心交感神经重塑及碳纳米管对钾通道的影响及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心脏交感神经重塑主要表现为区域性的交感神经密度增加或者缺失(去神经),可见于多种疾病。研究发现心脏交感神经重塑可明显增加心律失常的易感性,然而其发生机制目前还了解很少。本论文的第一部分工作主要从两方面来探讨心脏交感神经重塑增加室颤易感性的钾通道机制。一方面旨在阐明我们提出的“去交感神经降低I_(to)电流、增加室颤易感性”的观点。研究内容包括①去交感神经后心肌细胞I_(to)电流及其通道表达的变化;②这些变化对于室颤易感性的影响;③导致I_(to)下调可能的信号转导通路。基于这些设想,我们建立了大鼠去交感神经模型,利用乙醛酸染色、高压液相、RT-PCR、Western blot、全细胞膜片钳、Langendorff离体心脏灌流、心电指标检测等方法进行验证。结果发现,去交感神经①降低心脏组织的交感神经密度及NE浓度;②降低Kv4.2,Kv1.4、KChIP2蛋白水平;③降低I_(to)电流并使其激活曲线右移;④减小ERK1/2及CREB的磷酸化水平;⑤增加室颤的发生率。去交感神经恢复组NE浓度、Kv4.2、KChIP2表达及I_(to)电流均有所恢复,室颤的发生率降低。以上结果表明,去交感神经通过下调心肌细胞I_(to)通道的表达及电流强度,从而增加室颤的易感性;ERK1/2和CREB是参与这一过程的重要信号蛋白。
     另一方面,我们实验室前期的研究结果表明心脏交感神经再生后促离子型谷氨酸受体(NMDA受体)表达上调,但NMDA受体与心律失常的关系目前仍不清楚,我们推测NMDA受体激活后可能影响心肌细胞I_(to)电流及其通道的表达,继而影响心脏电生理活动,从而增加心律失常的易感性。我们应用不同浓度的NMDA作用于原代培养的心肌细胞,利用全细胞膜片钳、Western blot、分光光度法、Langendorff离体心脏灌等方法,结果发现,不同浓度的NMDA作用于心肌细胞后①I_(to)通道的电流密度剂量依赖性地降低,激活速度减慢;②Kv4.2、Kv1.4及KChIP2蛋白表达水平明显降低;③线粒体呼吸链复合物Ⅰ、Ⅱ、Ⅲ和Ⅳ的活性降低;④细胞ATP的生成减少;⑤室颤的易感性明显增加。以上结果表明,NMDA受体激动可以降低I_(to)通道的电流密度及其通道蛋白表达,抑制线粒体能量代谢,导致线粒体功能紊乱,细胞膜的流动性降低结构异常,从而增加室颤的易感性。
     碳纳米管是目前纳米材料研究的热点之一,但碳纳米管对细胞电生理活动的影响目前资料极少。本论文的第二部分工作研究碳纳米管对PC12细胞瞬时外向钾电流(I_(to)),外向整流钾电流(I_K),内向整流钾电流(I_(K1))的影响及其机制。我们利用膜片钳、流式细胞仪、激光共聚焦等方法,研究发现碳纳米管①降低PC12细胞I_(to)、I_K、I_(K1)的电流密度;②降低线粒体膜电位;③增加细胞内游离钙的含量。以上结果表明,碳纳米管降低PC12细胞I_(to)、I_K、I_(K1)的电流密度,这可能与碳纳米管造成细胞氧化应急损伤及线粒体功能降低有关。
Cardiac sympathetic nerve remodeling is frequently observed in many diseases. However the mechanisms underlying sympathetic nerve remodeling-associated cardiac electrophysiological instability and ventricular fibrillation are not well understood. One aim of our study was to investigate the linkage of sympathetic denervation, K+ channel remodeling and cardiac arrhythmia. We developed a rat model of chemical sympathectomy by subcutaneous injections of 6-hydroxydopamine (6-OHDA). Cardiac sympathetic innervation was visualized by a glyoxylic catecholaminergic histofluorescence method. Transient outward current (I_(to)) of ventricular myocytes was recorded with the whole-cell configuration of the patch clamp technique. We found that sympathectomy 1) decreased cardiac sympathetic nerve density and norepinephrine level; 2) reduced the protein expression of Kv4.2, Kv1.4 and Kv channel-interacting protein 2 (KChIP2); 3) decreased current densities and delayed activation of I_(to) channels; 4) reduced the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and cAMP response element-binding protein (CREB); and 5) increased the severity of ventricular fibrillation induced by rapid pacing. Three weeks after 6-OHDA injections to allow sympathetic regeneration, cardiac sympathetic nerve density and norepinephrine level, expression levels of Kv4.2, KChIP2 proteins and I_(to) current densities were partially normalized and ventricular fibrillation severity was decreased. We conclude that chemical sympathectomy downregulates the expression of selective Kv channel subunits and decreases myocardial I_(to) channel activities, contributing to the elevated susceptibility to ventricular fibrillation.
     A second aim of this study was to investigate the effect of NMDA receptor activation on I_(to) Channel activity. We previously found that the expression of myocardial NMDA receptors were significantly upregulated in a rat model of cardiac nerve sprouting. Based on these findings, we investigated the relationship of NMDA recepor activation and I_(to) current. We incubated cardiomyoctes from 10-14-day rats with NMDA, and recorded the I_(to) current of these cells with whole-cell configuration of patch clamp technique. We further investigated the effects of NMDA on the activities of the four complexes of the respiratory chain in the mitochondria using fluorometer and estimated the production of ATP by bioluminescent methods. The results showed that acute treatment with NMDA suppressed the activities of the four complexes of the respiratory chain and reduced the production of ATP in the mitochondria of rat cardiomyoctes. These results suggest that NMDA receptor activation decreases myocardial I_(to) channel activities, suppresses the energy metabolism and induces mitochondrial dysfunction, contributing to the elevated susceptibility to ventricular fibrillation.
     A third aim of this study was to observe the effect of carbons nanotubes on K+ channels on PC12 cells. Nowadays, carbon nanotube research is one of the hotspots in nano research and was considered a potential carrier of drugs and vaccines. However, the side effects of carbon nanotubes are less known. For example, the interaction between carbon nanotubes and cell ion channels is still not well established. In this study, we investigated the effect of multile-walled carbon nanotubes (MWNT) on three types of K+ currents (I_(to), I_K and I_(K1)) in PC12 cells. We incubated PC12 cells with MWNT and recorded the I_(to), I_K, I_(K1) currents of PC12 cells at different times with whole-cell configuration of the patch clamp technique. We also investigated the effects of MWNT on mitochondrial membrane potential (ΔΨm) and intracellular calcium ([Ca~(2+)]_i) level. We found thatMWNT 1) decreased the current densities of I_(to), I_K and I_(K1), 2) increased the [Ca~(2+)]_i and 3)reduced mitochondrial membrane potential (ΔΨm). These results suggest that MWNT in aqueous suspension could suppress potassium channel activities in undifferentiated PC12 cells, and these effects may be associated with mitochondrial dysfunction and oxidativestress.
引文
1. Cao J-M, Fishbein MC, Han JB, Lai WW, Lai AC, Wu T-J, Czer L, Wolf PL,DentonTA.Shintaku IP, Chen P-S, Chen LS: Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation 2000; 101: 1960-1969.
    
