RNA干扰α-突触核蛋白对多巴胺能神经元的影响及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
帕金森病(Parkinson's disease,PD)是最早由James Parkinson医生于1817年报告并因此而得名的一种神经系统疾病。其临床症状有静止性震颤、肌肉强直、随意运动减少和正常的姿势平衡反射丧失等。PD在60岁以上人群中患病率约为1%~2%,是神经系统中的第二大变性疾病。随着社会老龄化进程的推进,患病率还将继续升高。因此如何有效的预防和治疗帕金森病日益引起人们的关注。
     PD的病因尚不清楚,目前认为与线粒体功能异常、氧化应激等因素密切相关。Schapira等首次报道PD病人的黑质内线粒体呼吸链复合物Ⅰ活性降低,之后,大量的文献报道PD病人的血小板、淋巴细胞及肌肉组织内都存在线粒体呼吸链复合物Ⅰ活性降低。因此PD的发病伴随着线粒体功能异常。而且用复合物I的抑制剂鱼藤酮处理后,动物表现出PD样行为学改变,并且黑质纹状体内出现类似PD的病理变化。研究表明PD病人细胞内的氧化产物如活性氧簇(reactive oxygen species,ROS)增多,而抗氧化物如谷胱苷肽(glutathione,GSH)水平降低,引起PD病人的黑质内多不饱和脂肪酸的浓度下降、脂质氧化的标志物丙二醛(malondialdehyde,MDA)和4-羟基壬烯醛(4-hydroxy-2-nonenal,HNE)浓度升高、可溶性蛋白的羰基修饰水平明显提高并且PD病人脑内细胞核DNA和线粒体DNA中的脱氧鸟苷被氧化成8-羟脱氧鸟苷(8-hydroxydeoxyguanosine,8-OHdG),这表明PD病人脑内的脂质、蛋白质及DNA都处于氧化应激状态。
     PD的主要病理变化包括黑质内多巴胺神经元死亡和残留神经元胞浆内蛋白积聚出现嗜酸性包涵体即路易小体(Lewy bodies,LB)。组织学发现LB的纤维成分主要由泛素、神经丝和α-突触核蛋白(α-synuclein,α-syn)组成。α-突触核蛋白是一种突触前神经末梢蛋白,其生理作用尚不明确。据报道它可能参与调节细胞的生长和分化、突触可塑性和递质的释放及参与某些信号传导通路的调节。但α-突触核蛋白基因SNCA的错义点突变A53T、A30P、E46K都可以导致家族性帕金森病症状。另外SNCA的二倍重复突变体和三倍重复突变体也可以引起早发性遗传性帕金森症状,而且在三倍重复突变体家族比二倍重复突变体家族发病年龄早、进程快,这说明α-突触核蛋白表达量也与PD密切相关。许多文献报道非家族性PD病人的脑内也出现α-突触核蛋白表达升高及蛋白的异常积聚。体内和体外的研究也表明,过度表达α-突触核蛋白会造成神经元死亡。这些都提示α-突触核蛋白在PD的发病中起重要作用,抑制其表达可能会阻止或延缓多巴胺能神经元的死亡。
     RNA干扰(RNA interference,RNAi)是一种在转录后水平有效抑制基因表达的方法。化学合成的小干扰RNA(small interference RNA,siRNA)是一种常用的介导RNAi的双链RNA,与载体携带的短发夹RNA结构(short hairpin RNA,shRNA)相比作用时间短暂、转染率低。Fountaine等利用化学合成的siRNA可以减少α-突触核蛋白表达并能抵抗1-甲基-4-苯基吡啶离子(1-methyl-4-phenylpyridinium ion,MPP~+)引起的细胞活性下降,但是否影响了细胞线粒体的功能、凋亡调控因子表达及细胞内氧化应激水平未见报道。
     本研究用采用了分子克隆、基因沉默和细胞培养等技术,构建出靶向α-突触核蛋白的shRNA重组质粒载体,转染细胞并筛选出稳定转染的细胞。利用MPP~+制作PD细胞模型,利用RT-PCR、MTT分析、流式细胞分析和Westernblotting、DCFH-DA法等方法探讨了干扰α-突触核蛋白表达对帕金森病细胞模型的形态改变、线粒体的功能、Bcl-2/Bax表达及细胞内的ROS和GSH水平的影响。以期为PD的基因治疗提供可靠的实验依据,为PD的治疗提供新思路。本研究分三部分,摘要如下:
     第一部分RNAi表达载体的构建及沉默效应的鉴定
     目的:应用基因工程技术构建靶向α-突触核蛋白基因的shRNA表达载体,并将其转染SH-SY5Y细胞系,鉴定其沉默基因的效果。
     方法:
     1.构建靶向α-突触核蛋白基因的shRNA表达载体。根据表达载体的要求和文献报道的有效siRNA的序列,设计合成插入载体的shRNA序列,并以一对无关序列的寡核苷酸作为阴性对照。将单链DNA退火连接,并将退火片段与线性化的质粒载体pGenesil-2.2连接,形成重组质粒pGenesil-α-syn-shRNA与pGenesil-scrambled shRNA。将重组质粒转化感受态大肠杆菌DH5α,筛选卡那霉素抗性(kan~1)的阳性克隆,提取质粒。对构建的表达载体质粒pGenesil-α-syn-shRNA与pGenesil-scrambled shRNA分别经Sall酶切电泳鉴定及DNA测序。
     2.重组质粒转染SH-SY5Y细胞系,鉴定基因沉默效果。将pGenesil-α-syn-shRNA与pGenesil-scrambled shRNA通过阳离子脂质体(Lipofectamin~(TM) 2000)的介导转ASH-SY5Y细胞内,利用G418抗性筛选稳定转染的细胞。转染了pGenesil-α-syn-shRNA的细胞为干扰组,转染了pGenesil-scrambled shRNA的细胞作为载体对照组,未转染任何载体的细胞为正常对照组。提取各组细胞蛋白,利用Western blotting检测各组细胞中α-突触核蛋白的表达水平。
     结果:
     1.构建的表达载体pGenesil-α-syn-shRNA与pGenesil-scrambled shRNA经Sall酶切、琼脂糖凝胶电泳后观察到一条约620bp的条带。DNA测序结果证实目的序列准确无误,与设计结果完全相符。
     2.经G418筛选,可获得稳定转染的pGenesil-α-syn-shRNA与pGenesil-scrambledshRNA的阳性细胞。经Western blotting检测,载体对照组的细胞与正常对照细胞α-突触核蛋白的表达相似,而干扰组细胞内表达的α-突触核蛋白明显降低。
     结论:靶向α-突触核蛋白的表达载体pGenesil-α-syn-shRNA经酶切鉴定及DNA测序证实构建成功,转染细胞后可以稳定地干扰SH-SY5Y细胞内α-突触核蛋白的表达。
     第二部分RNA干扰α-突触核蛋白对MPP~+引起的SH-SY5Y细胞线粒体功能障碍的抑制作用
     目的:研究RNA干扰α-突触核蛋白对MPP~+引起的SH-SY5Y细胞凋亡、线粒体功能障碍和Bcl-2/Bax下降的作用。
     方法:
     1.采用MTT法,检测三组细胞:正常未转染的细胞(正常对照组)、转染pGenesil-scrambled shRNA的细胞(载体对照组)及转染pGenesil-α-syn-shRNA的细胞(干扰组)在不含MPP~+或含500μM MPP~+的培养基中孵育24 h后的细胞活力。
     2.用Hoechst 33258对细胞进行染色,观察正常对照组或干扰组细胞在MPP~+处理后细胞核的形态变化。
     3.用流式细胞技术检测正常对照组或干扰组的细胞在MPP~+处理后线粒体膜电位的变化。
     4.Western blotting检测MPP~+处理后正常对照组或干扰组细胞浆内细胞色素c(cytochrome c)和细胞内Bcl-2、Bax蛋白表达。
     结果:
     1.MPP~+处理24 h后正常对照组、载体对照组和干扰组细胞的活力都显著降低,与MPP~+处理的正常组细胞相比,经MPP~+处理的载体对照组无显著差异,而干扰组细胞能显著抵抗MPP~+引起的细胞活力下降(p<0.05)。
     2.Hoechst 33258染色显示正常对照组细胞在MPP~+处理24 h后有30.2±1.6%细胞核呈凋亡状念,而干扰组细胞与MPP~+共孵育后仅有14.2±1.3%细胞凋亡,与前者相比有明显差异(p<0.05)。
     3.MPP~+作用后,正常对照组低线粒体膜电位的细胞占41.0±1.5%,在MPP~+处理的干扰组此比例仅为13.6±1.2%,两者有显著差异(p<0.05)。
     4.MPP~+引起细胞质中的细胞色素c明显升高,在干扰组细胞中这种升高明显减弱(p<0.05)。
     5.正常对照细胞在MPP~+处理后Bcl-2/Bax比值仅为原来的35.5±3.8%,而干扰组细胞在MPP~+处理后Bcl-2/Bax比值约为85.2±3.0%,比前者明显升高(p<0.05)。
     结论:干扰α-突触核蛋白表达可能通过上调Bcl-2/Bax比值、抵抗线粒体膜电位下降、抑制线粒体内细胞色素c释放进胞浆,从而保护线粒体的正常功能,抵抗MPP~+引起的细胞凋亡。
     第三部分RNA干扰α-突触核蛋白对MPP~+引起的SH-SY5Y细胞内氧化应激的抑制作用
     目的:研究RNA干扰α-突触核蛋白对MPP~+引起的SH-SY5Y细胞内ROS和GSH水平变化的影响作用。
     方法:
     1.将DCFH-DA装载到细胞,利用多功能酶标仪检测荧光强度来显示细胞内的ROS水平。
     2.用GSH分析试剂盒来检测细胞内的GSH水平。
     结果:
     1.MPP~+处理后,SH-SY5Y细胞内ROS水平升高至正常对照组的234.7±3.8%,干扰组细胞经MPP~+处理后,ROS水平升高至149.2±8.2%,但与MPP~+处理的正常对照细胞相比,ROS水平显著降低,差异有统计学意义(p<0.05)。
     2.SH-SY5Y细胞经500μM MPP~+处理后,细胞内的GSH水平降低为正常对照细胞内的56.0±3.5%。干扰组细胞在MPP~+处理后,细胞内的GSH水平为61.1±3.2%,与MPP~+处理的正常对照细胞相比,GSH水平显著升高(p<0.05)。
     结论:干扰α-突触核蛋白表达能抑制MPP~+引起的ROS水平升高和GSH水平降低。这可能是干扰α-突触核蛋白表达能抑制MPP~+细胞毒性的一个原因。
     小结:
     本课题应用基因工程技术构建的shRNA表达质粒能有效地干扰SH-SY5Y细胞内α-突触核蛋白表达并可抑制MPP~+引起的细胞凋亡和形态学改变。其机理可能是通过上调Bcl-2/Bax比值、抵抗线粒体膜电位下降、抑制线粒体内细胞色素c释放进胞浆、拮抗细胞内ROS水平升高及GSH水平下降,从而保护线粒体的正常功能及维持细胞内正常的氧化水平,进而抵抗MPP~+引起的细胞凋亡。
Parkinson's disease (PD) is named after Dr. James Parkinson, who provided a detailed description of this disorder in 1817. The clinical symptoms of PD include resting tremor, rigidity, gait disturbance, postural instability and bradykinesia. Parkinson's disease is the second most common form of neurodegenerative disease, affecting about 1%- 2% of the population older than 60. As the populatin of the elders is growing, more and more attention is attracted to how to prevent or treat PD.
     Although the etiopathology of PD remains elusive, mitochondrial dysfunction and oxidative stress may be involved in disease pathogenesis. The deficit of Complex I in the mitochondrial respiratory chain was firstly reported by Schapira and his colleagues, and then the deficit of Complex I in platelets, lymphocytes and muscles was found. Consistent with this, after chronic exposure to rotenone, a specific Complex I inhibitor, rats showed anatomical, neurochemical, behavioral and neuropathological changes similar to human PD. Postmortem researches showed that in the substantia nigra of patients with PD the cellular reactive oxygen species (ROS) level increased and the cellular glutathione (GSH) level decreased, which led to oxidative damage to lipid, protein and mitochondrial and genomic DNA.
     PD is characterized pathologically by the selective loss of dopaminergic neurons in substantia nigra and the presence of intracytoplasmic protein inclusions called Lewy bodies (LB). Histological research showed thatα- synuclein is one of the main components of LB.α- Synuclein is a presynaptic protein of unknown function. It is reported that it may be involved in regulating cell growth and differentiation, synaptic plasticity, and the release of neurotransmitters and some signal transduction pathway. The point mutations, A53T, A30P, and E46K, in the SNCA gene which encodesα- synuclein cause family PD. And the duplications or triplications of the normal wild-type allele of SNCA lead to autosomal dominant PD, which suggests that the quantity ofα- synuclein expression without point mutations can also be the reason for PD. Furthermore, patients with sporadic forms of the disease present with abnormalα- synuclein accumulation and aggregates in a subset of central and peripheral neurons. Moreover it's reported that increasedα- synuclein levels can be neurotoxic both in vitro and in vivo. The involvement ofα- synuclein in PD points to the possibility that strategies aimed at suppressingα-synuclein may potentially halt or slow down the progression of dopaminergic cell death in PD.
     RNA interference (RNAi) is one method to suppress gene expression. It refers to the specific degradation of homologous mRNA induced by double-stranded RNA (dsRNA). It silences gene on post- transcriptional level. Because of its high efficiency and specificity, it provides a new tool to investigate the gene function and gene therapy. In mammals, there are several strategies to knock down the expression of mRNA. And shRNA expression vector is the most stable and durable method.
