基因敲除鼠的建立及其表型的初步分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
线粒体通过氧化磷酸化(OXPHOS)生成ATP,为基本生命活动提供能量。线粒体嵴上承载着OXPHOS呼吸链复合物,嵴结构的复杂程度与能量需求成正比,在能量需求高的组织,线粒体嵴也很丰富。线粒体内膜的形态随着代谢状态不同而发生变化(Mannella,2006)。因此我们推测控制嵴形态的分子具有调节线粒体OXPHOS功能。Inner Membrane Protein of Mitochondria (IMMT),又称Mitofilin,是定位在线粒体内膜上,控制嵴结构的蛋白分子(John et al.,2005),为进一步在整体动物水平探讨IMMT生理功能,有必要建立Immt敲除鼠。
     我们通过囊胚注射,将Immt突变的胚胎干细胞(ES)注入到受体胚胎中,得到进入种系的嵌合体而产生Immt缺失杂合子(Immt+/-)。通过5'RACE和PCR实验验证,基因诱捕载体整合至Immt基因的第三内含子中,Immt+/-小鼠杂交后出生的346只子鼠中,没有Immt缺失纯合子(Immt-/-),只有Immt+/+和Immt+/-小鼠,其比例为1:2,结合孟德尔规律推测,Immt完全缺失鼠未出生。
     我们分析了Immt+/-小鼠杂交后不同时间的胚胎,来研究Immt-/-小鼠是否存在胚胎致死及胚胎致死阶段。结果证明,Immt-/-小鼠可以顺利经过囊胚阶段并着床进入原肠胚期。同窝Immt+/-和Immt+/+小鼠已发育至9.5天胚胎(E9.5)形态,而Immt-/-小鼠还停留在E7.5天形态,明显的形体小,发育迟缓,Immt-/-小鼠没有可见的心脏结构和神经管闭合。BrdU掺入实验证明Immt-/-小鼠在E8.5天仍有增殖;TUNEL实验结果表明Immt-/-胚胎细胞在E9.5天凋亡旺盛,逐渐吸收。
     透射电镜超微结构显示,E7.5、E8.5、E9.5 Immt-/-胚胎线粒体嵴紊乱,肿胀,部分空化缺失。Immt-/-胚胎酶组织化学和Immt+/-小鼠肝脏体外线粒体复合物酶活性检测,共同证明IMMT缺失导致线粒体OXPHOS电子传递链末端复合物,即细胞色素c氧化酶(COX)活性明显降低,而琥珀酸脱氢酶(SDH)和ATP酶(ATPase)活性没有观察到明显变化。Immt+/- MEF线粒体膜电位上升,活性氧(ROS)生成增多。所有这些改变都证明Immt敲除鼠有明显的OXPHOS异常。
     总之,Immt敲除鼠的建立,首次为阐明Immt在哺乳动物体内功能提供了研究工具。我们通过对Immt敲除鼠的表型分析,在生物体内证明,IMMT是生命中不可缺少的蛋白分子。它的缺失会导致胚胎死于E10.5天之前,始终未发育出明显的心脏组织结构,神经发育停止。缺失IMMT会引起线粒体嵴空化缺失、紊乱,COX活性下降,OXPHOS功能受损,证明IMMT在线粒体内具有极其重要的功能。
As highly dynamic double membrane bound organelles in cells, mitochondria exhibit common structural features in general but various cristae shape due to different energy demand and metabolic states, which is derived from the infolded inner membrane where protein complexes of oxidative phosphorylation and intermediate metabolism are embedded to produce ATP for the basic life activity. Abundant and complex cristae are found in mitochondria from tissues where energy demand is high. Since the fine structure of cristae change with the metabolic states and energy demand, we hypothized that mitochondrial function was modulated by the molecules which controlled the morphology of cristae. Also the effect might relate to the genesis and development of age -related disorders. Immt (Inner Membrane Protein of Mitochondria, also called Mitofilin) locates on the inner membrane of mitochondria, characterized as a controller of the cristae shape in cells. To invest the physiological functions of Immt in mice, it is necessary to establish a line of Immt deficient mice.
