawai,S.Oka,A.Ohno.Stereochemical control in microbial reduction.Part 8.Stereochemical control in microbial reduction beta-keto esters.Bull.Chem.Soc.Jpn.1989;62:875-879.
    [2].A.C.Dahl,M.Fjeldberg,J.φ.Madsen.Baker's Yeast:Improving the D-stereoselectivity in reduction of 3-oxo esters.Tetrahedron:Asymmetry.1999;10(3):551-559.
    [3].K.Nakamura,Y.Kawai,A.Ohno.A new method to synthesize(L)-b-hydroxyl esters by the reduction with Bakers' yeast,Tetrahedron Letters.1990;31(2):267-270.
    [4].K.Ushio,J.Hada,Y.Tanaka.Allyl bromide:a powerful inhibitor against R-enzyme activities in Bakers' yeast eeduction of ethyl 3-oxoalkanoates.Enzyme Microb.Technol.1993;15(3):222-228.
    [5].D.H.Dao,M.Okamura,T.Akasaka,Y.Kawai,K.Hida,A.Ohno.Stereochemical control in microbial reduction.Part 31:Reduction of alkyl 2-oxo-4-arylbutyrates by Baker's yeast under selected reaction conditions.Tetrahedron:Asymmetry.1998;9(15):2725-2737.
    [6].杨忠华,姚善泾.有效控制活性酵母细胞催化β-羰基酯不对称还原反应立体选择性的研究.催化学报.2004;25(10):805-808.
    [7].Kaoru Nakamura,Shin-Ichi Kondo,Nobuyoshi Nkajima,Atsuyoshi Ohno.Mechanistic study for stereochemical control of microbial reduction of α-keto esters in an organic solvent.Tetrahedron.1995;51(3):687-694.
    [8].Qun Jiang,Shanjing Yao,Lehe Mei.Tolerance of immobilized Baker's yeast in organic solvents.Enzyme and Microbial Technology.2002;30(6):721-725.
    [9].杨忠华.水相中酵母细胞催化前手性羰基不对称还原合成手性醇的研究博士论文.杭州:浙江大学;2004.
    [10].刘立明,陈坚,李华钟,李寅.降低光滑球拟酵母电子传递链活性加速丙酮酸合成.微生物学报.2004;44(6):800-804.
    [11].廖鲜艳,王蓓,堵国成,李寅,陈坚.金属离子对面包酵母合成ATP的影响机制初探.过程工程学报.2005;5(41:420-424.
    [12].T.E.Barman.Handbook of enzyme.Berlin:Springer Verlang;1985.
    [13].Shieh Woan-Ru,S.Gopalan Aravamudan,J.Sih Charles.Stereochemical control of yeast reductions:characterization of the oxidoreductases involved in the reduction of β-keto esters.Am.Chem.Soc.1985;107:2994-2995.
    [14].K.Nakamura,Y.Kawai,N.Nakajima,A.Ohno.Stereochemical control of microbial reduction:A method for controlling the enantioselectivity of reductions with Bakers' yeast J.Org.Chem.1991;56(15):4778-4783.
    [15].Vitinius Ute,Schaffner Kurt,Demuth Martin.New strategies improve the efficiency of the baker's yeast reduction of ketoesters:near UV irradiation and a two-substrate application.Journal of photochemistry and photobiology A:Chemistry 2005;169(2):197-210.
    [16].杨忠华,姚善泾.水相中酵母细胞催化4-氯乙酰乙酸乙酯不对称还原反应.催化学报.2004;25(6):434—438.
    [17].Paolo Davoli,Arrgo Fomi,Irene Moretti,Fabio Prati,Giovanni Torre.(R)-(+)and(S)-(-)ethyl 4,4,4-trifluoro-3-hydroxy butanoate by enantioselective Baker's yeast reduction.Enzyme and Microbial Technology.1999;25(1-2):149-152.
    [1].J.Sikkema,F.J.Weber,H.J.Heipieper,Jam De Bont.Cellular toxicity flipophilic compounds:mechanisms,implications,and adaptations.Biocatalysis.1994;10:113-122.