     It's reported that 1- methyl- 4- phenylpyridinium ion (MPP~+) could induce mitochondrial dysfunction and oxidative stress in SH-SY5Y cells, while α-synuclein knockdown protected SH- SY5Y cells against MPP~+. However, whether the mitochondrial dysfunction and the oxidative stress in MPP~+ treatedα- synuclein knockdown cells are attenuated is unknown.
     In the present study, the shRNA expression plasmid targetingα- synuclein was constructed and transfected to SH- SY5Y cells using gene engineering, RNA interference and cell culture. After that, stable transfected cells were selected by G418. Then the PD in vitro models was made by MPP~+ treatment. And then RT-PCR, MTT assay, DCFH- DA assay, flow cytometry and Western blotting were used to explore the effect ofα-synuclein knockdown on mitochondrial function, the Bcl-2/ Bax expression and the oxidative stress. The experiments were divided into 3 parts.
     PART I THE CONSTRUCTION OF THE RNAi EXPRESSION VECTOR AND ITS SILENCING EFFECTS ONα- SYNUCLEIN EXPRESSION IN SH-SY5Y CELLS
     Objective: To construct the RNAi expression vector targetingα- synuclein gene (SNCA), and study its silencing effect onα- synuclein expression in SH-SY5Y cells.
     Methods:
     1. The construction of RNAi expression vector targeting SNCA: Design and construction of siRNA oligonucleotides according to the pGenesil vector and the siRNA sequence were confirmed to be valid by a previous report. The whole oligonucleotides template chain is as follows: 5'-TTGGACCAGTTGGGCAAGAA TTTCAAGACGATTCTTGCCCAACT GGTCCTTTTTTG-3'. The sequence of the negative control is 5'-GATCCGACTTCATAAGGCGCATGCTTCAAGACGGCAT GCGCCTTATGAAGTCTTTTTTGTCGACA-3', which bears no homology to any sequences in the human genome database. Therefore, the transcript- hairpin siRNA is expected to have no interference on human genes. Then they were annealed and ligated into a linear pGenesil- 2.2 vector. The recombinant plasmid pGenesil-α-syn- shRNA and pGenesil-scrambled shRNA were transformed respectively into E coli. DH5a. After screening kanamycin- resistant (kan~r) clones, the plasmids were collected. And then they were identified by PCR and DNA sequenee analysis.
     2. Investigate the silencing effect onα-synuclein gene: pGenesil-α- syn-shRNA (α- syn- shRNA) and pGenesil-scrambled shRNA (control vector) were transfected into SH- SY5Y cells using Lipofectamine~(TM) 2000 according to the manufacturers' instructions. Stably transfected cells were selected by G418 (400μg/ml) 24 h after transfection. The expression level ofα- synuclein was analyzed by Western blotting.
     Results:
     1.α- Syn- shRNA and control vector were digested by Sal I enzyme and prepared for agarose gel electrophoresis. A 620bp DNA band was observed under ultraviolet. The DNA sequencing results showed that the inserted sequences were the same with the designed shRNA fragments.
     2. Stable transfected cells were obtained with G418 resistance. The results obtained from Western blotting showed that compared with control,α- syn- shRNA inhibitedα- synuclein protein expression significantly, while pGenesil- scrambled shRNA had no effect onα- synuclein protein level.
     Conclusion: The interfering sequence was successfully cloned into the vector.α- syn- shRNA transfection is an effective and long term silencing method of endogenousα-synuclein.
     PART IIα- SYNUCLEIN KNOCKDOWN SUPPRESSED MPP~+- INDUCED MITOCHONDRAL DYSFUNCTION OF SH- SY5Y CELLS
     Objective:
     1. To evaluated the effect ofα- synuclein knockdown on cell apoptosis and mitochondrial function in MPP~+- induced PD in vitro model.
     2. To evaluated the effect ofα- synuclein knockdown on Bcl- 2/ Bax expression.
     Methods:
     1. After the cells were incubated in MPP~+- free medium or medium containing 500μM MPP~+, MTT assay were used to evaluate the cell viability.
     2. After incubating in MPP~+- free medium or medium containing 500μM MPP~+ for 24 h, cells were washed twice with PBS and incubated with 10μg/ml Hoechst 33258 to show the nuclear morphology.
     3. The mitochondrial membrane potential was detected by flow cytometry.
     4. Western blotting was used to detecte the expression of Bcl- 2, Bax and Cytosolic cytochrome c in control orα- syn- shRNA transfected cells.
     Results:
     1. After treatment with MPP~+ for 24 h, the cell viability of control cells, control vector transfected cells andα- syn- shRNA transfected cells was decreased to 67.7±2.9%, 6.5±3.3% and 89.6±2.7%, respectively. The difference between MPP~+-treated control cells andα-synuclein knockdown is significant (p <0.05).
     2. Very few control cells or cells transfected withα- syn- shRNA showed apoptotic nucleus (0.89±0.4% and 1.03±0.6%, respectively). After 500μM MPP~+ treatment for 24 h, 30.2±1.6% of cells exhibited apoptotic nucleus. However the percentage was 14.2±1.3 % in cells transfected withα-syn-shRNA. The difference between them is significant (p<0.05).
     3. The results showed that after exposure to 500μM MPP~+ for 24 h, about 41.0±1.5% control cells showed low mitochondrial membrane potential. However, the percentage was 13.6±1.2% in MPP~+ treatedα- synuclein knockdown cells. The difference is significant (p <0.05).
     4. MPP~+ induced cytochrome c release significantly, which was about 3.1- fold compared with that of control. However, inα- synuclein knockdown cells, the release of cytochrome c was blocked, which was about 1.4- fold compared with that of control. It's significantly lower than the former (p <0.05). The Bcl- 2/ Bax ratio of SH- SY5Y cells reduced to 35.5±3.8% after MPP~+ treatment, and this ratio was 85.2±3.0% in MPP~+ treatedα- synuclein knockdown cells. It's significantly higher than the former (p <0.05).
     Conclusion:α-Synuclein knockdown suppressed the MPP - induced apoptosis and protected mitochondrial normal function.α- Synuclein knockdown may afford significant neuroprotection against MPP~+- induced injury via up-regulation of Bcl-2/ Bax ratio, attenuating the depression of mitochondrial membrane potential, inhibiting cytochrome c release to cytosole and preventing apoptosis.
     PART IIIα- SYNUCLEIN KNOCKDOWN ATTENUATED MPP~+- INDUCED OXIDATIVE STRESS OF SH- SY5Y CELLS
     Objective: To study the effect ofα- synuclein knockdown on ROS and GSH level in MPP~+- induced PD in vitro model.
     Methods: DCFH- DA was introduced into cells and intracellular ROS level is measured using multi- detection microreader plate. The intracellular GSH level is tested by GSH assay kit.
     Results: Compared to the control group, the intracellular ROS level of SH-SY5Y cells increased to 234.7±3.8% after MPP~+ treatment. Inα- syn- shRNA transfected cells, the ROS level was 149.2±8.2% after MPP~+ treatment, which is significantly lower than that of the MPP~+- treated normal cells ( p<0.05). The intracellular GSH level in MPP~+- treated normal cells was 56.0±3.5% of the normal control group. Inα- syn- shRNA transfected cells, the percentage is 61.1±3.2%, which is much higher than that of the MPP~+- treated normal cells (p<0.05).
     Conclusion:α- Synuclein knockdown attenuated MPP~+- induced elevated ROS level and GSH depletion, which may be one of the reasons whyα- synuclein knockdown suppressed the neurotoxicity of MPP~+.
     Summary:
     The shRNA expressing plasmid constructed by gene engineering could downregulate theα- synuclein expression and suppress MPP~+- induced apoptosis and nuclear morphological changes in SH-SY5Y cells.α- Synuclein knockdown may afford significant neuroprotection against MPP~+- induced injury via upregulation of Bcl-2/ Bax ratio, attenuating the depression of mitochondrial membrane potential, inhibiting cytochrome c release to cytosole, preventing cellular ROS elevation and GSH depletion, thus protecting mitochondrial normal function and maintaining normal oxidative stress.
引文
1. Parkinson J. An essay on the shaking palsy. 1817. J Neuropsychiatry Clin Neurosci. 2002; 14(2):223-36.
    
