质谱分析法在“先兆子痫”研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胎盘是母体与胎儿之间的重要器官,具有物质交换、新陈代谢及屏障作用等重要生物功能,胎盘功能异常会导致先兆子痫等妊娠疾病的产生。许多与胎盘功能有关的生理生化过程都是由胎盘中构成复杂网络的各种蛋白相互协调完成。因此,深入研究胎盘相关蛋白、蛋白间相互作用以及蛋白在不同生理病理条件下的差异表达以及翻译后修饰研究,有助于进一步了解胎盘的结构与功能,寻找疾病标志物、药物靶标,疾病的早期诊断、治疗、预后判断、早期预防等方面具有重要临床意义。
     本研究通过BN/SDS-PAGE结合LC-MS/MS研究胎盘蛋白及蛋白质复合物,共鉴定了733个非冗余蛋白以及34个蛋白复合物,其中1个为新的未发现有相互作用的复合物。通过生物信息学分析以及结合文献报道的数据,发现这些已知的复合物主要是线粒体呼吸链复合物、整合素复合物、蛋白酶体复合物以及热休克蛋白复合物等。发现的新复合物为clathrin和small conductance calcium-activated potassium (SK) channel protein2。这两个蛋白的相互作用进一步通过antibody based gel shift assay、免疫共沉淀以及免疫荧光进行了验证。这些结果表明BN/SDS-PAGE结合LC-MS/MS是一种很好的分析胎盘蛋白质复合物的方法。
     胎盘蛋白的磷酸化是目前胎盘蛋白质组学研究热点之一。从复杂样本中有效富集磷酸化蛋白以及磷酸化肽段是具有挑战性的工作。本研究合成了一系列形态可控、成分可调的钛掺杂介孔硅材料来有效的富集磷酸化肽段以及磷酸化蛋白。通过改变前体中钛/硅摩尔比来调节钛掺杂介孔硅材料的表面积、直径以及形状等,利用这一系列的材料来富集酶解后的标准磷酸化蛋白。研究结果表明,当钛/硅摩尔比为8:1时,该材料富集磷酸化肽段的效果最好,β-酪蛋白的检测极限能达到1Ofmol, a-酪蛋白有15个磷酸化肽段被检测到,优于商业化的二氧化钛珠子。我们将该材料用于胎盘线粒体磷酸化蛋白的富集,共鉴定了396个磷酸化肽段以及298个磷酸化蛋白,结果表明该材料能用于复杂样本的磷酸化肽段富集。此外,本研究还提供了一种合成成分可调的磷酸化肽段富集材料的方法。
     由于先兆子痫是一种与胎盘功能发生异常有关的重要妊娠疾病,本研究通过基于质谱的二甲基标记定量蛋白质组学方法对正常孕妇以及先兆子痫孕妇胎盘蛋白质组进行了分析。鉴定出2636种蛋白,其中171种蛋白在先兆子痫胎盘中有差异表达。通过对差异蛋白生物信息学分析,发现这些蛋白主要参与习惯性流产、颅内HADHA高血压、胎儿生长缓慢、胎儿死亡、妊娠期高血压以及治病流产等信号通路。同时随机挑选五种差异蛋白进行免疫印迹以及免疫组化实验,对这些蛋白的表达情况进行验证,结果表明质谱鉴定结果与免疫学结果一致。综上所述,通过比较蛋白质组分析正常妊娠和先兆子痫的胎盘,确定了一些可能参与胎盘病理变化的重要蛋白,对这些蛋白质进行进一步的功能分析有助于了解先兆子痫胎盘以及与胎盘有关的疾病发生、发展和转型的关键生物学过程。
     在上述研究基础上,本论文对先兆子痫胎盘质膜糖基化和磷酸化蛋白质组学进行了研究。通过二甲基标记结合糖基化和磷酸化肽段的富集方法,研究了先兆子痫胎盘质膜中的糖基化以及磷酸化蛋白表达谱,通过严格的数据筛选,共鉴定了1027条N-糖基化以及2094条磷酸化肽。7个糖基化肽段以及42个磷酸化肽段具有差异表达。这些差异蛋白进行分析表明这些蛋白参与胎儿死亡以及原发性高血压信号通路。通过分析正常以及先兆子痫妊娠的人胎盘质膜蛋白质组,我们构建了胎盘蛋白质相互作用图谱、先兆子痫胎盘蛋白质表达谱以及N-糖基化和磷酸化的蛋白质表达谱,鉴定了在先兆子痫发生过程中的关键蛋白,建立了磷酸化蛋白富集的新方法,这些研究为深入了解先兆子痫胎盘和胎盘相关的疾病提供了基础。
The placenta plays a pivotal role of promoting the exchange of nutrients and waste products between the maternal and fetal circulatory systems. In addition, it is a natural barrier against numerous bacterial and viral infections during pregnancy. Maternal preeclampsia (PE) and fetal intrauterine growth restriction(IUGR) are two of the most common and serious complications of human pregnancy associated with placental abnormalities. Identification and characterization of placental multi-protein complexes is an important step to integratedly understand the protein-protein interaction networks in placenta which determine placental function. Therefore, elucidation of the placental protein interaction, the expression levels as well as post-translational modifications in various physiological and pathological conditions would provide researchers with a better understanding of the structure and function of the placenta
     In this study, blue native/sodium dodecyl sulfate polyacrylamide gel electrophoresis (BN/SDS-PAGE) and Liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to screen the multi-protein complexes in placenta.733unique proteins and34known and novel heterooligomeric multi-protein complexes including mitochondrial respiratory chain complexes, integrin complexes, proteasome complexes, histone complex, and heat shock protein complexes were identified. A novel protein complex, which involves clathrin and small conductance calcium-activated potassium (SK) channel protein2, was identified and validated by antibody based gel shift assay, co-immunoprecipitation and immunouorescence staining. These results suggest that BN/SDS-PAGE, when integrated with LC-MS/MS, is a very powerful and versatile tool for the investigation of placental protein complexes.