    [2].K.Nakamura,R.Yamanaka,T.Matsuda,T.Harada.Recent developments in asymmetric reduction of ketones with biocatalysts.Tetrahedron:Asymmetry.2003;14:2659-2681.
    [3].Q.Jiang,S.J.Yao,L.H.Mei.Tolerance of immobilized baker's yeast in organic solvents.Enzyme and Microbial Technology.2002;30(6):721-725.
    [4].E.M.Buque,I.Chin-Joe,A.J.J.Straathof,J.A.Jongejan,J.J.Heijnen.Immobilization affects the rate and enantioselectivity of 3-oxo ester reduction by baker's yeast.Enzyme and Microbial Technology.2002;31(5):656-664.
    [5].H.Yamamoto,A.Matsuyama,Y.Kobayashi,Synthesis of Ethyl(R)-4-Chloro-3-hydroxyl- butanoate with Recolnbinant Escherichia coli Cells Expressing(S)-Specific Secondary Alcohol Dehydrogenase.Bioscience,Biotechnology,and Biochemistry.2002;66(2):481-483.
    [6].R.Aono,M.Ito,A.Inoue,K.Horikoshi.Isolation of novel toluene-tolerant strain of Pseudomonas aeruginosa Bioscience,Biotechnology,and Biochemistry.1992;56(1):145-146.
    [7].D.L.Cruden,J.H.Wolfram,R.D.Rogers,D.T.Gibson.Physiological properties of a Pseudomonas strain which grows with p-xylene in a two-phase(organic-aqueous)medium Applied and Environmental Microbiology.1992;58(9):2723-2729.
    [8].H.Nakajima,H.Kobayashi,R.Aono,K.Horikoshi.Effective isolation and identification of toluene-tolerant Pseudomonas strains Bioscience,Biotechnology,and Biochemistry.1992;56(11):1872-1873.
    [9].T.Kawamoto,T.Kanda,A.Tanaka.Preparation of an organic solvent-tolerant strain from Baker's yeast.Applied Microbiology and Biotechnology.2001;55:476-479.
    [10].J.Madec,X.Pfister,P.Phansavath,V.Ratovelomanana-Vidal,J.-E Geneat.Asymmetric hydrogenation reactions using a practical in situ generation of chiral ruthenium diphosphine catalysts from anhydrous RuCl_3.Tetrahedron.2001;57(13):2563-2568.
    [11].S.Servi.Baker's Yeast as a Reagent in Organic Synthesis.Synthesis.1990(1):1-25.
    [12].T.Fukumaki,A.Inoue,K.Moriya,K.Horikoshi.Isolation of a marine yeast that degrades hydrocarbon in the presence of organic solvent.Biosci Biotechnol Biochem.1994;58:1784-1788.
    [13].H.Keweloh,R.Diefenbach,H-J Rehm.Increase of phenol tolerance of Escheriehia coli by alterations of the fatty acid composition of the membrane lipids archives of microbiology.1991;157(1):49-53.
    [14].Chin-Joe Ifoeng,Pieter M.Nelisse,Adrie J.J.Straathof,Jaap A.Jongejan,Jack T.Pronk,Joseph J.Heijnen.Hydrolytic activity in Baker's yeast Limits the yield of asymmetric 3-oxo ester reduction Biotechnology and Bioengineering.2000;69(4):370-376.
    [15].K.Nakamura,Y.Kawai,N.Nakajima,A.Ohno.Stereochemical control of microbial reduction.17.A method for controlling theenantioselectivity of reductions with Bakers'yeast.Journal of Organic Chemistry.1991;56(15):4778-4783.
    [16].Zhong-Hua Yang,Shan-Jing Yao,Dong-Qiang Lin.Improving the stereoselectivity of asymmetric reduction of 3-oxo ester to 3-hydroxy ester with pretreatments on Bakers'yeast.Industrial and Engineering Chemistry Research.2004;43:4871-4875.
    [17].杨忠华,姚善泾.有效控制活性酵母细胞催化β-羰基酯不对称还原反应立体选择性的研究.催化学报.2004;25(10):805-808.