     Gene-Trap is a gene targeting method with high efficiency. The bottleneck of gene targeting is the microinjection and screening for the chimeric mice which can breed heterozygote. Through the microinjection, we got the germline chimeric mice. We reconfirmed the heterozygote by the recombination of PCR and 5'RACE. The results from genomic PCR characterized the inserting position of gene-trap vector is in the third intron of the Immt gene. The heterozygote did not show any exterior differences. The offsprings of crossbreeding heterozygote contained one third Immt+/+ mice and two thirds heterozygote, and no Immt-/- was found after checking 346 offspring mice. Due to the Mendelian Principle in genetics, the ratio showed that the Immt-/- was not born.
     To examine the details of the lethal embryos, we check embryos at different development stages from intercrossing heterozygote. It showed that all the embryos survived through implantation but no homozygote was found at E10.5 stage. Using LacZ staing and HE staing methods, we found the Immt-/- embryos remained the E7.5 size and would not grow any more until they were absorbed after E10.5 while the heterozygote and Immt+/+ ones reached E9.5 size. The further structural analysis showed the Immt-/- could not form the cardiac structure and uncompletely closed neural tube. The TUNEL results showed that the Immt-/- exhibited more apoptosis than others at the same stage of E9.5 and reabsorbed.
     After examining the mitochondrial ultrastructure by electron microscope, we found the mitochondria in Immt-/- were enlarged with disorganized and partial vacuolated cristae. And enzyme histochemical staining confirmed severe mitochondrial dysfunction with decreased cytochrome c oxidase activity while the activity of succinate dehydrogenase had no detectable change. Measurements of respiratory chain enzyme activities in the liver of Immt+/- animals revealed significant reductions in the activities of COX while no obvious change in SDH. We also found that Immt-deficient mouse embryonic fibroblasts showed increased membrane potential (ΔΨm). What's more, the production of ROS in the Immt+/- MEF revealed increased. All these results confirmed severe mitochondrial OXPHOS dysfunction in Immt deficient mice.
     In summary, IMMT plays an important role in controlling the fine structure of critae and the loss of Immt causes the severe OXPHOS dysfunction and the embryonic lethality in mice. The Immt-/- embryos have smaller size, delayed neural development, and indistinct somites, also with absence of cardiac structure. All these data point to a role of IMMT in OXPHOS and emphasize the role of IMMT in life.
引文
Arnoult, D., Gaume, B., Karbowski, M., Sharpe, J.C., Cecconi, F., and Youle, R.J. (2003). Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bak-mediated permeabilization. EMBO J 22,4385-4399.
    Balaban, R.S., Nemoto, S., and Finkel, T. (2005). Mitochondria, oxidants, and aging. Cell 120,483-495.
    Cadenas, E., and Davies, K.J. (2000). Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 29,222-230.
    Campanella, M., Pinton, P., and Rizzuto, R. (2004). Mitochondrial Ca2+ homeostasis in health and disease. Biol Res 37,653-660.
    Cereghetti, G.M., and Scorrano, L. (2006). The many shapes of mitochondrial death. Oncogene 25,4717-4724.
    Chan, D.C. (2006). Mitochondria:dynamic organelles in disease, aging, and development. Cell 125,1241-1252.
    Chen, H., Detmer, S.A., Ewald, A.J., Griffin, E.E., Fraser, S.E., and Chan, D.C. (2003). Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160,189-200.
    Cipolat, S., Rudka, T., Hartmann, D., Costa, V., Serneels, L., Craessaerts, K., Metzger, K., Frezza, C., Annaert, W., D'Adamio, L., et al. (2006). Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPAl-dependent cristae remodeling. Cell 126,163-175.
    Davies, V.J., Hollins, A.J., Piechota, M.J., Yip, W., Davies, J.R., White, K.E., Nicols, P.P., Boulton, M.E., and Votruba, M. (2007). Opal deficiency in a mouse model of autosomal dominant optic atrophy impairs mitochondrial morphology, optic nerve structure and visual function. Hum Mol Genet 16,1307-1318.
    DiMauro, S., and Schon, E.A. (2003). Mitochondrial respiratory-chain diseases. N Engl J Med 348,2656-2668.
    Drummond, R.M., Mix, T.C., Tuft, R.A., Walsh, J.V., Jr., and Fay, F.S. (2000). Mitochondrial Ca2+ homeostasis during Ca2+ influx and Ca2+ release in gastric myocytes from Bufo marinus. J Physiol 522 Pt 3,375-390.