     Extraction of phosphopeptides from rather complex biological samples has been a tough issue for deep and comprehensive investigation into phosphoproteomes. In this paper, we present a series of Ti-doped mesoporous silica (Ti-MPS) materials with tunable composition and controllable morphology for highly efficient enrichment of phosphopeptides. By altering the molar ratio of silicon to titanium (Si/Ti) in the precursor, the external morphology, Ti content,internal long-rang order, and surface area of Ti-MPS were all modulated accordingly with certain regularity. Tryptic digests of standard phosphoprotein α-and β-casein were employed to assess the phosphopeptide enrichment capability of Ti-MPS series. At the Si/Ti molar ratio of8:1, the optimum enrichment performance with admirable sensitivity and capacity was achieved. The detection limit for β-casein could reach10frnol, and15phosphopeptides from the digest of α-casein were resolved in the spectrum after enrichment, both superior to the behavior of commercial TiO2materials. More significantly, for the digest of human placenta mitochondria,396phosphopeptides and298phosphoproteins were definitely detected and identified after enrichment with optimized Ti-MPS material, demonstrating its remarkable applicability for untouched phosphoproteomes.In addition, this research also opened up a universal pathway to construct a composition-tunable functional material in pursuit of the maximum performance in applications.
     Preeclampsia is a specific disorder known to promote maternal or perinatal mortality and morbidity during pregnancy. A large amount of evidences suggest that preeclampsia could be associated with placenta, although its etiology and pathogenesis have not been extensively investigated. To better understand the molecular mechanisms involved in pathological development of placenta in preeclampsia, LC-MS/MS technologies were used to construct a large-scale comparative proteome profile of human placentas in normal and preeclamptic pregnancies. A total of2636proteins were detected in human placentas, and171different proteins were definitively identified between control and preeclamptic placentas. Further bio informatics analysis indicated that these differentially expressed proteins correlate with several specific cellular processes which occur during pathological changes of preeclamptic placenta. Several proteins were randomly selected to verify their expression patterns with Western blotting, and their cellular localizations with immunohistochemistry. Elucidation of how the changes of protein expression coordinate pathological development would provide researchers with a better understanding of these critical biological processes at an early stage of preeclamptic development, and potential therapeutic molecular targets to regulate placenta function and treat preeclampsia.
     To better understand the molecular mechanisms involved in pathological development of placenta in preeclampsia, high-resolution LC-MS/MS technologies were used to construct a comparative N-glycoproteomic and phosphoproteomic profiling of human placental plasma membrane in normal and preeclamptic pregnancies. A total of1027N-glyco-and2094phospho-sites were detected in human placental plasma membrane, and5N-glyco-and38phospho-proteins, respectively, with differentially expression were definitively identified between control and preeclamptic placental plasma membrane. Further bio informatics analysis indicated that these differentially expressed proteins correlate with several specific cellular processes which occur during pathological changes of preeclamptic placenta. Further bio informatics analysis indicated that these differentially expressed proteins correlate with several specific cellular processes which occur during pathological changes of preeclamptic placental plasma membrane.
     In summary, through proteome analysis of human placenta protein complexes and proteome from normal and preeclamptic pregnancies, we constructed the protein complexes profile, the differentially expressed protein profile and the N-glyco-and phospho-protein expression profile, and identified a number of factors potentially involved in the pathological changes of placental Further functional analyses of these proteins will be conducive to understanding the critical biological processes in placenta of PE and placental related diseases which are caused by disruption of placenta development and transition
引文
[1]A.L. Hopkins and C.R Groom 2002. The druggable genome[J]. Nat Rev Drug Discov,1 (9), 727-30.
    [2]M.R Wilkins, J.C. Sanchez, A.A. Gooley, et al.1996. Progress with proteome projects:why all proteins expressed by a genome should be identified and how to do it[J]. Biotechnol Genet Eng Rev,13,19-50.