    [1].S.Nagai,N.Yanagishima,H.Nagai.Advances in;the study of respiration-deficient(RD)mutation in yeast and other microorganisms.Microbiology and Molecular Biology Reviews.1961;25(4):404-426.
    [2].金建玲,刘巍峰,高东.酿酒酵母呼吸缺陷型和野生型酒精发酵特性的比较分析.微生物学通报.2003;30(5):9-14.
    [3].Lynnette R.Fergusona,R.C.Von Borstel.Induction of the cytoplasmic 'petite' mutation by chemical and physical agents in Saccharomyces cerevisiae Mutation Resesrch.Fundamental and Molecular Mechanisms of Mutagenesis.1992;265(1):103-148.
    [4].陈龙节.对呼吸缺陷型酵母的认识.啤酒科技.2005(3).45
    [5].Norio Gunge,Takashi Sugimura,Michiko Iwasald.Genetic analysis of a respiration-deficient mutant of Saccharomyces cerevisiae lacking all cytochromes and accumulating coproporphyrin.Genetics.1967;57:213-226.
    [6].夏淑兰.现代应用微生物学实验技术.北京:轻工业出版社;1988.
    [7].胡子斌.TTC-脱氢酶活性常温萃取测定法及应用.工业水处理.2001;21(10):29-31.
    [8].杨忠华.水相中酵母细胞催化前手性羰基不对称还原合成手性醇的研究 博士论文.杭州:浙江大学;2004.
    [9].Qun Jiang,Shanjing Yao,Lehe Mei.Tolerance of immobilized Baker's yeast in organic solvents.Enzyme and Microbial Technology.2002;30(6):721-725.
    [10].沈同,王镜岩.生物化学.第二版北京:高等教育出版社;1991.
    [11].C.J.Bulder.Induction of petite mutation and inhibition of synthesis of respiratory enzymes in various yeasts.Antonie van Leeuwenhoek.1964;30(1):1-9.
    [12].Liming Liu,Yin Li,Guocheng Du,Jian Chen.Redirection of the NADH oxidation pathway in Torulopsis glabrata leads to an enhanced pyruvate production.Applied Microbiology and Biotechnology.2006;72(2):377-385.
    [13].Dijken Johannes P.Van,W.Alexander Scheffers.Redox balances in the metabolism of sugars by yeasts.FEMS Microbiology Letters.1986;32(3-4):199-224.
    [14].Hans Boumans,Leslie A.Grivell,Jan A.Berden.The respiratory chain in yeast behaves as a single functional unit.The journal of biological chemistry.1998;273(9):4872-4877.
    [15].Barbara M.Bakker,Christoffer Bro,Peter K6tter,Marijke A.H.Luttik,Johannes P.Van Dijken,Jack T.Pronk.The mitochondrial alcohol dehydrogenase Adh3p is involved in a Rredox shuttle in Saccharomyces cerevisiae.Journal of Bacteriology.2000;182(17):4730-4737.
    [16].Karin M.Overkamp,Barbara M.Bakker,Peter Kotter,Arjen Van Tuijl,Simon De Vries,Johannes P.Van Dijken,Jack T.Pronk.In vivo analysis of the mechanisms for oxidation of cytosolic NADH by Saccharomyces cerevisiae mitochondria.Journal of Bacteriology.2000;182(10):2823-2830.
    [17].刘立明,陈坚,李华钟,李寅.降低光滑球拟酵母电子传递链活性加速丙酮酸合成.微生物学报.2004;44(6):800-804.
    [18].Andrew R.Barber,Marcus Henningsson,Neville B.Pamment.Acceleration of high gravity yeast fermentations by acetaldehyde addition.Biotechnology Letters.2002;24(11):891-895.
    [19].G.A.Stanley,T.J.Hobley,N.B.Pamment.Effect of acetaldehyde on Saccharomyces cerevisiae and Zymomonas mobilis subjected to environmental shocks.Biotechnology and Bioengineering.1997;53(1):71-78.
    [20].G.A.Stanley,N.G.Douglas,E.J.Every,T.Tzanatos,N.B.Pamment.Inhibition and stimulation of yeast growth by acetaldehyde Biotechnology Letters 1993;15(12):1199-1204.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700