    2. Cao J-M, Chen LS, Kenknight BH, Ohara T, Lee M-H, Tsai J, Lai WW, Karagueuzian HS, Wolf PL, Fishbein MC, Chen P-S. Nerve sprouting and sudden cardiac death. Circ Res 2000;86:816-821.
    
    3. Shengmei Zhou, Ji-Min Cao, Lan S Chen, Gina M Suh, Kamlesh Asotra, Michael C Fishbein, Peng-Sheng Chen: β3-adrenoceptor Upregulation in a Canine Model of Sudden Cardiac Death. PACE 2003, 26(4), Part II: 1046
    
    4. Liu YB, Wu CC, Lu LS, Su MJ, Lin CW, Lin SF, Chen LS, Fishbein MC, Chen PS,Lee YT. Sympathetic nerve sprouting, electrical remodeling, and increased vulnerability to ventricular fibrillation in hypercholesterolemic rabbits. Circ Res. 2003 May 30;92(10):1145-52
    
    5. Dae M.W., Lee R.J., Ursell P.C., Chin M.C., Stillson C.A., Moise N.S. 1997.Heterogeneous sympathetic innervation in German shepherd dogs with inherited ventricular arrhythmia and sudden cardiac death. Circulation 96:1337-1342.
    
    6. Moise N.S, Meyers-Wallen V., Flahive W.J., Valentine B.A., Scarlett J.M., Brown C.A.,Chavkin M.J., Dugger D.A., Renaud-Farrel S., Kornreich B. 1994. Inherited ventricular arrhythmias and sudden death in German shepherd dogs. J. Am. Coll. Cardiol.24:233-243.
    
    7. Gilmour R.F. Jr., Moise N.S. 1996. Triggered activity as a mechanism for inherited ventricular arrhythmias in German shepherd Dogs. J. Am. Coll. Cardiol. 27: 1526-33.
    
    8. Axelrod F.B., Putman D., Berlin D., Rutkowski M. 1997. Electrocardiographic measures and heart rate variability in patients with familial dysautonomia. Cardiology.88: 133-40.
    
    9. Glickstein J.S., Axelrod F.B., Friedman D. 1999. Electrocardiographic repolarization abnormalities in familial dysautonomia: an indicator of cardiac autonomic dysfunction. Clin. Auton. Res. 9: 109-12.
    
    10. Davila Spinetti D.F., Inglessis G, Mazzei de Davila C.A. 1999. Chagas cardiomyopathy and the autonomic nervous system. Clinical studies. Arch. Inst.Cardiol. Mex. 69: 35-9.
    
    11. Pourmoqhaddas A., Hekmatnia A. 2003. The relationship between QTc interval and cardiac autonomic neuropathy in diabetes mellitus. Mol. Cell Biochem. 249: 125-8.
    
    12. Valensi P. 2004. Blood pressure and heart rate regulation in diabetics. Arch. Mai. Coeur.Vaiss.4:51-8.
    
    13. Warner MR,Wisler PL,Hodges TD, et al. Mechanisms of denervation supersensitivity in regionally denervated canine hearts. Am J Physiol 1993,264(32):H815-820.
    