    [3]J.R Yates,3rd, A. Gilchrist, K.E. Howell, et al.2005. Proteomics of organelles and large cellular structures[J]. Nat Rev Mol Cell Biol,6 (9),702-14.
    [4]R. Aebersold and M. Mann.2003. Mass spectrometry-based proteomics [J]. Nature,422 (6928), 198-207.
    [5]S. Lund, S. Orlowski, B. de Foresta, et al.1989. Detergent structure and associated lipid as determinants in the stabilization of solubilized Ca2+-ATPase from sarcoplasmic reticulum[J]. J Biol Chem,264 (9),4907-15.
    [6]S.M. Hanash.2000. Biomedical applications of two-dimensional electrophoresis using immobilized pH gradients:current status[J]. Electrophoresis,21 (6),1202-9.
    [7]R.J. Braun, N. Kinkl, M. Beer, et al.2007. Two-dimensional electrophoresis of membrane proteins [J]. Anal Bioanal Chem,389 (4),1033-45.
    [8]I. Rais, M. Karas, and H. Schagger.2004. Two-dimensional electrophoresis for the isolation of integral membrane proteins and mass spectrometric identification[J]. Proteomics,4 (9), 2567-71.
    [9]J. Moebius, R.P. Zahedi, U. Lewandrowski, et al.2005. The human platelet membrane proteome reveals several new potential membrane proteins[J]. Mol Cell Proteomics,4 (11),1754-61.
    [10]R.L. Gundry, M.Y. White, C.I. Murray, et al.2009. Preparation of proteins and peptides for mass spectrometry analysis in a bottom-up proteomics workflow[J]. Curr Protoc Mol Biol, Chapter 10, Unit10 25.
    [11]J.K. Eng, B. Fischer, J. Grossmann, et al.2008. A fast SEQUEST cross correlation algorithm[J]. J Proteome Res,7 (10),4598-602.
    [12]GP. Mommen, H.D. Meiring, A.J. Heck, et al. 2013. Mixed-bed ion exchange chromatography employing a salt-free pH gradient for improved sensitivity and compatibility in MudPIT[J]. Anal Chem
    [13]C.M. Delahunty and J.R. Yates,3rd.2007. MudPIT:multidimensional protein identification technology[J].Biotechniques,43 (5),563,565,567 passim
    [14]J. Ma, W. Li, Y. Lv, et al.2013. A new insight into the impact of different proteases on SILAC quantitative proteome of the mouse liver[J]. Proteomics.
    [15]W. Yu, J. Liu, C. Colangelo, et al.2007. A new protocol of analyzing isotope-coded affinity tag data from high-resolution LC-MS spectrometry[J]. Comput Biol Chem,31 (3),215-21.
    [16]D. Fisher, L. Krasinska, D. Coudreuse, et al. 2012. Phosphorylation network dynamics in the control of cell cycle transitions [J]. J Cell Sci,125 (Pt 20),4703-11.
    [17]X. Yin, M. Bern, Q. Xing, et al.2013. Glycoproteomic analysis of the secretome of human endothelial cells [J]. Mol Cell Proteomics,12(4),956-78.
    [18]C.R. Crepaldi, P.A. Vitale, A.C. Tesch, et al.2013. Application of 2D BN/SDS-PAGE coupled with mass spectrometry for identification of VDAC-associated protein complexes related to mitochondrial binding sites for type I brain hexokinase[J]. Mitochondrion.
    [19]A. Droit, GG Poirier, and J.M. Hunter.2005. Experimental and bioinformatic approaches for interrogating protein-protein interactions to determine protein function[J]. J Mol Endocrinol, 34 (2),263-80.
    [20]J. Stanek.2013. Hypoxic patterns of placental injury:a review[J]. Arch Pathol Lab Med,137 (5), 706-20.
    [21]H.J. Lee, S.K. Jeong, K. Na, et al.2013. Comprehensive genome-wide proteomic analysis of human placental tissue for the chromosome-centric human proteome project[J]. J Proteome Res,12 (6),2458-66.
    [22]D. Mushahary, P. Gautam, C.S. Sundaram, et al.2013. Expanded protein expression profile of human placenta using two-dimensional gelelectrophoresis[J]. Placenta,34 (2),193-6.
    [23]C.E. Powe, R.J. Levine, and S.A. Karumanchi.2011. Preeclampsia, a disease of the maternal endothelium the role of antiangiogenic factors and implications for later cardiovascular disease[J]. Circulation,123 (24),2856-69.
    [24]R. Hu, H. Jin, S. Zhou, et al.2007. Proteomic analysis of hypoxia-induced responses in the syncytialization of human placental cell line BeWo[J]. Placenta,28 (5-6),399-407.
    [25]A. Konieczny, M. Ryba, J. Wartacz, et al.2013. Podocytes in urine, a novel biomarker of preeclampsia?[J]. Adv Clin Exp Med,22 (2),145-9.