    2. De Lau LM, Breteler MM. Epidemiology of Parkinson's disease. Lancet Neurol. 2006; 5(6):525-35.
    
    3. Zhang ZX, Roman GC, Hong Z, Wu CB, Qu QM, Huang JB, Zhou B, Geng ZP, Wu JX, Wen HB, Zhao H, Zahner GE. Parkinson's disease in China:prevalence in Beijing, Xian, and Shanghai. Lancet. 2005; 365(9459): 595-7.
    
    4. Blandini F, Nappi G, Greenamyre JT. Quantitative study of mitochondrial complex I in platelets of parkinsonian patients. Mov Disord. 1998; 13(1):11-5.
    
    5. Barroso N, Campos Y, Huertas R, Esteban J, Molina JA, Alonso A,Gutierrez-Rivas E, Arenas J. Respiratory chain enzyme activities in lymphocytes from untreated patients with Parkinson disease. Clin Chem. 1993;39(4): 667-9.
    
    6. Penn AM, Roberts T, Hodder J, Allen PS, Zhu G, Martin WR. Generalized mitochondrial dysfunction in Parkinson's disease detected by magnetic resonance spectroscopy of muscle. Neurology. 1995; 45(11): 2097-9.
    
    7. Schapira AH, Mann VM, Cooper JM, Dexter D, Daniel SE, Jenner P, Clark JB,Marsden CD. Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson's disease. J Neurochem. 1990; 55(6):2142-5.
    
    8. Schapira AH. Mitochondria in the aetiology and pathogenesis of Parkinson's disease. Lancet Neurol. 2008; 7(1): 97-109.
    
    9. B(?)eler H. Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson's disease. Exp Neurol. 2009; 218(2): 235-46.
    
    10. Van Laar VS, Berman SB. Mitochondrial dynamics in Parkinson's disease.Exp Neurol. 2009; 218(2): 247-56.
    11. Andersen JK. Do alterations in glutathione and iron levels contribute to pathology associated with Parkinson's disease? Novartis Found Symp. 2001;235: 11-20.
    
    12. Sian J, Dexter DT, Lees AJ, Daniel S, Agid Y, Javoy-Agid F, Jenner P,Marsden CD. Alterations in glutathione levels in Parkinson's disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol. 1994; 36(3):348-55.
    
    13. Guo S, Yan J, Yang T, Yang X, Bezard E, Zhao B. Protective effects of green tea polyphenols in the 6-OHDA rat model of Parkinson's disease through inhibition of ROS-NO pathway. Biol Psychiatry. 2007; 62(12): 1353-62.
    
    14. Ahn KH, Kim YS, Kim SY, Huh Y, Park C, Jeong JW. Okadaic acid protects human neuroblastoma SH-SY5Y cells from 1-methyl-4-phenylpyridinium ion-induced apoptosis. Neurosci Lett. 2009; 449(2): 93-7.
    
    15. Dexter DT, Carter CJ, Wells FR, Javoy-Agid F, Agid Y, Lees A, Jenner P,Marsden CD. Basal lipid peroxidation in substantia nigra is increased in Parkinson's disease. J Neurochem. 1989; 52(2): 381-9.
    
    16. Yoritaka A, Hattori N, Uchida K, Tanaka M, Stadtman ER, Mizuno Y.Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc Natl Acad Sci U S A. 1996; 93(7): 2696-701.
    
    17. Alam ZI, Daniel SE, Lees AJ, Marsden DC, Jenner P, Halliwell B. A generalised increase in protein carbonyls in the brain in Parkinson's but not incidental Lewy body disease. J Neurochem. 1997; 69(3): 1326-9.
    
    18. Floor E, Wetzel MG. Increased protein oxidation in human substantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assay. J Neurochem. 1998;70(1): 268-75.
    
    19. Alam ZI, Jenner A, Daniel SE, Lees AJ, Cairns N, Marsden CD, Jenner P,Halliwell B. Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J Neurochem. 1997; 69(3): 1196-203.
    
    20. Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, Perry RH, Jaros E,Hersheson JS, Betts J, Klopstock T, Taylor RW, Turnbull DM. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet. 2006; 38(5): 515-7.
    
    21. Nakabeppu Y, Tsuchimoto D, Yamaguchi H, Sakumi K. Oxidative damage in nucleic acids and Parkinson's disease. J Neurosci Res. 2007; 85(5): 919-34.
    
    22. Zhou C, Huang Y, Przedborski S. Oxidative stress in Parkinson's disease: a mechanism of pathogenic and therapeutic significance. Ann N Y Acad Sci.2008; 1147:93-104.
    
    23. Forno LS. Neuropathology of Parkinson's disease. J Neuropathol Exp Neurol 1996; 55: 259-272.
    
    24. Spillantini, MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M,Alpha-synuclein in Lewy bodies. Nature. 1997; 388: 839-840.
    
    25. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science. 1997; 276:2045-2047.
    
    26. Jensen PH, Nielsen MS, Jakes R, Dotti CG, Goedert M. Binding of alpha-synuclein to brain vesicles is abolished by familial Parkinson's disease mutation. J Biol Chem. 1998; 273(41): 26292-4.
    
    27. Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I, Vidal L, Hoenicka J, Rodriguez O, Atares B, Llorens V, Gomez Tortosa E, del Ser T,Mufioz DG, de Yebenes JG. The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann. Neurol. 2004; 55: 164-173.
    
    28. Chartier-Harlin MC, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S, Levecque C, Larvor L, Andrieux J, Hulihan M, Waucquier N, Defebvre L, Amouyel P, Farrer M, Destee A. Alpha-synuclein locus duplication as a cause of familial Parkinson's disease. Lancet. 2004; 364: 1167-1169.
    
    29. Singleton AB, Farrer M, Johnson J. Alpha-synuclein locus triplication causes Parkinson's disease. Science. 2003; 302: 841.
    
    30. Jellinger KA. Lewy body-related alpha-synucleinopathy in the aged human brain. J Neural Transm. 2004; 111(10-11): 1219-35.
    
    31. Zhou W, Schaack J, Zawada WM, Freed CR. Overexpression of human alpha-synuclein causes dopamine neuron death in primary human mesencephalic culture. Brain Res. 2002; 926(1-2): 42-50.
    
    32. Guo JT, Chen AQ, Kong Q, Zhu H, Ma CM, Qin C. Inhibition of vesicular monoamine transporter-2 activity in alpha-synuclein stably transfected SH-SY5Y cells. Cell Mol Neurobiol. 2008; 28(1): 35-47.
    