    14. Cheng CF, Kuo HC, Chien KR. Genetic modifiers of cardiac arrhythmias. Trends Mol Med. 2003 Feb; 9(2):59-66.
    
    15. Decher, N., Uyguner, O., Scherer, C. R., Karaman, B., Yuksel-Apak, M., Busch, A. E.,Steinmeyer, K. and Wollnik, B. hKChIP2 is a functional modifier of hKv4.3 potassium channels: cloning and expression of a short hKChIP2 splice variant. Cardiovasc Res.2001,52,255-64.
    
    16. Jourdon P., Feuvray D. 1993. Calcium and potassium currents in ventricular myocytes isolated from diabetic rats. J. Physiol. (Lond) 470: 411-429.
    
    17. Pacioretty L.M., Barr S.C., Han W.P., Gilmour R.F. Jr. 1995. Reduction of the transient outward potassium current in a canine model of Chagas' disease. Am. J.Physiol. Heart Circ. Physiol. 268: H1258-H1264.
    
    18. Han W., Barr S.C., Pacioretty L.M., Gilmour R.F. Jr. 1997. Restoration of the transient outward potassium current by noradrenaline in chagasic canine epicardium. J. Physiol.(Lond) 500:75-83.
    
    19. Freeman L.C., Pacioretty .LM., Moise N.S., Kass R.S., Gilmour R.F. 1997. Decreased density of I_(to) in left ventricular myocytes from German shepherd dogs with inherited arrhythmias. J. Cardiovasc. Electrophysiol. 8: 872-883.
    
    20. Coyle JT, Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders. Science, 1993,262:689.
    
    21. Mueller RW, Gill SS, Pulido OM . The monkey (Macaca fascicularis) heart neural structures and conducting system: an immunochemical study of selected neural biomarkers and glutamate receptors. Toxicol Pathol. 2003 Mar-Apr;31(2):227-34.
    
    22. Gao X, Xu XB, Pang JJ, Zhang C, Ding JM, Peng X, Liu Y, Cao JM. NMDA receptor activation induces mitochondrial dysfunction, oxidative stress and apoptosis in cultured neonatal rat cardio. Physiol Res. 2006 Aug 22.
    
    23. Iwaki K, Sukhatme VP, Shubeita HE, et al. Alpha- and beta-adrenergic stimulation induces distinct patterns of immediate early gene expression in neonatal rat myocardial cells. fos/jun expression is associated with sarcomere assembly; Egr-1 induction is primarily an alpha 1-mediated response. J Biol Chem. 1990; 265: 13809-13817.
    
    24. Bruzzone P, Cavallotti C, Mancone M, Tranquilli Leali FM. Age-related changes in catecholaminergic nerve fibers of rat heart and coronary vessels. Gerontology. 2003,49(2):80-5.
    
    25. Eriksson B.M., Persson BA. 1982. Determination of catecholamines in rat heart tissue and plasma samples by liquid chromatography with electrochemical detection. J.Chromatogr. 228: 143-154.
    
    26. Zhang TT, Cui B, Dai DZ. Downregulation of Kv4.2 and Kv4.3 channel gene expression in right ventricular hypertrophy induced by monocrotaline in rat. Acta Pharmacol Sin. 2004 ,25 (2):226-30.
    
    27. Bogenhagen D, Clayton DA. The number of mitochondrial deoxyribonucleic acid genomes in mouse L and human HeLa cells. Quantitative isolation of mitochondrial deoxyribonucleic acid. J Biol Chem. 1974; 249(24):7991-7995.
    
    28. Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951; 193(1):265-275.
    
    29. Veitch K, Hombroeckx A, Caucheteux D, et al. Global ischemia induces a biphasic response of the mitochondrial respiratory chain. Anoxic pre-perfusion protects against ischemic damage. Biochem J, 1992, 281:709-715.
    30. Dunkley PR, Jarvie P, Heath JW. A rapid method for isolation of synaptosomes on percoll gradients. Brain Res, 1986,372:115.
    
    31. Gussak I, Chaitman BR, Kopecky SL, et al. Rapid ventricular repolarization in rodents:electrocardiographic manifestation. molecular mechanisms, and clinical insights. J Electrocardiol, 2000,33:299.
    
    32. Kompa A.R., Molenaar P., Summers R.J. 1994. Effect of chemical sympathectomy on (-)-isoprenaline-induced changes in cardiac beta-adrenoceptor subtypes in the guinea-pig and rat. J. Auton. Pharmacol. 14: 411-23.
    
    33. Bru-Mercier G., Deroubaix E., Rousseau D., Coulombe A., Renaud JF. 2002.Depressed transient outward potassium current density in catecholamine-depleted rat ventricular myocytes. Am. J. Physiol. Heart Circ. Physiol. 282: H1237-47.
    
    34. Kuo, H.C. et al A defect in the Kv channel-interaction protein 2(KchIP2) gene leads to a complete loss of Ito and confers susceptibility to ventricular tachycardia. Cell 2001;107:801-813
    
    35. Decher, N., Uyguner, O., Scherer, C. R., Karaman, B., Yuksel-Apak, M., Busch, A. E.,Steinmeyer, K. and Wollnik, B. hKChIP2 is a functional modifier of hKv4.3 potassium channels: cloning and expression of a short hKChIP2 splice variant. Cardiovasc Res.2001,52,255-64.
    