    [26]C.J. Sun, L.Y. Yan, W. Wang, et al.2011. Proteomic analysis of the alteration of protein expression in the placenta of Down syndrome[J]. Chin Med J (Engl),124 (22),3738-45.
    [27]H.Vorum, M. Ostergaard, P. Hensechke, et al.2004. Proteomic analysis of hyperoxia-induced responses in the human choriocarcinoma cell line JEG-3[J]. Proteomics,4 (3),861-7.
    [28]A. Chang, Z. Zhang, L. Zhang, et al.2013. Proteomic analysis of preterm premature rupture of membranes in placental tissue[J]. Arch Gynecol Obstet.
    [29]Q. Luo, Y. Jiang, M. Jin, et al.2013. Proteomic Analysis on the Alteration of Protein Expression in the Early-Stage Placental Villous Tissue of Electromagnetic Fields Associated With Cell Phone Exposure[J]. Reprod Sci.
    [30]D.D.Vandre, W.E.t. Ackerman, A. Tewari, et al.2012. A placental sub-proteome:the apical plasma membrane of the syncytiotrophoblast[J]. Placenta,33 (3),207-13.
    [31]E.D. Johnstone, G Sawicki, L. Guilbert, et al.2011. Differential proteomic analysis of highly purified placental cytotrophoblasts in pre-eclampsia demonstrates a state of increased oxidative stress and reduced cytotrophoblast antioxidant defense[J]. Proteomics,11 (20), 4077-84.
    [32]Q. Zhang, T. Schulenborg, T. Tan, et al.2010. Proteome analysis of a plasma membrane-enriched fraction at the placental feto-maternal barrier[J]. Proteomics Clin Appl,4 (5),538-49.
    [33]A.D. Garnica and W.Y. Chan.1996. The role of the placenta in fetal nutrition and growth[J]. J Am Coll Nutr,15 (3),206-22.
    [34]J.M. Robinson, W.E.t. Ackerman, D.A. Kniss, et al.2008. Proteomics of the human placenta: promises and realities [J]. Placenta,29 (2),135-43.
    [35]H. Eubel, H.P. Braun, and A.H. Millar.2005. Blue-native PAGE in plants:a tool in analysis of protein-protein interactions [J]. Plant Methods,1 (1),11.
    [36]T. Ito, K. Tashiro, S. Muta, et al. 2000. Toward a protein-protein interaction map of the budding yeast:A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins [J]. Proc Natl Acad Sci U S A,97 (3),1143-7.
    [37]H. Schagger and G von Jagow.1991. Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form[J]. Anal Biochem,199 (2),223-31.
    [38]I.Wittig, H.P. Braun, and H. Schagger.2006. Blue native PAGE[J]. Nat Protoc,1 (1),418-28.
    [39]V. Reisinger and L.A. Eichacker.2007. How to analyze protein complexes by 2D blue native SDS-PAGE[J]. Proteomics,7 Suppl 1,6-16.
    [40]J.Van Blerkom.2009. Mitochondria in early mammalian development[J]. Semin Cell Dev Biol, 20 (3),354-64.
    [41]A. Lemarie and S. Grimm.2011. Mitochondrial respiratory chain complexes:apoptosis sensors mutated in cancer?[J]. Oncogene,30 (38),3985-4003.
    [42]R.O. Hynes.2002. Integrins:bidirectional, allosteric signaling machines[J]. Cell,110 (6), 673-87.
    [43]C.H. Damsky, C. Librach, K.H. Lim, et al.1994. Integrin switching regulates normal trophoblast invasion[J]. Development,120 (12),3657-66.
    [44]W. Carver, I. Molano, T.A. Reaves, et al.1995. Role of the alpha 1 beta 1 integrin complex in collagen gel contraction in vitro by fibroblasts[J]. J Cell Physio 1,165 (2),425-37.
    [45]S. Lipkowitz.2003. The role of the ubiquitination-proteasome pathway in breast cancer: ubiquitin mediated degradation of growth factor receptors in the pathogenesis and treatment of cancer[J]. Breast Cancer Res,5 (1),8-15.
    [46]H.X. Wang, H.M. Wang, H.Y. Lin, et al.2006. Proteasome subunit LMP2 is required for matrix metalloproteinase-2 and-9 expression and activities in human invasive extravillous trophoblast cell line[J]. J Cell Physiol,206 (3),616-23.
    [47]H.P. Schmitt.2006. Protein ubiquitination, degradation and the proteasome in neuro-degenerative disorders:no clear evidence for a significant pathogenetic role of proteasome failure in Alzheimer disease and related disorders [J].Med Hypotheses,67 (2),311-7.
    [48]S. Feikova, L. Wolff, and J. Bies.2000. Constitutive ubiquitination and degradation of c-myb by the 26S proteasome during proliferation and differentiation of myeloid cells[J]. Neoplasma, 47 (4),212-8.