    33. Lotharius J, Barg S, Wiekop P, Lundberg C, Raymon HK, Brundin P. Effect of mutant alpha-synuclein on dopamine homeostasis in a new human mesencephalic cell line. J Biol Chem. 2002; 277(41): 38884-94.
    
    34. Su X, Federoff HJ, Maguire-Zeiss KA. Mutant alpha-Synuclein over- expression mediates Early Proinflammatory Activity. Neurotox Res. 2009;16(3): 238-54.
    
    35. Theodore S, Cao S, McLean PJ, Standaert DG. Targeted overexpression of human alpha-synuclein triggers microglial activation and an adaptive immune response in a mouse model of Parkinson disease. J Neuropathol Exp Neurol.2008; 67(12): 1149-58.
    
    36. Yamada M, Iwatsubo T, Mizuno Y, Mochizuki H. Overexpression of alpha-synuclein in rat substantia nigra results in loss of dopaminergic neurons,phosphorylation of alpha-synuclein and activation of caspase-9: resemblance to pathogenetic changes in Parkinson's disease. J Neurochem. 2004; 91:451-461.
    
    37. Lauwers E, Beque D, Van Laere K, Nuyts J, Bormans G, Mortelmans L,Casteels C, Vercammen L, Bockstael O, Nuttin B, Debyser Z, Baekelandt V. Non-invasive imaging of neuropathology in a rat model of alpha-synuclein overexpression. Neurobiol Aging. 2007; 28(2): 248-57.
    
    38. Hammond SM, Bernstein E, Beach D, Harmon GJ. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature. 2000;404: 293-6.
    
    39. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998; 391: 806-11.
    
    40. Davenport RJ. Gene sileneing: a faster way to shut down genes. Seience. 2001;292(5521): 1469-1471.
    
    41. Shrey K, Suchit A, Nishant M, Vibha R. RNA interference: emerging diagnostics and therapeutics tool. Biochem Biophys Res Commun. 2009;386(2): 273-7.
    
    42. Huang M, Chan DA, Jia F, Xie X, Li Z, Hoyt G, Robbins RC, Chen X, Giaccia AJ, Wu JC. Short hairpin RNA interference therapy for ischemic heart disease.Circulation. 2008; 118(14 Suppl): S226-33.
    
    43. Anastasov N, Klier M, Koch I, Angermeier D, Hofler H, Fend F,Quintanilla-Martinez L. Efficient shRNA delivery into B and T lymphoma cells using lentiviral vector-mediated transfer. J Hematop. 2009; 2(1): 9-19.
    
    44. Shimohama S, Sawada H, Kitamura Y, Taniguchi T. Disease model: Parkinson's disease. Trends Mol Med. 2003; 9: 360- 365.
    
    45. Fountaine TM, Wade-Martins R. RNA interference-mediated knockdown of alpha-synuclein protects human dopaminergic neuroblastoma cells from MPP~+ toxicity and reduces dopamine transport. J Neurosci Res. 2007; 85(2): 351-63.
    
    46. Fountaine TM, Venda LL, Warrick N, Christian HC, Brundin P, Channon KM,Wade-Martins R. The effect of alpha-synuclein knockdown on MPP~+ toxicity in models of human neurons. Eur J Neurosci. 2008; 28(12): 2459-73.
    1.Napoli C,Lemieux C,Jorgensen R.Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans.Plant Cell 1990;2:279-89.
    2.Fire A,Xu S,Montgomery MK,Kostas SA,Driver SE,Mello CC.Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans.Nature.1998;391:806-11.
    3.Hammond SM,Bernstein E,Beach D,Hannon GJ.An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells.Nature 2000;404:293-6.
    4.Brummelkamp TR,Bernards R,Agami R.A system for stable expression of short interfering RNAs in mammalian cells.Science.2002;296(5567):550-3.
    5.Sapru MK,Yates JW,Hogan S,Jiang L,Halter J,Bohn MC.Silencing of human alpha-synuclein in vitro and in rat brain using lentiviral-mediated RNAi.Exp Neurol.2006;198(2):382-90.
    6.Katiyar-Agarwal S,Morgan R,Dahlbeck D,Borsani O,Villegas A Jr,Zhu JK,Staskawicz BJ,Jin H.A pathogen-inducible endogenous siRNA in plant immunity.Proc.Natl.Acad.Sci.U.S.A.2006;103:18002-18007.
    7.Navarro L,Dunoyer P,Jay F,Arnold B,Dharmasiri N,Estelle M,Voinnet O,Jones JD.A plant miRNA contributes to antibacterial resistance by repressing auxin signaling.Science.2006;312:436-439.
    8. Lovett-Racke AE, Cravens PD, Gocke AR, Racke MK. Therapeutic potential of small interfering RNA for central nervous system diseases. Arch Neurol.2005; 62(12): 1810-3.
    
    9. Kumar A. RNA interference: a multifaceted innate antiviral defense.Retrovirology. 2008; 5: 17.
    
    10. Hajeri PB, Singh SK. siRNAs: their potential as therapeutic agents—Part I.Designing of siRNAs. Drug Discov Today. 2009; 14(17-18): 851-8.
    
    11. Harmon GJ. RNA interference. Nature. 2002; 418(6894): 244-51.
    
    12. Lovett-Racke AE, Cravens PD, Gocke AR, Racke MK, St(?)ve O. Therapeutic potential of small interfering RNA for central nervous system diseases. Arch Neurol. 2005; 62(12): 1810-3.
    
    13. Agami R. RNAi and related mechanisms and their potential use for therapy.Curr Opin Chem Biol. 2002; 6(6): 829-34.
    
    14. Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA.Nature. 2004; 431(7006): 343-9.
    
    15. Song JJ, Smith SK, Hannon GJ, Joshua-Tor L. Crystal structure of Argonaute and its implications for RISC slicer activity. Science. 2004; 305(5689):1434-7.
    
    16. Jinek M, Doudna JA. A three-dimensional view of the molecular machinery of RNA interference. Nature. 2009; 457: 405-12.
    
    17. Yu JY, DeRuiter SL, Turner DL. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci U S A. 2002; 99(9): 6047-52.
    
    18. Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes Dev. 2001; 15(2): 188-200.
    
    19. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T.Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001; 411(6836): 494-8.
    
    20. Abbas-Terki T, Blanco-Bose W, Deglon N, Pralong W, Aebischer P. Lentiviral-mediated RNA interference. Hum Gene Ther. 2002; 13(18):2197-201.
    
    21. Rubinson DA, Dillon CP, Kwiatkowski AV, Sievers C, Yang L, Kopinja J,Rooney DL, Zhang M, Ihrig MM, McManus MT, Gertler FB, Scott ML, Van Parijs L. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet. 2003; 33: 401-6.
    
    22. Eberhardt O, Schulz JB. Gene therapy in Parkinson's disease. Cell Tissue Res.2004; 318(1): 243-260.
    
    23. Tenenbaum L, Chtarto A, Lehtonen E, Blum D, Baekelandt V, Velu T, Brotchi J, Levivier M: Neuroprotective gene therapy for Parkinson's disease. Curr Gene Ther. 2002; 2(4): 451-483.
    
    24. Yu JY, Wang TW, Vojtek AB, Parent JM, Turner DL. Use of short hairpin RNA expression vectors to study mammalian neural development. Methods Enzymol. 2005; 392: 186-99.
    
    25. Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science. 2002; 296(5567): 550-3.
    
    26. Dalby B, Cates S, Harris A, Ohki EC, Tilkins ML, Price PJ, Ciccarone VC.Advanced transfection with Lipofectamine 2000 reagent: primary neurons,siRNA, and high-throughput applications. Methods. 2004; 33(2): 95-103.
    1.Spillantini MG,Schmidt ML,Lee VM,Trojanowski JQ,Jakes R,Goedert M.Alpha-synuclein in Lewy bodies.Nature.1997;388:839-840.
    2. Maroteaux L, Campanelli JT, Scheller RH. Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci.1988; 8(8): 2804-15.
    
    3. Dev KK, Hofele K, Barbieri S, Buchman VL, van der Putten H. alpha-synuclein and its molecular pathophysiological role in neurodegenerative disease. Neuropharmacology. 2003; 45(1): 14-44.
    
    4. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A,Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S,Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM,Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science.1997; 276: 2045- 2047.
    
    5. Jensen PH, Nielsen MS, Jakes R, Dotti CG, Goedert M. Binding of alpha-synuclein to brain vesicles is abolished by familial Parkinson's disease mutation. J Biol Chem. 1998; 273(41): 26292-4.
    
    6. Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I,Vidal L, Hoenicka J, Rodriguez O, Atares B, Llorens V, Gomez Tortosa E,del Ser T, Mufioz DG, de Yebenes JG. The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol.2004; 55: 164-173.
    
    7. Chartier-Harlin MC, Kachergus J, Roumier C, Mouroux V, Douay X,Lincoln S, Levecque C, Larvor L, Andrieux J, Hulihan M, Waucquier N,Defebvre L, Amouyel P, Fairer M, Destee A. Alpha-synuclein locus duplication as a cause of familial Parkinson's disease. Lancet. 2004; 364:1167-1169.
    
    8. Singleton AB, Farrer M, Johnson J. Alpha-synuclein locus triplication causes Parkinson's disease. Science. 2003; 302: 841.
    