    36. Deschenes, I., DiSilvestre, D., Juang, G. J., Wu, R. C., An, W. F. and Tomaselli, G. F.(2002) Regulation of Kv4.3 current by KChIP2 splice variants: a component of native cardiac Ito? Circulation 106, 423-9.
    
    37. Maldonado C, Cea P, Adasme T, Collao A, Diaz-Araya G, Chiong M, Lavandero S.IGF-1 protects cardiac myocytes from hyperosmotic stress-induced apoptosis via CREB. Biochem Biophys Res Commun. 2005, 4;336 (4):1112-8
    
    38. Gregory M. Sutton, Laurel M. Patterson, and Hans-Rudolf Berthoud. Extracellular Signal-Regulated Kinase 1/2 Signaling Pathway in Solitary Nucleus Mediates Cholecystokinin-Induced Suppression of Food Intake in Rats. The Journal of Neuroscience, 2004 ,24 (45): 10240 -10247
    39. Tojima T, Kobayashi S, Ito E. Dual role of cyclic AMP-dependent protein kinase in neuritogenesis and synaptogenesis during neuronal differentiation. J Neurosci Res. 2003,15;74(6):829-37.
    
    40. Schrader L.A., Birnbaum S.G., Nadin B.M., Ren Y., Bui D., Anderson A.E., Sweatt J.D.2006. ERK/MAPK regulates the Kv4.2 potassium channel by direct phosphorylation of the pore-forming subunit. Am. J. Physiol. Cell Physiol. 290: C852-61.
    
    41.Sutton G.M., Patterson L.M., Berthoud H.R. 2004. Extracellular signal-regulated kinase 1/2 signaling pathway in solitary nucleus mediates cholecystokinin-induced suppression of food intake in rats. J. Neurosci. 24: 10240-7.
    
    42. Rosen L.B., Ginty D.D., Weber M.J., Greenberg M.E. 1994. Membrane depolarization and calcium influx stimulate MEK and MAP kinase via activation of Ras. Neuron 12:1207-21.
    
    43. Sweatt J.D. 2001. The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. J. Neurochem. 76: 1-10.
    
    44. Patberg KW, Obreztchikova MN, Giardina SF, Symes AJ, Plotnikov AN, Qu J,Chandra P, McKinnon D, Liou SR, Rybin AV, Shlapakova I, Danilo P Jr, Yang J, Rosen MR. The cAMP response element binding protein modulates expression of the transient outward current: implications for cardiac memory. Cardiovasc Res. 2005 ,1;68(2):259-67.
    
    45. Qu Z. 2006. Critical mass hypothesis revisited: role of dynamical wave stability in spontaneous termination of cardiac fibrillation. Am. J. Physiol. Heart Circ. Physiol. 290:H255-63.
    
    46. Cao J.M., Qu Z., Kim Y.H., Wu T.J., Garfinkel A., Weiss J.N., Karagueuzian H.S.,Chen P.S. 1999. Spatiotemporal heterogeneity in the induction of ventricular fibrillation by rapid pacing: The importance of cardiac restitution properties. Circ. Res.84:1318-1331.
    
    47. Morhenn VB, Waleh NS, Mansbridge JN, Unson D, Zolotorev A, Cline P, Toll L.Evidence for an NMDA receptor subunit in human keratinocytes and rat cardiocytes. Euro J Pharmacol 1994; 268:409-414
    
    48. Seeburg PH, Higuchi M, Sprengel R. RNA editing of brain glutamate receptor channels: mechanism and physiology. Brain Res Brain Res Rev, 1998, 26(23): 217-229
    
    49. Gonoi, T., Mizuno, N., Inagaki, N., Kuromi, H., Seino, Y., Miyazaki, J., Seino, S.Functional neuronal ionotropic glutamate receptors are expressed in the non-neuronal cell line MIN6. J. boil.chem.. 1994, 269: 16989-16992
    
    50. Inagaki, N., Kuromi, H.., Gonoi, T., Okamoto, Y., Ishida, H., Seino, Y, Kaneko T.,Iwanaga, T., Seino, S. Expression and role of ionotropic glutamate receptors an pancreatic island cell. Faseb J, 1995,9: 686-691.
    
    51. Salt TE, Eaton SA. Functions of ionotropic and metabotropic glutamate receptors in sensory transmission in the mammalian thalamus[J]. Progress in Neurobiology, 1996,48: 55-72.
    
    52. GANN, D. Ventricular tachycardia in a patient with the "Chinese restaurant syndrome".South Med J. 70:879-881,1977.
    
    53. Wenzel A., Benke D., Mohler H., et al. N-Methyl-D-aspartate receptors containing the NR2D subunit in the retina are selectively expressed in rod bipolar cells . Neuroscience.1997,78,1105-1112.
    
    54. Bai G. and Kusiak J.W. Functional analysis of the proximal 5'-flanking region of the N-methyl-D-aspartate receptor subunit gene, NMDAR1. J. Biol. Chem.1995,270,7737-7747.
    