    [49]P.N. Lewis.1976. Histone-histone interactions. I. An electrophoretic study [J]. Can J Biochem,54 (7),641-9.
    [50]A.N. Abell, N.V Jordan, W. Huang, et al.2011. MAP3K4/CBP-regulated H2B acetylation controls epithelial-mesenchymal transition in trophoblast stem cells [J]. Cell Stem Cell,8 (5), 525-37.
    [51]P. Ekambaram.2011. HSP70 expression and its role in preeclamptic stress[J]. Indian J Biochem Biophys,48 (4),243-55.
    [52]E.A. Craig, B.D. Gambill, and R.J. Nelson.1993. Heat shock proteins:molecular chaperones of protein biogenesis [J]. Microbiol Rev,57 (2),402-14.
    [53]B.J. Soltys and R.S. Gupta.1996. Immunoelectron microscopic localization of the 60-kDa heat shockchaperonin protein (Hsp60) in mammalian cells[J]. Exp Cell Res,222 (1),16-27.
    [54]K. Liu, L. Qian, J. Wang, et al. 2009. Two-dimensional blue native/SDS-PAGE analysis reveals heat shock protein chaperone machinery involved in hepatitis B virus production in HepG2.2.15 cells [J]. Mol Cell Proteomics,8 (3),495-505.
    [55]V. Gerke and S.E. Moss.2002. Annexins:from structure to function[J]. Physiol Rev,82 (2), 331-71.
    [56]H. Ueki, T. Mizushina, T. Laoharatchatathanin, et al.2012. Loss of maternal annexin a5 increases the likelihood of placental platelet thrombosis and foetal loss[J]. Sci Rep,2,827.
    [57]E.J. Smart, R.A. De Rose, and S.A. Farber.2004. Annexin 2-caveolin 1 complex is a target of ezetimibe and regulates intestinal cholesterol transport[J]. Proc Natl Acad Sci U S A,101 (10),3450-5.
    [58]M.J. Hayes, U. Rescher, V Gerke, et al.2004. Annexin-actin interactions[J]. Traffic,5 (8),571-6.
    [59]W.W. Streicher, M.M. Lopez, and GI. Makhatadze.2009. Annexin I and annexin II N-terminal peptides binding to S100 protein family members:specificity and thermodynamic characterization[J]. Biochemistry,48 (12),2788-98.
    [60]J. Lafond and L. Simoneau.2006. Calcium homeostasis in human placenta:role of calcium-handling proteins [J]. Int RevCytol,250,109-74.
    [61]R. Marin, G Riquelme, V. Godoy, et al.2008. Functional and structural demonstration of the presence of Ca-ATPase (PMCA) in both microvillous and basal plasma membranes from syncytiotrophoblastofhuman term placenta[J]. Placenta,29 (8),671-9.
    [62]E.J. Chenette.2012. Visualizing clathrin-mediated endocytosis[J].Nat Cell Biol,14 (6),566.
    [63]H. Zhang, A.Kim, N.Abraham, et al.2012. Clathrin and AP-1 regulate apical polarity and lumen formation during C. elegans tubulogenesis [J]. Development,139 (11),2071-83.
    [64]P. Pedarzani and M. Stocker.2008. Molecular and cellular basis of small-and intermediate-conductance, calcium-activated potassium channel function in the brain[J]. Cell Mol Life Sci,65 (20),3196-217.
    [65]T. Hunter.2000. Signaling-2000 and beyond[J]. Cell,100(1),113-27.
    [66]J.V Olsen, B. Blagoev, F. Gnad, et al.2006. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks [J]. Cell,127 (3),635-48.
    [67]P.Cohen.2002. The origins of protein phosphorylation[J]. Nat Cell Biol,4 (5), E127-30.
    [68]J. Layland, R.J. Solaro, and A.M. Shah.2005. Regulation of cardiac contractile function by troponin I phosphorylation[J]. Cardiovasc Res,66 (1),12-21.
    [69]S.B. Ficarro, M.L. McCleland, P.T. Stukenberg, et al.2002. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae[J]. Nat Biotechnol,20 (3), 301-5.
    [70]M. Mann, S.E. Ong, M. Gronborg, et al.2002. Analysis of protein phosphorylation using mass spectrometry:deciphering the phosphoproteome[J]. Trends Biotechnol,20 (6),261-8.
    [71]M.J. Chalmers, W. Kolch, M.R. Emmett, et al.2004. Identification and analysis of phosphopeptides[J].J Chromatogr B Analyt Technol Biomed Life Sci,803 (1),111-20.
    [72]Y Oda, T. Nagasu, and B.T. Chait.2001. Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome[J]. Nat Biotechnol,19(4),379-82.