    Feng, Y., Tian, Z.M., Wan, M.X., and Zheng, Z.B. (2007). Protein profile of human hepatocarcinoma cell line SMMC-7721:identification and functional analysis. World J Gastroenterol 13,2608-2614.
    Frey, T.G., and Mannella, C.A. (2000). The internal structure of mitochondria. Trends Biochem Sci 25,319-324.
    Frey, T.G., Renken, C.W., and Perkins, G.A. (2002). Insight into mitochondrial structure and function from electron tomography. Biochim Biophys Acta 1555,196-203.
    Friedel, R.H., Plump, A., Lu, X., Spilker, K., Jolicoeur, C., Wong, K., Venkatesh, T.R., Yaron, A., Hynes, M., Chen, B., et al. (2005). Gene targeting using a promoterless gene trap vector ("targeted trapping") is an efficient method to mutate a large fraction of genes. Proc Natl Acad Sci U S A 102,13188-13193.
    Gieffers, C., Korioth, F., Heimann, P., Ungermann, C., and Frey, J. (1997). Mitofilin is a transmembrane protein of the inner mitochondrial membrane expressed as two isoforms. Exp Cell Res 232,395-399.
    Gilkerson, R.W., Selker, J.M., and Capaldi, R.A. (2003). The cristal membrane of mitochondria is the principal site of oxidative phosphorylation. FEBS Lett 546,355-358.
    Giorgio, M., Migliaccio, E., Orsini, F., Paolucci, D., Moroni, M., Contursi, C., Pelliccia, G., Luzi, L., Minucci, S., Marcaccio, M., et al. (2005). Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 122,221-233.
    Gottlieb, E. (2006). OPA1 and PARL keep a lid on apoptosis. Cell 126,27-29. Green, D.R., and Reed, J.C. (1998). Mitochondria and apoptosis. Science 281, 1309-1312.
    Guarente, L. (2008). Mitochondria--a nexus for aging, calorie restriction, and sirtuins? Cell 132,171-176.
    Haar, J.L. (1971). Ultrastructural Changes in mouse yolk sac assiciated with the initiation of vitelline circalator. Anat Rec 170,174.
    Jackson, I.J. (2001). Mouse mutagenesis on target. Nature Genetics 28,198-200. Jiang, X., and Wang, X. (2004). Cytochrome C-mediated apoptosis.. Annu Rev Biochem 73,87-106.
    John; G.B., Shang, Y., Li, L., Renken, C., Mannella, C.A., Selker, J.M., Rangell, L., Bennett, M.J., and Zha, J. (2005). The mitochondrial inner membrane protein mitofilin controls cristae morphology. Mol Biol Cell 16,1543-1554.
    Kujoth, G.C., Bradshaw, P.C., Haroon, S., and Prolla, T.A. (2007). The role of mitochondrial DNA mutations in mammalian aging. PLoS Genet 3, e24.
    Kujoth, G.C., Hiona, A., Pugh, T.D., Someya, S., Panzer, K., Wohlgemuth, S.E., Hofer, T. Seo, A.Y., Sullivan, R., Jobling, W.A., et al. (2005). Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309,481-484.
    Kutik, S., Stojanovski, D., Becker, L., Becker, T., Meinecke, M., Kruger, V., Prinz, C., Meisinger, C., Guiard, B., Wagner, R., et al. (2008). Dissecting membrane insertion of mitochondrial beta-barrel proteins. Cell 132,1011-1024.
    Lai, Y., Chen, Y., Watkins, S.C., Nathaniel, P.D., Guo, F., Kochanek, P.M., Jenkins, L.W., Szabo, C., and Clark, R.S. (2008). Identification of poly-ADP-ribosylated mitochondrial proteins after traumatic brain injury. J Neurochem 104,1700-1711.
    Larsson, N.G., Wang, J., Wilhelmsson, H., Oldfors, A., Rustin, P., Lewandoski, M., Barsh, G.S., and Clayton, D.A. (1998). Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet 18,231-236.
    Lee, H.C., and Wei, Y.H. (2005). Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. Int J Biochem Cell Biol 37, 822-834.