    55. Kenneth W. Young, M. Asier, R. et al. NMDA-receptor regulation of muscarinic-receptor stimulated inositol 1,4,5-trisphosphate and protein kinase C activation in signal cerebellar granule neurons. Journal of Neurochemistry. 2004,89,1537-1546.
    
    56. Ryan S. Westphal, Steven J. et al. Regulation of NMDA receptors by an associated phosphatase-kinase signaling complex. Sciense. 1999,285, 93-96.
    
    57. Jon M. Kornhauser, Christopher W. Cowan, et al. CREB Transcriptional Activity in Neurons Is Regulated by Multiple, Calcium-Specific Phosphorylation Events. Neuron,2002, 34, 221-233.
    
    58. Mitchell P, Moyle J. Chemiosmotic hypothesis of oxidative phosphorylation. Nature. 1967; 213(72): 137-139.
    
    59. Gunter T. E., Pfeiffer D. R. (1990) Mechanisms by which mitochondria transport calcium. Am. J. Physiol. 258, C755-C786.
    
    60. Zoratti M, Szabo I. (1995) The mitochondrial permeability transition. Biochim.Biophys.Acta 1241, 139-176.
    
    61. Smaili S. S., Hsu Y.-T., Youle R. J., Russel J. T. (2000) Mitochondria in Ca~(2+) signaling and apoptosis. J. Bioenerg. Biomembr. 32, 35-46.
    
    62. Kowaltowski A. J., Castilho R. F., Vercesi A. E. (2001) Mitochondrial permeability transition and oxidative stress. FEBS Lett. 495, 12-15.
    
    63. Green D. R. & Reed J. C. (1998) Mitochondria and apoptosis. Science 281, 1309-1312.
    
    64. Halestrap AP, McStay GP, Clarke SJ. The permeability transition pore complex:another view. Biochimie. 2002; 84(2-3):153-166.
    
    65. Kim JS, He L, Lemasters JJ. Mitochondrial permeability transition: a common pathway to necrosis and apoptosis. Biochem Biophys Res Commun. 2003; 304(3):463-470.
    
    66. Zamzami N, Kroemer G. The mitochondrion in apoptosis: how Pandora's box opens.Nat Rev Mol Cell Biol. 2001; 2(1):67-71.
    1. Nadine Wong Shi Kam, Theodore C, Jessop, Paul A, et al. Nanotube MolecularTransporters: Internalization of Carbon Nanotube-Protein Conjugates into Mammalian Cells. J. Am. Chem. Soc. 2004, 22 (126) 6851.
    
    2. Davide Pantarotto, Jean-Paul Briand, et al. Translocation of bioactive peptides across cell membranes by carbon nanotubes. The Royal Society of Chemistry, 2004, 16-17.
    
    3. M. M. Rasenick, M. Watanabe, et al. Synthetic peptides as probes for G protein function.Carboxyl-terminal G alpha s peptides mimic Gs and evoke high affinity agonist binding to beta-adrenergic receptors. J Biol Chem. 1994, 26;269(34):21519-25.
    
    4. Stephen B. Long, Ernest B. Campbell, and Roderick Mackinnon. Voltage sensor of Kv1.2: structural basis of electromechanical coupling, Science 5 (2005) 903-908.
    
    5. H. M. Jones, K. L. Hamilton, and D. C. Devor. Role of an S4-S5 linker lysine in the trafficking of the Ca2+-activated K+ channels IK1 and SK3, J. Biol. Chem. 280(2005) 37257-37265.
    
    6. WA Schmalhofer, M Sanchez, G Dai, A Dewan, L Secades, M Hanner, HG Knaus, OB McManus, M Kohler, GJ Kaczorowski, and ML Garcia. Role of the C-terminus of the high-conductance calcium-activated potassium channel in channel structure and function. Biochemistry, 2005; 44(30): 10135-44.
    
    7. Juan, G., Cavazzoni, M., Sa! ez, G. T. & O'Connor, J. E. (1994). A fast kinetic method for assessing mitochondrial membrane potential in isolated hepatocytes with rhodamine 123 and flow cytometry. Cytometry 15, 335-342.
    
    8. Emaus, R. K., Grunwald, R. & Lemasters, J. (1986). Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria: spectral and metabolic properties. Biochim Biophys Acta 850, 436-448.
    
    9. Char-chang Shieh, Michael Coghlan, James P. Sullivan, and Murali Gopalakrishnan.Potassium channels: molecular defects, and therapeutic opportunities, Pharmacol. Rev.52(2000) 557-593.
    
    10. Luis A. Pardo. Voltage-gated potassium channels in cell proliferation, Physiology 19(2004)285-292.
    
    11.I Szabo, C Adams, and E Gulbins. Ion channels and membrane rafts in apoptosis,Pflugers Arch. 448(2004) 304-312.
    
    12. Osadchii OE. Cardiac hypertrophy induced by sustained beta-adrenoreceptor activation:pathophysiological aspects. Heart Fail Rev. 2007; 12(l):66-86.
    
    13. Monica Gallego, Ernesto Casis, M. Jesus Izquierdo, Oscar Casis. Restoration of cardiac transient outward potassium current by norepinephrine in diabetic rats. Pflugers Archiv European Journal of Physiology 2000; 441(1): 102-7.
    