    [73]A. Stensballe, S. Andersen, and O.N. Jensen.2001. Characterization of phosphoproteins from electrophoretic gels by nanoscale Fe(Ⅲ) affinity chromatography with off-line mass spectrometry analysis [J]. Proteomics,1 (2),207-22.
    [74]M.C. Posewitz and P. Tempst.1999. Immobilized gallium(Ⅲ) affinity chromatography of phosphopeptides[J].AnalChem,71 (14),2883-92.
    [75]H. Zhou, M. Ye, J. Dong, et al.2008. Specific phosphopeptide enrichment with immobilized titanium ion affinity chromatography adsorbent for phosphoproteome analysis[J]. J Proteome Res,7 (9),3957-67.
    [76]S. Feng, M. Ye, H. Zhou, et al 2007. Immobilized zirconium ion affinity chromatography for specific enrichment of phosphopeptides in phosphoproteome analysis[J]. Mol Cell Proteomics,6 (9),1656-65.
    [77]M.R. Larsen, T.E. Thingholm, O.N. Jensen, et al.2005. Highly selective enrichmsnt of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns[J]. Mol Cell Proteomics,4 (7),873-86.
    [78]H.K. Kweon and K. Hakansson.2006. Selective zirconium dioxide-based enrichment of phosphorylated peptides formass spectrometric analysis[J]. Anal Chem,78 (6),1743-9.
    [79]S.B. Ficarro, J.R. Parikh, N.C. Blank, et al.2008. Niobium(V) oxide (Nb2O5):application to phosphoproteomics [J]. Anal Chem,80 (12),4606-13.
    [80]W.F. Ma, Y. Zhang, L.L. Li, et al.2012. Tailor-made magnetic Fe3O4@mTiO2 microspheres with a tunable mesoporous anatase shell for highly selective and effective enrichment of phosphopeptides[J].ACS Nano,6(4),3179-88.
    [81]Y. Li, T. Leng, H. Lin, et al.2007. Preparation of Fe3O4@ZrO2 core-shell microspheres as affinity probes for selective enrichment and direct determination of phosphopeptides using matrix-assisted laser desorption ionization mass spectrometry[J]. J Proteome Res,6 (11), 4498-510.
    [82]G Cheng, J.L. Zhang, YL. Liu, et al.2011. Synthesis of novel Fe3O4@SiO2@CeO2 microspheres with mesoporous shell for phosphopeptide capturing and labeling[J]. Chem Commun (Camb),47 (20),5732-4.
    [83]C.A. Nelson, J.R Szczech, C.J. Dooley, et al.2010. Effective enrichment and mass spectrometry analysis of phosphopeptides using mesoporous metal oxide nanomaterials[J]. Anal Chem,82 (17),7193-201.
    [84]L. Hu, M. Ye, and H. Zou.2009. Recent advances in mass spectrometry-based peptidome analysis[J]. Expert Rev Proteomics,6 (4),433-47.
    [85]G Han, M. Ye, H. Zhou, et al.2008. Large-scale phosphoproteome analysis of human liver tissue by enrichment and fractionation of phosphopeptides with strong anion exchange chromatography[J]. Proteomics,8 (7),1346-61.
    [86]L. Zhang, Z. Liang, K. Yang, et al.2012. Mesoporous TiO2 aerogel for selective enrichment of phosphopeptides in rat liver mitochondria[J]. Anal Chim Acta,729,26-35.
    [87]A.N. Kettenbach and S.A. Gerber.2011. Rapid and reproducible single-stage phosphopeptide enrichment of complex peptide mixtures:application to general and phosphotyrosine-specific phosphoproteomics experiments[J]. Anal Chem,83 (20),7635-44.
    [88]J.M. Roberts and K.Y Lain.2002. Recent Insights into the pathogenesis of pre-eclampsia[J]. Placenta,23 (5),359-72.
    [89]J.M. Roberts and H.S. Gammill.2005. Preeclampsia:recent insights [J]. Hypertension,46 (6), 1243-9.
    [90]R. Shankar, N. Gude, F. Cullinane, et al.2005. An emerging role for comprehensive proteome analysis in human pregnancy research[J]. Reproduction,129 (6),685-96.
    [91]Y Zhang, YL. Zhang, C. Feng, et al.2008. Comparative proteomic analysis of human placenta derived from assisted reproductive technology[J]. Proteomics,8 (20),4344-56.
    [92]M. Corso and M. Thomson.2001. Protein phosphorylation in mitochondria from human placenta[J]. Placenta,22 (5),432-9.
    [93]C.W. Redman and I.L. Sargent.2005. Latest advances in understanding preeclampsia[J]. Science, 308 (5728),1592-4.
    [94]M. Silasi, B. Cohen, S.A. Karumanchi, et al.2010. Abnormal placentation, angiogenic factors, and the pathogenesis ofpreeclampsia[J]. Obstet Gynecol Clin North Am,37 (2),239-53.
    [95]L. Duley.2009. The global impact of pre-eclampsia and eclampsia[J]. Semin Perinatol,33 (3), 130-7.