    9. Schapira AH, Mann VM, Cooper JM, Dexter D, Daniel SE, Jenner P, Clark JB, Marsden CD. Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson's disease. J Neurochem. 1990;55(6): 2142-5.
    
    10. Schapira AH. Mitochondria in the aetiology and pathogenesis of Parkinson's disease. Lancet Neurol. 2008; 7(1): 97-109.
    
    11. B(?)eler H.Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson's disease. Exp Neurol. 2009; 218(2): 235-46.
    
    12. Van Laar VS, Berman SB. Mitochondrial dynamics in Parkinson's disease.Exp Neurol. 2009; 218(2): 247-56.
    
    13. Litvan I, Halliday G, Hallett M, Goetz CG, Rocca W, Duyckaerts C,Ben-Shlomo Y, Dickson DW, Lang AE, Chesselet MF, Langston WJ, Di Monte DA, Gasser T, Hagg T, Hardy J, Jenner P, Melamed E, Myers RH,Parker D Jr, Price DL. The etiopathogenesis of Parkinson disease and suggestions for future research. Part I. J Neuropathol Exp Neurol. 2007;66(4): 251-257.
    
    14. Kuwana T and Newmeyer D D. Bcl-2-family proteins and the role of mitochondria in apoptosis. Current Opinion in Cell Biology. 2003; 15:691-699.
    
    15. Shimohama S, Sawada H, Kitamura Y, Taniguchi T. Disease model: Parkinson's disease. Trends Mol Med. 2003; 9: 360- 365.
    
    16. Fountaine TM, Wade-Martins R. RNA interference-mediated knockdown of alpha-synuclein protects human dopaminergic neuroblastoma cells from MPP~+toxicity and reduces dopamine transport. J. Neurosci. Res. 2007; 85:351-363.
    
    17. Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A,Sagara Y, Sisk A, Mucke L. Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science. 2000; 287(5456): 1265-9.
    18. Recchia A, Rota D, Debetto P, Peroni D, Guidolin D, Negro A, Skaper SD,Giusti P. Generation of a alpha-synuclein-based rat model of Parkinson's disease. Neurobiol Dis. 2008; 30(1): 8-18. 18.
    
    19. Green DR, Kroemer G. The pathophysiology of mitochondrial cell death.Science. 2004; 305(5684): 626-9.
    
    20. Wang XJ and Xu JX. Salvianic acid A protects human neuroblastoma SH-SY5Y cells against MPP~+-induced cytotoxicity. Neurosci Res. 2005; 51:129-38.
    
    21. Lee do Y, Lee KS, Lee HJ, Noh YH, Kim do H, Lee JY, Cho SH, Yoon OJ,Lee WB, Kim KY, Chung YH, Kim SS. Kynurenic acid attenuates MPP~+-induced dopaminergic neuronal cell death via a Bax-mediated mitochondrial pathway. Eur J Cell Biol. 2008; 87: 389-97.
    
    22. Lashuel HA, Hartley D, Petre BM, Walz T, Lansbury PT Jr.Neurodegenerative disease: amyloid pores from pathogenic mutations.Nature. 2002; 418:291.
    
    23. Furukawa K, Matsuzaki-Kobayashi M, Hasegawa T, Kikuchi A, Sugeno N,Itoyama Y, Wang Y, Yao PJ, Bushlin I, Takeda A. Plasma membrane ion permeability induced by mutant alpha-synuclein contributes to the degeneration of neural cells. J Neurochem. 2006; 97: 1071-1077.
    
    24. Li WW, Yang R, Guo JC, Ren HM, Zha XL, Cheng JS, Cai DF. Localization of a-synuclein to mitochondria within midbrain of mice. Neuroreport. 2007;18: 1543-1546.
    
    25. Parihar MS, Parihar A, Fujita M, Hashimoto M, Ghafourifar P.Mitochondrial association of alpha-synuclein causes oxidative stress. Cell Mol Life Sci. 2008; 65: 1272-1284.
    
    26. Shavali S, Brown-Borg HM, Ebadi M, Porter J. Mitochondrial localization of alpha-synuclein protein in alpha-synuclein overexpressing cells. Neurosci Lett. 2008; 439: 125-128.
    27. Devi L, Raghavendran V, Prabhu BM, Avadhani NG, Anandatheerthavarada HK. Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem. 2008; 283: 9089-100.
    
    28. Vila M and Przedborski S. Targeting programmed cell death in neurodegenerative diseases. Nat Rev Neurosci. 2003; 4: 365-375.
    
    29. Youle RJ and Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol. 2008; 9: 47-59.
    
    30. Shang L, Liu J, Zhu Q, Zhao L, Feng Y, Wang X, Cao W, Xin H.Gypenosides protect primary cultures of rat cortical cells against oxidative neurotoxicity. Brain Res. 2006; 1102: 163-174.
    
    31. Bouillet P, Purton JF, Godfrey DI, Zhang LC, Coultas L, Puthalakath H,Pellegrini M, Cory S, Adams JM, Strasser A. BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature.2002, 415(6874): 922-926.
    
    32. Jerry DR, Baverstock PR: Consequences of a catadromous life-strategy for levels of mitochondrial DNA differentiation among populations of the Australian bass, Macquaria novemaculeata. Mol Ecol. 1998; 7(8):1003-1013.
    
    33. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science. 1997; 275(5303): 1132-1136.
    
    34. Youdim MB, Arraf Z. Prevention of MPTP (N-methyl-4-phenyl-1, 2, 3, 6- tetrahydropyridine) dopaminergic neurotoxicity in mice by chronic lithium:involvements of Bcl-2 and Bax. Neuropharmacology. 2004; 46(8): 1130-40.
    
    35. Wei H, Kang B, Wei W, Liang G, Meng QC, Li Y, Eckenhoff RG. Isoflurane and sevoflurane affect cell survival and BCL-2/BAX ratio differently. Brain Res. 2005; 1037(1-2): 139-147.
    
    36. Yang E, Korsmeyer SJ. Molecular thanatopsis: a discourse on the Bcl-2 family and cell death. Blood. 1996; 88: 386-401.
    1.Dexter DT,Carter CJ,Wells FR,Javoy-Agid F,Agid Y,Lees A,Jenner P,Marsden CD.Basal lipid peroxidation in substantia nigra is increased in Parkinson's disease.J Neurochem.1989;52(2):381-9.
    2.Yoritaka A,Hattori N,Uchida K,Tanaka M,Stadtman ER,Mizuno Y. Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc Natl Acad Sci U S A. 1996; 93(7): 2696-701.
    
    3. Alam ZI, Daniel SE, Lees AJ, Marsden DC, Jenner P, Halliwell B. A generalised increase in protein carbonyls in the brain in Parkinson's but not incidental Lewy body disease. J Neurochem. 1997; 69(3): 1326-9.
    
    4. Floor E, Wetzel MG Increased protein oxidation in human substantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assay. J Neurochem. 1998;70(1): 268-75.
    
    5. Alam ZI, Jenner A, Daniel SE, Lees AJ, Cairns N, Marsden CD, Jenner P,Halliwell B. Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J Neurochem.1997; 69(3): 1196-203.
    
    6. Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, Perry RH, Jaros E, Hersheson JS, Betts J, Klopstock T, Taylor RW, Turnbull DM. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet. 2006; 38(5): 515-7.
    
    7. Nakabeppu Y, Tsuchimoto D, Yamaguchi H, Sakumi K. Oxidative damage in nucleic acids and Parkinson's disease. J Neurosci Res. 2007; 85(5): 919-34.
    
    8. Andersen JK. Do alterations in glutathione and iron levels contribute to pathology associated with Parkinson's disease? Novartis Found Symp. 2001;235: 11-20.
    
    9. Sian J, Dexter DT, Lees AJ, Daniel S, Agid Y, Javoy-Agid F, Jenner P,Marsden CD. Alterations in glutathione levels in Parkinson's disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol. 1994; 36(3):348-55.
    
    10. Guo S, Yan J, Yang T, Yang X, Bezard E, Zhao B. Protective effects of green tea polyphenols in the 6-OHDA rat model of Parkinson's disease through inhibition of ROS-NO pathway. Biol Psychiatry. 2007; 62(12): 1353-62.
    11. Ahn KH, Kim YS, Kim SY, Huh Y, Park C, Jeong JW. Okadaic acid protects human neuroblastoma SH-SY5Y cells from l-methyl-4-phenylpyridiniumion-induced apoptosis. Neurosci Lett. 2009; 449(2): 93-7.
    
    12. Zhou C, Huang Y, Przedborski S. Oxidative stress in Parkinson's disease: a mechanism of pathogenic and therapeutic significance. Ann N Y Acad Sci.2008;1147: 93-104.
    
    13. Tsang AH, Chung KK. Oxidative and nitrosative stress in Parkinson's disease. Biochim Biophys Acta. 2009; 1792(7): 643-50.
    
    14. Henchcliffe C, Beal MF. Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neurol. 2008; 4(11): 600-9.
    
    15. Cadenas E, Davies KJ. Mitochondrial free radical generation, oxidative stress,and aging. Free Radic Biol Med. 2000; 29(3-4): 222-30.
    
    16. Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006; 443(7113): 787-95.
    
    17. Swerdlow RH, Parks JK, Miller SW, Tuttle JB, Trimmer PA, Sheehan JP,Bennett JP Jr, Davis RE, Parker WD Jr. Origin and functional consequences of the complex I defect in Parkinson's disease. Ann Neurol. 1996; 40(4): 63-71.
    
    18. Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP, Jellinger K,Youdim MB. Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem. 1989; 52(2): 515-20.
    