    14. Sonner PM, Filosa JA, Stern JE. Diminished A-type potassium current and altered firing properties in presympathetic PVN neurones in renovascular hypertensive rats. J Physiol. 2008;586(6): 1605-22.
    
    15. AN Margioris, E Markogiannakis, A Markigiannakis, and A Gravanis. PC12 rat pheochromocytoma cells synthesize dynorphin. Its sectition is modulated by nicotine and nerve growth factor, Endocrinology 131(1992) 703-709.
    
    16. Gunter T. E., Pfeiffer D. R. (1990) Mechanisms by which mitochondria transport calcium. Am. J. Physiol. 258, C755-C786.
    
    17. Zoratti M., Szabo I. (1995) The mitochondrial permeability transition. Biochim.Biophys.Acta 1241,139-176.
    
    18. Smaili S. S., Hsu Y.-T., Youle R. J., Russel J. T. (2000) Mitochondria in Ca~(2+) signaling and apoptosis. J. Bioenerg. Biomembr. 32, 35-46.
    
    19. Kowaltowski A. J., Castilho R. F., Vercesi A. E. (2001) Mitochondrial permeability transition and oxidative stress. FEBS Lett. 495,12-15.
    
    20. Green D. R. & Reed J. C. (1998) Mitochondria and apoptosis. Science 281, 1309-1312.
    
    
    1. Huikuri HV, Castellanos A, Myerburg RJ. Sudden death due to cardiac arrhythmias. N Engl J Med, 2001, 345: 1473-1482.
    
    2. Gordon F, Tomaselli GF, Douglas PZ. What causes sudden death in heart failure? Circ Res, 2004, 95: 754-763.
    
    3. Cao Ji-Min, Chen Lan S., Bruce H. KenKnight, et al. Nerve sprouting and sudden cardiac death. Circ Res, 2000, 86:816-21.
    
    4. Cao JM, Fishbein MC, Han JB, et al. Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation, 2000, 101: 1960-1969.
    
    5. Nakata T, Kyuma M, Nagahara D. Cardiac sympathetic nerve imaging in patients with heart failure or lethal arrhythmias : Risk stratification and assessment of therapeutic interventions. Intern Congress Series, 2004, 1264:126-131.
    
    6. Yanowitz F, Preston JB, Abildskov JA: Functional distribution of right and left stellate innervation to the ventricles. Production of neurogenic electrocardiographic changes by unilateral alteration of sympathetic tone. Circ Res 1966; 18:416-428.
    
    7. Schwartz PJ, Motolese M, Pollavini G, Lotto A, Ruberti U, Trazzi R, Bartorelli C, Zanchetti A, Italian Sudden Death Prevention Group: Prevention of sudden cardiac death after a first myocardial infarction by pharmacologic or surgical antiadrenergic interventions. J Cardiovasc Electrophysiol 1992;3:2-16.
    
    8. Schwartz PJ. The rationale and the role of left stellectomy for the prevention of malignant arrhythmias. Ann N Y Acad Sci. 1984; 427: 199-221.
    
    9. Brandys JC, Hopkins DA, Armour JA. Cardiac responses to stimulation of discrete loci within canine sympathetic ganglia following hexamethonium. J Auton Nerv Syst, 1984, 11:243-255.
    
    10. Cardinal R, cherlag BJ, Vermeulen M, et al. Distinct activation patterns of idioventricular rhythms and sympathetically-induced ventricular tachycardias in dogs with atrioventricular block. Pacing Clin Electrophysiol, 1992, 15:1300-1316.
    
    11. Brennan C, Rivas-Plata K, Landis SC. The p75 neurotrophin receptor influences NT-3 responsiveness of sympathetic neurons in vivo. Nat Neurosci, 1999,2: 699-705.
    
    12. Hassank bani A, Overexpression of NGF within the heart of transgenic mice causes hyperinnervation, cardiac enlargement, and hyperplasia of ectopic cells. Dev Biol,1995,169:309-321.
    
    13. Kiriazis H, Du XJ, Feng X, et al. Preserved left ventricular structure and function in mice with cardiac sympathetic hyperinnervation. Am J Physiol Heart Circ Physiol,2005,289: H1359-H1365.
    
    14. Chen P-S, Chen LS, Cao J-M, et al. Sympathetic nerve sprouting, electrical remodeling and the mechanisms of sudden cardiac death. Cardiovasc Res, 2001, 50:409-16.
    
    15. Liu YB, Wu CC, Lu LS, Su MJ, Lin CW, Lin SF, Chen LS, Fishbein MC, Chen PS,Lee YT. Sympathetic nerve sprouting, electrical remodeling, and increased vulnerability to ventricular fibrillation in hypercholesterolemic rabbits. Circ Res. 2003 May 30;92(10):1145-52.
    
    16. Dae M.W., Lee R.J., Ursell P.C., Chin M.C., Stillson C.A., Moise N.S. 1997.Heterogeneous sympathetic innervation in German shepherd dogs with inherited ventricular arrhythmia and sudden cardiac death. Circulation 96:1337-1342.
    