    [96]U. Hiden, M. Bilban, M. Knofler, et al. 2007. Kisspeptins and the placenta:regulation of trophoblast invasion[J]. Rev Endocr Metab Disord,8 (1),31-9.
    [97]L. Myatt and X. Cui 2004. Oxidative stress in the placenta[J]. Histochem Cell Biol,122 (4), 369-82.
    [98]H.S. Brar, L.D. Platt, GR. DeVore, et al.1988. Qualitative assessment of maternal uterine and fetal umbilical artery blood flow and resistance in laboring patients by Doppler velocimetry[J]. Am J Obstet Gynecol,158 (4),952-6.
    [99]O. Genbacev, R. Joslin, C.H. Damsky, et al. 1996. Hypoxia alters early gestation human cytotrophoblast differentiation/invasion in vitro and models the placental defects that occur in preeclampsia[J]. J Clin Invest,97 (2),540-50.
    [100]Y. Zhang, S. Zhao, Y Gu, et al 2005. Effects of peroxynitrite and superoxide radicals on endothelial monolayer permeability:potential role of peroxynitrite in preeclampsia[J]. J Soc Gynecol Investig,12 (8),586-92.
    [101]I.B. Copland, S.L. Adamson, M. Post, et al.2002. TGF-beta 3 expression during umbilical cord development and its alteration in pre-eclampsia[J]. Placenta,23 (4),311-21.
    [102]D.P. Sundrani, U.S. Reddy, A.A. Joshi, et al. 2013. Differential placental methylation and expression of VEGF, FLT-1 and KDR genes in human term and preterm preeclampsia[J]. Clin Epigenetics,5 (1),6.
    [103]S. Sifakis, R. Akolekar, D. Kappou, et al.2011. Maternal serum insulin-like growth factor-binding protein-1 (IGFBP-1) at 11-13 weeks in pre-eclampsia[J]. Prenat Diagn,31 (2), 196-201.
    [104]S.W. Kauma, V. Bae-Jump, and S.W. Walsh.1999. Hepatocyte growth factor stirmulates trophoblast invasion:a potential mechanism for abnormal placentation in preeclampsia[J]. J Clin Endocrinol Metab,84 (11),4092-6.
    [105]P. Zhou, X. Luo, H.B. Qi, et al.2012. The expression of pentraxin 3 and tumor necrosis factor-alpha is increased in preeclamptic placental tissue and maternal serum[J]. Inflamm Res,61 (9),1005-12.
    [106]M.P. Schreurs, CA. Hubel, I.M. Bernstein, et al.2013. Increased oxidized low-density lipoprotein causes blood-brain barrier disruption in early-onset preeclampsia through LOX-1[J]. FASEB J,27 (3),1254-63.
    [107]C. Qiao, C. Wang, J. Zhao, et al.2012. Elevated expression of KiSS-1 in placenta of Chinese women with early-onsetpreeclampsia[J]. PLoS One,7 (11), e48937.
    [108]D.F. Lewis, B.J. Canzoneri, Y Gu, et al. 2010. Maternal levels of prostacyclin, thromboxane, ICAM, and VCAM in normal and preeclamptic pregnancies [J]. Am J Reprod Immunol,64 (6),376-83.
    [109]J. Jurcovicova, K.S. Krueger, I. Nandy, et al. 1998. Expression of platelet-derived growth factor-A mRNA in human placenta:effect of magnesium infusion in pre-eclampsia[J]. Placenta,19 (5-6),423-7.
    [110]H. Neudeck, M. Joncic, C. Schuster, et al. 1997. Histochemical evaluation of placental dipeptidyl peptidase IV (CD26) in pre-eclampsia:enzyme activity in villous trophoblast indicates an enhanced likelihood of gestational hypertensive disorders[J]. Am J Reprod Immunol,37 (6),449-58.
    [111]M. Causevic and M. Mohaupt.2007. llbeta-Hydroxysteroid dehydrogenase type 2 in pregnancy and preeclampsia[J]. Mol Aspects Med,28 (2),220-6.
    [112]J.K. Shin, Y.T. Jeong, H.C. Jo, et al.2009. Increased interaction between heat shock protein 27 and mitogen-activated protein kin as e (p38 and extracellular signal-regulated kinase) in pre-eclamptic placentas[J]. J Obstet Gynaecol Res,35 (5),888-94.
    [113]T.J. Kaitu'u-Lino, K.R. Palmer, C.L. Whitehead, et al.2012. MMP-14 is expressed in preeclamptic placentas and mediates release of soluble endoglin[J]. Am J Pathol,180 (3), 888-94.
    [114]T.J. Kaitu'u-Lino, L. Tuohey, L. Ye, et al.2013. MT-MMPs in pre-eclamptic placenta: relationship to soluble endoglin production[J]. Placenta,34 (2),168-73.