    19. Dexter DT, Holley AE, Flitter WD, Slater TF, Wells FR, Daniel SE, Lees AJ,Jenner P, Marsden CD. Increased levels of lipid hydroperoxides in the parkinsonian substantia nigra: an HPLC and ESR study. Mov Disord. 1994;9(1): 92-7.
    
    20. Hattoria N, Wanga M, Taka H, Fujimura T, Yoritaka A, Kubo S, Mochizuki H.Toxic effects of dopamine metabolism in Parkinson's disease. Parkinsonism Relat Disord. 2009; Suppl 1: S35-8.
    
    21. Asanuma M, Miyazaki I, Ogawa N. Asanuma M, Miyazaki I, Ogawa N.Dopamine- or L-DOPA-induced neurotoxicity: the role of dopamine quinone formation and tyrosinase in a model of Parkinson's disease. Neurotox Res.2003; 5(3): 165-76.
    
    22. Hastings TG. Enzymatic oxidation of dopamine: the role of prostaglandin H synthase. J Neurochem. 1995; 64(2): 919-24.
    
    23. Youdim MB. Brain monoamine oxidase (MAO) B: a unique neurotoxin and neurotransmitter producing enzyme. Prog Neuropsychopharmacol Biol Psychiatry. 1989; 13(3-4): 363-71.
    
    24. Jung TW, Lee JY, Shim WS, Kang ES, Kim SK, Ahn CW, Lee HC, Cha BS.Rosiglitazone protects human neuroblastoma SH-SY5Y cells against MPP+ induced cytotoxicity via inhibition of mitochondrial dysfunction and ROS production. J Neurol Sci. 2007; 253(1-2): 53-60.
    
    25. Kim SY, Kim MY, Mo JS, Park JW, Park HS. SAG protects human neuroblastoma SH-SY5Y cells against 1-methyl-4-phenylpyridinium ion (MPP+)-induced cytotoxicity via the downregulation of ROS generation and JNK signaling. Neurosci Lett. 2007; 413(2): 132-6.
    
    26. Kalivendi SV, Kotamraju S, Cunningham S, Shang T, Hillard CJ, Kalyanaraman B. 1-Methyl-4-phenylpyridinium (MPP~+)-induced apoptosis and mitochondrial oxidant generation: role of transferrin-receptor-dependent iron and hydrogen peroxide. Biochem J. 2003; 371(Pt 1): 151-64.
    
    27. Li WW, Yang R, Guo JC, Ren HM, Zha XL, Cheng JS, Cai DF. Localization of a-synuclein to mitochondria within midbrain of mice. Neuroreport. 2007;18: 1543-1546.
    
    28. Parihar MS, Parihar A, Fujita M, Hashimoto M, Ghafourifar P. Mitochondrial association of alpha-synuclein causes oxidative stress. Cell Mol Life Sci. 2008;65: 1272-1284.
    
    29. Shavali S, Brown-Borg HM, Ebadi M, Porter J. Mitochondrial localization of alpha-synuclein protein in alpha-synuclein overexpressing cells. Neurosci Lett.2008; 439: 125-128.
    
    30. Devi L, Raghavendran V, Prabhu BM, Avadhani NG, Anandatheerthavarada HK. Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem. 2008; 283: 9089-100.
    
    31. Lotharius J, Barg S, Wiekop P, Lundberg C, Raymon HK, Brundin P.Effect of mutant alpha-synuclein on dopamine homeostasis in a new human mesencephalic cell line. J Biol Chem. 2002; 277(41): 38884-94.
    
    32. Guo JT, Chen AQ, Kong Q, Zhu H, Ma CM, Qin C. Inhibition of vesicular monoamine transporter-2 activity in alpha-synuclein stably transfected SH-SY5Y cells. Cell Mol Neurobiol. 2008; 28(1): 35-47.
    
    33. Lauwers E, Beque D, Van Laere K, Nuyts J, Bormans G, Mortelmans L,Casteels C, Vercammen L, Bockstael O, Nuttin B, Debyser Z, Baekelandt V.Non-invasive imaging of neuropathology in a rat model of alpha-synuclein overexpression. Neurobiol Aging. 2007; 28(2): 248-57.
    
    34. Adamczyk A, Kazmierczak A, Strosznajder JB. Alpha-synuclein and its neurotoxic fragment inhibit dopamine uptake into rat striatal synaptosomes.Relationship to nitric oxide. Neurochem Int. 2006; 49(4): 407-12.
    
    35. Spina MB, Squinto SP, Miller J, Lindsay RM, Hyman C. Brain-derived neurotrophic factor protects dopamine neurons against 6-hydroxydopamine and N-methyl-4-phenylpyridinium ion toxicity: involvement of the glutathione system. J Neurochem. 1992; 59(1): 99-106.
    
    36. Gabby M, Tauber M, Porat S, Simantov R. Selective role of glutathione in protecting human neuronal cells from dopamine-induced apoptosis.Neuropharmacology. 1996; 35(5): 571-8.
    
    37. Stokes AH, Lewis DY, Lash LH, Jerome WG 3rd, Grant KW, Aschner M,Vrana KE. Dopamine toxicity in neuroblastoma cells: role of glutathione depletion by L-BSO and apoptosis. Brain Res. 2000; 858(1): 1-8.
    
    38. Tarozzi A, Morroni F, Merlicco A, Hrelia S, Angeloni C, Cantelli-Forti G,Hrelia P. Sulforaphane as an inducer of glutathione prevents oxidative stress-induced cell death in a dopaminergic-like neuroblastoma cell line. J Neurochem. 2009; 111(5): 1161-71.
    
    39. Andersen JK, Mo JQ, Horn DG, Lee FY, Harnish P, Hamill RW, McNeill TH. Effect of buthionine sulfoximine, a synthesis inhibitor of the antioxidant glutathione, on the murine nigrostriatal neurons. J Neurochem. 1996; 67(5):2164-71.
    
    40. Li Y, Maher P, Schubert D. A role for 12-lipoxygenase in nerve cell death caused by glutathione depletion. Neuron. 1997; 19: 453-63.
    
    41. Kramer BC, Yabut JA, Cheong J, Jnobaptiste R, Robakis T, Olanow CW,Mytilineou C. Toxicity of glutathione depletion in mesencephalic cultures: a role for arachidonic acid and its lipoxygenase metabolites. Eur J Neurosci.2004; 19(2): 280-6.
    
    42. Han YS, Lee CS. Antidepressants reveal differential effect against 1-methyl-4-phenylpyridinium toxicity in differentiated PC12 cells. Eur J Pharmacol. 2009; 604(1-3): 36-44.
    1. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M.Alpha- synuclein in Lewy bodies. Nature. 1997; 388:839-40.
    
    2. Chartier- Harlin MC, Kachergus J, Roumier C, Mouroux V, Douay X,Lincoln S, Levecque C, Larvor L, Andrieux J, Hulihan M, Waucquier N,Defebvre L, Amouyel P, Farrer M, Destee A. Alpha- synuclein locus duplication as a cause of familial Parkinson's disease. Lancet. 2004; 364:1167-1169.
    
    3. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL. Mutation in the alpha- synuclein gene identified in families with Parkinson's disease. Science. 1997; 276:2045-7.
    
    4. Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I,Vidal L, Hoenicka J, Rodriguez O, Atares B, Llorens V, Gomez Tortosa E,del Ser T, Mufioz DG, de Yebenes JG. The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol. 2004; 55:164-173.
    
    5. Chiba-Falek O, Lopez GJ, Nussbaum RL. Levels of alpha- synuclein mRNA in sporadic Parkinson disease patients. Mov Disord. 2006; 21: 1703-8.
    6. Purisai MG, McCormack AL, Langston WJ, Johnston LC, Di Monte DA.Alpha- synuclein expression in the substantia nigra of MPTP- lesioned non-human primates. Neurobiol Dis. 2005; 20: 898-906.
    
    7. Kalivendi SV, Cunningham S, Kotamraju S, Joseph J, Hillard CJ,Kalyanaraman B. Alpha- synuclein up- regulation and aggregation during MPP~+- induced apoptosis in neuroblastoma cells: intermediacy of transferrin receptor iron and hydrogen peroxide. J Biol Chem. 2004; 279: 15240-7.
    
    8. Gomez- Santos C, Ferrer I, Reiriz J, Vifials F, Barrachina M, Ambrosio S.MPP~+ increases alpha- synuclein expression and ERK/MAP- kinase phosphorylation in human neuroblastoma SH-SY5Y cells. Brain Res. 2002;935: 32-9.
    
    9. Shimohama S, Sawada H, Kitamura Y, Taniguchi T. Disease model:Parkinson's disease. Trends Mol Med. 2003; 9: 360-5.
    
    10. Fountaine TM and Wade- Martins R. RNA interference- mediated knockdown of alpha- synuclein protects human dopaminergic neuroblastoma cells from MPP~+ toxicity and reduces dopamine transport. J Neurosci Res. 2007; 85: 351-63.
    
    11. Fall CP and Bennett JPJr. Characterization and time course of MPP~+ -induced apoptosis in human SH-SY5Y neuroblastoma cells. J Neurosci Res.1999; 55: 620-8.
    
    12. Valverde G De Andrade D, Madureira de Oliveria D, Barreto G, Bertolino LA, Saraceno E, Capani F, Giraldez LD. Effects of the extract of Anemopaegma mirandum (Catuaba) on Rotenone- induced apoptosis in human neuroblastomas SH-SY5Y cells. Brain Res. 2008; 1198: 188-96.
    