    17. Moise N.S, Meyers-Wallen V., Flahive W.J., Valentine B.A., Scarlett J.M., Brown C.A.,Chavkin M.J., Dugger D.A., Renaud-Farrel S., Kornreich B. 1994. Inherited ventricular arrhythmias and sudden death in German shepherd dogs. J. Am. Coll. Cardiol.24:233-243.
    
    18. Gilmour R.F. Jr., Moise N.S. 1996. Triggered activity as a mechanism for inherited ventricular arrhythmias in German shepherd Dogs. J. Am. Coll. Cardiol. 27: 1526-33.
    
    19. Axelrod F.B., Putman D., Berlin D., Rutkowski M. 1997. Electrocardiographic measures and heart rate variability in patients with familial dysautonomia. Cardiology.88: 133-40.
    20. Glickstein J.S., Axelrod F.B., Friedman D. 1999. Electrocardiographic repolarization abnormalities in familial dysautonomia: an indicator of cardiac autonomic dysfunction.Clin.Auton. Res. 9: 109-12.
    
    21. Davila Spinetti D.F., Inglessis G, Mazzei de Davila C.A. 1999. Chagas cardiomyopathy and the autonomic nervous system. Clinical studies. Arch. Inst.Cardiol. Mex. 69: 35-9.
    
    22. Valensi P. 2004. Blood pressure and heart rate regulation in diabetics. Arch. Mal. Coeur.Vaiss.4:51-8.
    
    23. Pourmoqhaddas A., Hekmatnia A. 2003. The relationship between QTc interval and cardiac autonomic neuropathy in diabetes mellitus. Mol. Cell Biochem. 249: 125-8.
    
    24. Qin FZ, Vulapalli RS, Stevens SY, et al. Loss of cardiac sympathetic eurotrasmitters in heart failure and NE infusion is associated with reduced NGF. Am J Physiol Heart Circ Physiol, 2002, 282:H363-H371.
    
    25. Acar P, Meriet P, Iserin L, et al. Impaired cardiac adrenengic innervation assessed by MIBG imaging as a predictor of treatment reponse in children dilated cardiomyopathy.Heart, 2001, 85: 692-696.
    
    26. Miyauchi Y, Zhou SM, Okuyama YJ, et al. Altered atrial electrical restitution and heterogeneous sympathetic hyperinnervation in hearts with chronic left ventricular myocardial infarction: Implications for atrial fibrillation. Circulation, 2003,108:360-366.
    
    27. Chang CM, Wu TJ, Zhou SM, et al. Nerve sprouting and sympathetic hyperinnervation in a canine model of trial fibrillation produced by prolonged right atrial pacing.Circulation, 2001, 103:22-25.
    
    28. Chang, L. S., Chen, C. Y. and Wu, T. T. Functional implication with the metal-binding properties of KChIP1. Biochem Biophys Res Commun. 2003, 311, 258-63.
    
    29. Fu YC, Chi CS, Yin SC, et al. Norepinephrine induced apoptosis in neonatal rat cardiomyocytes through a reactive oxygen species-TNFa-caspase signaling pathway.Cardiovasc Res, 2004, 62: 558-567.
    30. Banki NM, Kopelnik A, Dae MW, et al. Acute neurocardiogenic injury after subarachnoid hemorrhage. Circulation, 2005, 112: 3314-3319.
    
    31. Mackin CJ, Kano S, Seyedi N. Cardiac mast cell-derived rennin promates local angiotensin formation, norepinephrine release, and arrhythmia in ischemia reperfusion.J Clin Invest, 2006,116: 1063-1070.
    
    32. Parthenakis FI, Patrianakos A, Prassopoulos V, et al. Relation of cardiac sympathetic innervation to proinflammatory cytokine levels in patients with heart failure secondary to idiopathic dilated cardiomyopathy. Am J Cardiol, 2003, 91: 1190-1194.
    
    33. Decher, N., Uyguner, O., Scherer, C. R., Karaman, B., Yuksel-Apak, M, Busch, A. E.,Steinmeyer, K. and Wollnik, B. hKChIP2 is a functional modifier of hKv4.3 potassium channels: cloning and expression of a short hKChIP2 splice variant. Cardiovasc Res.2001,52,255-64.
    
    34. Deschenes, I., DiSilvestre, D., Juang, G. J., Wu, R. C., An, W. F. and Tomaselli, G. F.Regulation of Kv4.3 current by KChIP2 splice variants: a component of native cardiac I(to)? Circulation 2002, 106, 423-9.
    
    35. Colledge M, Dean RA, Scott GK, Langeberg LK, Huganir RL, Scott JD. Targeting of PKA to glutamate receptors through a MAGUK-AKAP complex. Neuron, 2000, 27:107-19.
    
    36. Vanhoose AM, Winder DG. NMD A and beta1-adrenergic receptors differentially signal phosphorylation of glutamate receptor type 1 in area CA1 of hippocampus. J Neurosci.2003 Jul 2;23(13):5827-34.
    
    37. Zamanillo D, Sprengel R, Hvalby O, Jensen, V, Burnashev N, et al. Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning.Science, 1999,284: 1805-11.
    
    38. Efimov IR. Fibrillation or neurillation. Back to the future in our concepts of sudden cardiac death. Circ Res, 2003, 92: 1062-1064.
    