    [115]R.T. Blankley, N.J. Robinson, J.D. Aplin, et al.2010. A gel-free quantitative proteomics analysis of factors released from hypoxic-conditioned placentae[J]. Reprod Sci,17 (3), 247-57.
    [116]C. Liu, N. Zhang, H. Yu, et al.2011. Proteomic analysis of human serum for finding pathogenic factors and potential biomarkers in preeclampsia[J]. Placenta,32 (2),168-74.
    [117]B. Xu, J. Hua, Y. Zhang, et al.2011. Proliferating cell nuclear antigen (PCNA) regulates primordial follicle assembly by promoting apoptosis of oocytes in fetal and neonatal mouse ovaries [J]. PLoS One,6 (1), e 16046.
    [118]M. Epiney, P. Ribaux, P. Arboit, et al. 2012. Comparative analysis of secreted proteins from normaland preeclamptic trophoblastic cells using proteomic approaches [J]. J Proteomics,75 (6),1771-7.
    [119]D.M. Carty, J. Siwy, J.E. Brennand, et al.2011. Urinary proteomics for prediction of preeclampsia[J]. Hypertension,57 (3),561-9.
    [120]O. Genbacev, E. DiFederico, M. McMaster, et al.1999. Invasive cytotrophoblast apoptosis in pre-eclampsia[J]. Hum Reprod,14 Suppl 2,59-66.
    [121]E. DiFederico, O. Genbacev, and S.J. Fisher.1999. Preeclampsia is associated with widespread apoptosis of placental cytotrophoblasts within the uterine wall[J]. Am J Pathol,155 (1), 293-301.
    [122]J.W. Meekins, R. Pijnenborg, M. Hanssens, et al.1994. A study of placental bed spiral arteries and trophoblast invasion in normal and severe pre-eclamptic pregnancies [J]. Br J Obstet Gynaecol,101 (8),669-74.
    [123]P. von Dadelszen, L.A. Magee, and J.M. Roberts.2003. Subclassification of preeclampsia[J]. Hypertens Pregnancy,22 (2),143-8.
    [124]P. Chen, L. Zhang, X. Li, et al.2007. Evaluation of strategy for analyzing mouse liver plasma membrane proteome[J]. Sci China C life Sci,50 (6),731-8.
    [125]G. Eastabrook, M. Brown, and I. Sargent.2011. The origins and end-organ consequence of pre-eclampsia[J]. Best Pract Res Clin Obstet Gynaecol,25 (4),435-47.
    [126]V Kolla, P. Jeno, S. Moes, et al. 2012. Quantitative proteomic (iTRAQ) analysis of 1st trimester maternal plasma samples in pregnancies at risk for preeclampsia[J]. J Biomed Biotechnol, 2012,305964.
    [127]P.J. Boersema, R. Raijmakers, S. Lemeer, et al.2009. Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics [J]. Nat Protoc,4 (4),484-94.
    [128]I. Kratchmarova, B. Blagoev, M. Haack-Sorensen, et aL 2005. Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation[J]. Science,308 (5727),1472-7.
    [129]A. Wolf-Yadlin, N. Kumar, Y. Zhang, et al. 2006. Effects of HER2 overexpression on cell signaling networks governing proliferation and migration[J]. Mol SystBiol,2,54.
    [130]P. Xu, Y. Wang, Y Piao, et al. 2001. Effects of matrix proteins on the expression of matrix metalloproteinase-2,-9, and-14 and tissue inhibitors of metalloproteinases in human cytotrophoblast cells during the first trimester[J]. Biol Reprod,65 (1),240-6.
    [131]A.K. Roseweir, A.A. Katz, and R.P. Millar.2012. Kisspeptin-10 inhibits cell migration in vitro via a receptor-GSK3 beta-FAK feedback loop in HTR8SVneo cells[J]. Placenta,33 (5), 408-15.
    [132]B.H. Beck and D.R. Welch.2010. The KISS1 metastasis suppressor:a good night kiss for disseminated cancer cells [J]. Eur J Cancer,46 (7),1283-9.
    [133]C.B. Oudejans, M. van Dijk, M. Oosterkamp, et al. 2007. Genetics of preeclampsia:paradigm shifts [J]. Hum Genet,120 (5),607-12.
    [134]C. Danussi, A. Petrucco, B. Wassermann, et aL 2012. An EMILIN1-negative microenvironment promotes tumor cell proliferation and lymph node invasion[J]. Cancer Prev Res (Phila),5 (9), 1131-43.
    [135]M. Tena-Sempere.2008. Timeline:the role of kisspeptins in reproductive biology[J]. Nat Med, 14 (11),1196.
    [136]M. Bilban, N. Ghaffari-Tabrizi, E. Hintermann, et al.2004. Kisspeptin-10, a KiSS-1/metastin-derived decapeptide, is a physiological invasion inhibitor of primary human trophoblasts[J].J Cell Sci,117 (Pt 8),1319-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700