    13. Murayama K, Singh NN, Helmrich A, Barnes DW. Neural cell lines. Protocols for neural cell culture (3~(rd) edition). Humana Press. 2001; Totowa,PP. 219-220.
    
    14. Cheung YT, Lau WK, Yu MS, Lai CS, Yeung SC, So KF, Chang RC. Effects of all- trans- retinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity research. Neurotoxicology. 2009; 30: 127- 35.
    
    15. Dauer W, Kholodilov N, Vila M, Trillat AC, Goodchild R, Larsen KE, Staal R, Tieu K, Schmitz Y, Yuan CA, Rocha M, Jackson- Lewis V, Hersch S,Sulzer D, Przedborski S, Burke R, Hen R. Resistance of alpha- synuclein null mice to the parkinsonian neurotoxin MPTP. Proc Natl Acad Sci U S A.2002; 99: 14524-9.
    
    16. Klivenyi P, Siwek D, Gardian G, Yang L, Starkov A, Cleren C, Ferrante RJ,Kowall NW, Abeliovich A, Beal MF. Mice lacking alpha- synuclein are resistant to mitochondrial toxins. Neurobiol Dis. 2006; 21: 541-8.
    
    17. Wang XJ and Xu JX. Salvianic acid A protects human neuroblastoma SH-SY5Y cells against MPP+- induced cytotoxicity. Neurosci Res. 2005; 51:129-38.
    
    18. Lee do Y, Lee KS, Lee HJ, Noh YH, Kim do H, Lee JY, Cho SH, Yoon OJ,Lee WB, Kim KY, Chung YH, Kim SS. Kynurenic acid attenuates MPP~+-induced dopaminergic neuronal cell death via a Bax- mediated mitochondrial pathway. Eur J Cell Biol. 2008; 87: 389-97.
    
    19. Furukawa K, Matsuzaki- Kobayashi M, Hasegawa T, Kikuchi A, Sugeno N,Itoyama Y, Wang Y, Yao PJ, Bushlin I, Takeda A. Plasma membrane ion permeability induced by mutant alpha- synuclein contributes to the degeneration of neural cells. J Neurochem. 2006; 97: 1071-1077.
    
    20. Lashuel HA, Hartley D, Petre BM, Walz T, Lansbury PT Jr. Neurodegerative disease: amyloid pores from pathogenic mutations. Nature. 2002; 418: 291.
    
    21. Li WW, Yang R, Guo JC, Ren HM, Zha XL, Cheng JS, Cai DF. Localization of a- synuclein to mitochondria within midbrain of mice. Neuroreport. 2007;18: 1543-1546.
    
    22. Parihar MS, Parihar A, Fujita M, Hashimoto M, Ghafourifar P. Mitochondrial association of alpha- synuclein causes oxidative stress. Cell Mol Life Sci. 2008; 65: 1272-1284.
    
    23. Shavali S, Brown- Borg HM, Ebadi M, Porter J. Mitochondrial localization of alpha- synuclein protein in alpha- synuclein overexpressing cells.Neurosci Lett. 2008; 439: 125-128.
    
    24. Devi L, Raghavendran V, Prabhu BM, Avadhani NG, Anandatheerthavarada HK. Mitochondrial Import and Accumulation of a- Synuclein Impair Complex I in Human Dopaminergic Neuronal Cultures and Parkinson Disease Brain. J Biol Chem. 2008; 283: 9089-100.
    
    25. Vila M and Przedborski S. Targeting programmed cell death in neurodegenerative diseases. Nat Rev Neurosci. 2003; 4: 365-375.
    
    26. Youle RJ and Strasser A. The BCL- 2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol. 2008; 9: 47-59.
    
    27. Shang L, Liu J, Zhu Q, Zhao L, Feng Y, Wang X, Cao W, Xin H. Gypenosides protect primary cultures of rat cortical cells against oxidative neurotoxicity. Brain Res. 2006; 1102: 163-174.
    
    28. Yang E, Korsmeyer SJ. Molecular thanatopsis: a discourse on the BCL2 family and cell death, Blood. 1996; 88: 386-401.
    
    29. Sapru MK, Yates JW, Hogan S, Jiang L, Halter J, Bohn MC. Silencing of human a- synuclein in vitro and in rat brain using lentiviral- mediated RNAi.Exp Neurol. 2006; 198: 382-390.
    
    30. Feng L, Meng H, Wu F, Cheng B, He X, Wang X, Li Z, Liu S. Olfactory ensheathing cells conditioned medium prevented apoptosis induced by 6-OHDA in PC12 cells through modulation of intrinsic apoptotic pathways. Int J Dev Neurosci. 2008; 26: 323-9.
    
    31. Liu ZM, Chen GG, Vlantis AC, Tse G.M, Shum CK, van Hasselt CA. Calcium- mediated activation of PI3K and p53 leads to apoptosis in thyroid carcinoma cells. Cell Mol Life Sci. 2007; 64: 1428-1436.
    1. Maroteaux L, Campanelli JT, Scheller RH. Synuclein: a neuron- specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci.1988; 8(8): 2804-15.
    
    2. Jakes R, Spillantini MG, Goedert M. Identification of two distinct synucleins from human brain. FEBS Lett. 1994; 345(1): 27-32.
    
    3. Biere AL, Wood SJ, Wypych J, Steavenson S, Jiang Y, Anafi D, Jacobsen FW, Jarosinski MA, Wu GM, Louis JC, Martin F, Narhi LO, Citron M.Parkinson's disease- associated alpha- synuclein is more fibrillogenic than beta- and gamma- synuclein and cannot cross- seed its homologs. J Biol Chem. 2000; 275(44): 34574-9.
    
    4. Spillantini MG, Divane A, Goedert M. Assignment of human alpha-synuclein (SNCA) and beta- synuclein (SNCB) genes to chromosomes 4q21and 5q35. Genomics. 1995; 27(2): 379-81.
    
    5. Zhu M, Fink AL. Lipid binding inhibits alpha- synuclein fibril formation. J Biol Chem. 2003; 278(19): 16873-7.
    
    6. Jao CC, Der- Sarkissian A, Chen J, Langen R. Structure of membrane-bound alpha- synuclein studied by site- directed spin labeling. Proc Natl Acad Sci U S A. 2004; 101(22): 8331-6.
    
    7. Davidson WS, Jonas A, Clayton DF, George JM. Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem. 1998; 273(16): 9443-9.
    8. Perrin RJ, Woods WS, Clayton DF, George JM. Interaction of human alpha-Synuclein and Parkinson's disease variants with phospholipids. Structural analysis using site- directed mutagenesis. J Biol Chem. 2000; 275(44):34393-8.
    
    9. Serpell LC, Berriman J, Jakes R, Goedert M, Crowther RA. Fiber diffraction of synthetic alpha- synuclein filaments shows amyloid- like cross- beta conformation. Proc Natl Acad Sci U S A. 2000; 97(9): 4897-902.
    
    10. Bodles AM, Guthrie DJ, Harriott P, Campbell P, Irvine GB. Toxicity of non-abeta component of Alzheimer's disease amyloid, and N- terminal fragments thereof, correlates to formation of beta- sheet structure and fibrils. Eur J Biochem. 2000; 267(8): 2186-94.
    
    11. Assayag K, Yakunin E, Loeb V, Selkoe DJ, Sharon R. Polyunsaturated fatty acids induce alpha- synuclein- related pathogenic changes in neuronal cells.Am J Pathol. 2007; 171(6): 2000-11.
    
    12. Sharon R, Bar- Joseph I, Frosch MP, Walsh DM, Hamilton JA, Selkoe DJ.The formation of highly soluble oligomers of alpha- synuclein is regulated by fatty acids and enhanced in Parkinson's disease. Neuron. 2003; 37(4):583-95.
    
    13. Souza JM, Giasson BI, Lee VM, Ischiropoulos H. Chaperone- like activity of synucleins. FEBS Lett. 2000; 474(1): 116-9.
    
    14. Ostrerova N, Petrucelli L, Farrer M, Mehta N, Choi P, Hardy J, Wolozin B.alpha- Synuclein shares physical and functional homology with 14- 3- 3 proteins. J Neurosci. 1999; 19(14): 5782-91.
    
    15. Davidson WS, Jonas A, Clayton DF, George JM. Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem. 1998; 273(16): 9443-9.
    
    16. Weinreb PH, Zhen W, Poon AW, Conway KA, Lansbury PT Jr. NACP, a protein implicated in Alzheimer's disease and learning, is natively unfolded.Biochemistry. 1996; 35(43): 13709-15.
    17. Zhang ZX, Roman GC, Hong Z, Wu CB, Qu QM, Huang JB, Zhou B, Geng ZP, Wu JX, Wen HB, Zhao H, Zahner GE. Parkinson's disease in China: prevalence in Beijing, Xian, and Shanghai. Lancet. 2005; 365(9459): 595-7.
    
    18. de Lau LM, Breteler MM. Epidemiology of Parkinson's disease. Lancet Neurol. 2006; 5(6): 525-35.
    
    19. Litvan I, Halliday G, Hallett M, Goetz CG, Rocca W, Duyckaerts C, Ben-Shlomo Y, Dickson DW, Lang AE, Chesselet MF, Langston WJ, Di Monte DA, Gasser T, Hagg T, Hardy J, Jenner P, Melamed E, Myers RH, Parker D Jr, Price DL. The etiopathogenesis of Parkinson disease and suggestions for future research. Part I. J Neuropathol Exp Neurol 2007, 66(4): 251-257.
    