    
    1. Bianco, A.; Hoebeke, J.; Godefroy, S.; Chaloin, 0.; Pantarotto, D.; Briand, J.-P.;Muller,S.; Prato, M; Partidos, C. D.; 16-Dec-2004, W. R. D. J. Am. Chem. Soc.2005,127, 58.
    
    2. Nadine Wong Shi Kam, Theodore C. Jessop, Paul A. Wender, and Hongjie Dai, Nanotube Molecular Transporters: Internalization of Carbon Nanotube-Protein Conjugates into Mammalian Cells. J. AM. CHEM. SOC. 2004 22 (126) 6851.
    
    3. Davide Pantarotto,ab Jean-Paul Briand,a Maurizio Prato and Alberto Bianco. Translocation of bioactive peptides across cell membranes by carbon nanotubes. The R oyal Societyof Chemistry.2 00 4, 16-17.
    
    4. M. M. Rasenick, M. Watanabe, M. B. Lazarevic, S. Hatta and H. E. Hamm, Synthetic peptides as probes for G protein function. Carboxyl-terminal G alpha s peptides mimic Gs and evoke high affinity agonist binding to beta-adrenergic receptors. J. Biol. Chem. 1994Aug26;269(34):21519-25.
    
    5. Webster TJ, W aid MC, McKenzie儿. el al. Nano-biotechnology: carbonnanofibres as improved neural and orthopaedic jmplants. Nanotec hnology 2004; 15: 48-54.
    
    6. Shearer MC. Fawcett JW The astrocytelmeningeal cell interface a barrier to successfulnerve regeneration. Cell Tissue Res 2001; 305(2): 267-273.
    
    7. Mattson MP, Haddon RC, Rao AM. Molecular functionalization of carbonnanotubes and use as substrates for neuronal growth. J MoL Neurosci2000; 14(3): 175. 182.
    8. HuH, Nj YC, HaddonRC, et al. Chemically functionalization carbo nnanotubes as substrates for neuronal growth. Nano Lett 2004 ; 4(3): 507-511.
    
    9. Price RL, Waid MC, Haberstroh KM, et al. Selective bone cell adhesionon formulations containing carbon nanofibers. Biomaterials 2003; 24(11): 1877-1887.
    
    10. Elias KL, Price RL, Webster TJ. Enhanced functions of osteoblasts onnanometer diameter carbon fibers. Biomaterials 2002; 23(15): 3279-3287.
    
    11. Zanello LP, Zhao B, Hu H. et al. Bone cell proliferation on carbon nanotubes. Nano Lett 2006:6(3): 562-567.
    
    12. Webster TJ, W aid MC, McKenzie JL. el al. Nano-biotechnology: carbon nano fibres as improved neural and orthopaedic implants. Nanotechnology 2004; 15:48-54.
    
    13. Ferin J , Oberdorsier G, Penneyd P. Pulmonary retention of ultrafine and fine particles in rats. Am J Respir Cell Mol Biol, 1992 , 6 (5): 5352542.
    
    14. Driscoll K E , Carter J M, Howard B W, et al. Pulmonary inflammatory, chemokine,and mutagenic responses in rats after subchronic inhalation of carbon black. Toxicol Appl Pharmacol, 1996 , 136(2): 3722380.
    
    15. Dasenbrock C, Peters L, Creutzenberg O, et al. The carcinogenic potency of carbon particles with and without PAH after repeated intratracheal administration in the rat.Toxicol Lett, 1996, 88 (123): 15221.
    
    16. Oberdorster G, Sharp Z, Atudorel V, et al.Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol, 2004 ,16 (627): 4372445.
    
    17. Harder V , Gilmour P , Lentner B , et al.Cardiovascular responses in unrestrained WKY rats to inhaled ultrafine carbon particles. Inhal Toxicol ,2005 ,17(1): 29242.
    
    18. Yamawaki H , Iwat N. Mechanisms underlying nanosized air-pollution-mediated progression of atherosclerosis: carbon black causes cytotoxic injuryPinflammation and inhibits cell growth in vascular endothelial cells.Circul, 2006, 70(1) :1292140.
    
    19. Gao M. Daj L. W all A. Glucosesensor based on glucoseoxidasing containing polyporroleaaligned carbo nnanotube coaxialnanowi reelectrode Synthetic Metals??2003: 137: 1393-1394.
    
    20. Turner RF, Harrison DJ. Rajotte RV. Preljmjnarv fn vivo biocompatibility studies on perfluorosulphonic acid polymer membranes for biosensor applications. Biomaterials 1991: 12(4): 361-368.
    
    21.罗济文,张志凌.李家洲,等.单壁碳纳米管修饰玻碳电极对L-半胱氨酸的催化 氧化及分析应用.应用化学,2005,22(11):1239-1243。
    
    22.唐婷,彭图治,时巧翠.碳纳米管修饰金电极检测特定序列DNA.化学学报,2005, 63(22):2042-2046)。碳纳米管的这些特性对于提高生物检测的灵敏度和稳定 性具有重大意义。
    
    23. Singh R, Pantarotto D, McCarthy D, et al. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. J Am Chem Soc 2005; 127(12): 4388-4396.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700