    20. Forno LS. Neuropathology of Parkinson's disease. J Neuropathol Exp Neurol 1996; 55: 259-272.
    
    21. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. Alpha- synuclein in Lewy bodies. Nature 1997; 388: 839-840.
    
    22. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL. Mutation in the alpha- synuclein gene identified in families with Parkinson's disease. Science. 1997; 276:2045-2047.
    
    23. Kriiger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, Przuntek H,Epplen JT, Schols L, Riess O. Ala30Pro mutation in the gene encoding alpha- synuclein in Parkinson's disease. Nat Genet. 1998; 18(2): 106-8.
    
    24. Zarranz JJ, Alegre J, Gomez- Esteban JC, Lezcano E, Ros R, Ampuero I, Vidal L, Hoenicka J, Rodriguez O, Atares B, Llorens V, Gomez Tortosa E, del Ser T, Munoz DG, de Yebenes JG. The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol. 2004; 55:164-173.
    
    25. Chattier- Harlin MC, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S, Levecque C, Larvor L, Andrieux J, Hulihan M, Waucquier N,Defebvre L, Amouyel P, Fairer M, Destee A. Alpha- synuclein locus duplication as a cause of familial Parkinson's disease. Lancet. 2004; 364:1167-1169.
    
    26. Singleton AB, Fairer M, Johnson J. Alpha- synuclein locus triplication causes Parkinson's disease. Science. 2003; 302: 841.
    
    27. Chiba- Falek O, Lopez GJ, Nussbaum RL. Levels of alpha- synuclein mRNA in sporadic Parkinson disease patients. Mov Disord. 2006; 21(10):1703-8.
    
    28. Grundemann J, Schlaudraff F, Haeckel O, Liss B. Elevated alpha- synuclein mRNA levels in individual UV- laser- microdissected dopaminergic substantia nigra neurons in idiopathic Parkinson's disease. Nucleic Acids Res. 2008; 36(7): e38.
    
    29. Seo JH, Rah JC, Choi SH, Shin JK, Min K, Kim HS, Park CH, Kim S, Kim EM, Lee SH, Lee S, Suh SW, Suh YH. Alpha- synuclein regulates neuronal survival via Bcl- 2 family expression and PI3/Akt kinase pathway. FASEB J.2002; 16(13): 1826-8.
    
    30. Zhou W, Schaack J, Zawada WM, Freed CR. Overexpression of human alpha- synuclein causes dopamine neuron death in primary human mesencephalic culture. Brain Res. 2002; 926(1-2): 42-50.
    
    31. Chesselet MF. In vivo alpha- synuclein overexpression in rodents: a useful model of Parkinson's disease? Exp Neurol. 2008; 209(1): 22-7.
    
    32. Vamvaca K, Voiles MJ, Lansbury PT Jr. The first N- terminal amino acids of alpha- synuclein are essential for alpha- helical structure formation in vitro and membrane binding in yeast. J Mol Biol. 2009; 389(2): 413-24.
    
    33. St(?)ckl M, Fischer P, Wanker E, Herrmann A. Alpha- synuclein selectively binds to anionic phospholipids embedded in liquid- disordered domains. J Mol Biol. 2008; 375(5): 1394-404.
    
    34. Van Rooijen BD, Claessens MM, Subramaniam V. Membrane binding of oligomeric alpha- synuclein depends on bilayer charge and packing. FEBS Lett. 2008; 582(27): 3788-92.
    
    35. Lashuel HA, Hartley D, Petre BM, Walz T, Lansbury PT Jr. Neurodegenerative disease: amyloid pores from pathogenic mutations.Nature. 2002; 418:291.
    
    36. Furukawa K, Matsuzaki- Kobayashi M, Hasegawa T, Kikuchi A, Sugeno N,Itoyama Y, Wang Y, Yao PJ, Bushlin I, Takeda A. Plasma membrane ion permeability induced by mutant alpha- synuclein contributes to the degeneration of neural cells. J Neurochem. 2006; 97: 1071-1077.
    
    37. Hsu LJ, Sagara Y, Arroyo A, Rockenstein E, Sisk A, Mallory M, Wong J,Takenouchi T, Hashimoto M, Masliah E. Alpha- Synuclein promotes mitochondrial deficit and oxidative stress. Am J Pathol. 2000; 157:401-410.
    
    38. Smith WW, Jiang H, Pei Z, Tanaka Y, Morita H, Sawa A, Dawson VL,Dawson TM, Ross CA. Endoplasmic reticulum stress and mitochondrial cell death pathways mediate A53T mutant alpha- synucleininduced toxicity.Hum Mol Genet. 2005; 14: 3801-3811.
    
    39. Li WW, Yang R, Guo JC, Ren HM, Zha XL, Cheng JS, Cai DF.Localization of alpha- synuclein to mitochondria within midbrain of mice.Neuroreport. 2007; 18(15): 1543-6.
    
    40. Zhang L, Zhang C, Zhu Y, Cai Q, Chan P, Ueda K, Yu S, Yang H. Semi-quantitative analysis of alpha- synuclein in subcellular pools of rat brain neurons: an immunogold electron microscopic study using a C- terminal specific monoclonal antibody. Brain Res. 2008; 1244: 40-52.
    
    41. Cole NB, Dieuliis D, Leo P, Mitchell DC, Nussbaum RL. Mitochondrial translocation of alpha- synuclein is promoted by intracellular acidification.Exp Cell Res. 2008; 314(10): 2076-89.
    
    42. Devi L, Raghavendran V, Prabhu BM, Avadhani NG, Anandatheerthavarada HK. Mitochondrial import and accumulation of alpha- synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem. 2008; 283: 9089-100.
    
    43. Shavali S, Brown- Borg HM, Ebadi M, Porter J. Mitochondrial localization of alpha- synuclein protein in alpha- synuclein overexpressing cells.Neurosci Lett. 2008; 439: 125-128.
    
    44. Parihar MS, Parihar A, Fujita M, Hashimoto M, Ghafourifar P.Mitochondrial association of alpha- synuclein causes oxidative stress. Cell Mol Life Sci. 2008; 65: 1272-1284.
    
    45. Lee SJ, Jeon H, Kandror KV. Alpha- synuclein is localized in a subpopulation of rat brain synaptic vesicles. Acta Neurobiol Exp (Wars).2008; 68(4): 509-15.
    
    46. Fortin DL, Nemani VM, Voglmaier SM, Anthony MD, Ryan TA, Edwards RH. Neural activity controls the synaptic accumulation of alpha- synuclein.J Neurosci. 2005; 25(47): 10913-21.
    
    47. Larsen KE, Schmitz Y, Troyer MD, Mosharov E, Dietrich P, Quazi AZ,Savalle M, Nemani V, Chaudhry FA, Edwards RH, Stefanis L, Sulzer D.Alpha- synuclein overexpression in PC 12 and chromaffm cells impairs catecholamine release by interfering with a late step in exocytosis. J Neurosci. 2006; 26(46): 11915-22.
    
    48. Kamp F, Beyer K. Binding of alpha- synuclein affects the lipid packing in bilayers of small vesicles. J Biol Chem. 2006; 281(14): 9251-9.
    
    49. Ben Gedalya T, Loeb V, Israeli E, Altschuler Y, Selkoe DJ, Sharon R. Alpha- synuclein and polyunsaturated fatty acids promote clathrin- mediated endocytosis and synaptic vesicle recycling. Traffic. 2009; 10(2): 218-34.
    
    50. Kjaer L, Giehm L, Heimburg T, Otzen D. The influence of vesicle size and composition on alpha- synuclein structure and stability. Biophys J. 2009;96(7): 2857-70.
    
    51. Tehranian R, Montoya SE, Van Laar AD, Hastings TG, Perez RG. Alpha-synuclein inhibits aromatic amino acid decarboxylase activity in dopaminergic cells. J Neurochem. 2006; 99(4): 1188-96.
    52. Perez RG, Waymire JC, Lin E, Liu JJ, Guo F, Zigmond MJ. A role for alpha-synuclein in the regulation of dopamine biosynthesis. J Neurosci. 2002;22(8): 3090-9.
    
    53. Lotharius J, Barg S, Wiekop P, Lundberg C, Raymon HK, Brundin P.Effect of mutant alpha- synuclein on dopamine homeostasis in a new human mesencephalic cell line. J Biol Chem. 2002; 277(41): 38884-94.
    
    54. Lotharius J, Brundin P. Impaired dopamine storage resulting from alpha-synuclein mutations may contribute to the pathogenesis of Parkinson's disease. Hum Mol Genet. 2002; 11(20): 2395-407.
    
    55. Fountaine TM, Venda LL, Warrick N, Christian HC, Brundin P, Channon KM, Wade- Martins R.The effect of alpha- synuclein knockdown on MPP~+ toxicity in models of human neurons. Eur J Neurosci. 2008; 28(12):2459-73.
    
    56. Adamczyk A, Kazmierczak A, Strosznajder JB. Alpha- synuclein and its neurotoxic fragment inhibit dopamine uptake into rat striatal synaptosomes: Relationship to nitric oxide. Neurochem Int. 2006; 49(4): 407-12.
    
    57. Fountaine TM, Wade- Martins R. RNA interference- mediated knockdown of alpha- synuclein protects human dopaminergic neuroblastoma cells from MPP~+ toxicity and reduces dopamine transport. J Neurosci Res. 2007; 85(2):351-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700