    Lehninger, A.L., Wadkins, C.L., Cooper, C., Devlin, T.M., and Gamble, J.L., Jr. (1958). Oxidative phosphorylation. Science 128,450-456.
    Li, K., Li, Y., Shelton, J.M., Richardson, J.A., Spencer, E., Chen, Z.J., Wang, X., and Williams, R.S. (2000). Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell 101,389-399.
    Lodish (2004). Molecular Cell Biology.
    Mannella, C.A. (2006). Structure and dynamics of the mitochondrial inner membrane cristae. Biochim Biophys Acta 1763,542-548.
    Marx, J. (2005). Medicine. Low-power mitochondria may raise risk of cardiovascular problems. Science 307,334-335.
    Mitchell, K.J., Pinson, K.I., Kelly, O.G., Brennan, J., Zupicich, J., Scherz, P., Leighton, P.A., Goodrich, L.V., Lu, X., Avery, B.J., et al. (2001). Functional analysis of secreted and transmembrane proteins critical to mouse development. Nat Genet 28,241-249.
    Morrow, G., and Tanguay, R.M. (2008). Mitochondria and ageing in Drosophila. Biotechnol J.
    Motta, P.M., Nottola, S.A., Makabe, S., and Heyn, R. (2000). Mitochondrial morphology in human fetal and adult female germ cells. Hum Reprod 15 Suppl 2,129-147.
    Murphy, M.P., and Smith, R.A. (2000). Drug delivery to mitochondria:the key to mitochondrial medicine. Adv Drug Deliv Rev 41,235-250.
    Myung, J.K., Gulesserian, T., fountoulakis, M., and Lubec, G. (2003). Deranged hypothetical proteins Rik protein, Nit protein 2 and mitochondrial inner membrane protein, Mitofilin, in fetal Down syndrome brain. Cell Mol Biol (Noisy-le-grand) 49, 739-746.
    Nordgaard, C.L., Karunadharma, P.P., Feng, X., Olsen, T.W., and Ferrington, D.A. (2008). Mitochondrial proteomics of the retinal pigment epithelium at progressive stages of age-related macular degeneration. Invest Ophthalmol Vis Sci.
    Odgren, P.R., Toukatly, G., Bangs, P.L., Gilmore, R., and Fey, E.G. (1996). Molecular characterization of mitofilin (HMP), a mitochondria-associated protein with predicted coiled coil and intermembrane space targeting domains. J Cell Sci 109 (Pt 9), 2253-2264.
    Omori, A., Ichinose, S., Kitajima, S., Shimotohno, K.W., Murashima, Y.L., Shimotohno, K., and Seto-Ohshima, A. (2002). Gerbils of a seizure-sensitive strain have a mitochondrial inner membrane protein with different isoelectric points from those of a seizure-resistant strain. Electrophoresis 23,4167-4174.
    Peyrl, A., Krapfenbauer, K., Slavc, I., Strobel, T., and Lubec, G. (2003). Proteomic characterization of the human cortical neuronal cell line HCN-2. J Chem Neuroanat 26,171-178.
    Pfohler, C., Preuss, K.D., Tilgen, W., Stark, A., Regitz, E., Fadle, N., and Pfreundschuh, M. (2007). Mitofilinand titin as target antigens in melanoma-associated retinopathy. Int J Cancer 120,788-795.
    Pinton, P., and Rizzuto, R. (2008). p66Shc, oxidative stress and aging:importing a lifespan determinant into mitochondria. Cell Cycle 7,304-308.
    Rizzuto, R., Bastianutto, C., Brini, M., Murgia, M., and Pozzan, T. (1994). Mitochondrial Ca2+ homeostasis in intact cells. J Cell Biol 126,1183-1194.
    Schapira, A.H. (2008). Mitochondria in the aetiology and pathogenesis of Parkinson's disease. Lancet Neurol 7,97-109.
    Scherz-Shouval, R., and Elazar, Z. (2007). ROS, mitochondria and the regulation of autophagy. Trends Cell Biol 17,422-427.
    Skarnes, W.C. (2005). Two ways to trap a gene in mice. Proc Natl Acad Sci U S A 102, 13001-13002.
    Szabadkai, G., and Duchen, M.R. (2008). Mitochondria:the hub of cellular Ca2+ signaling. Physiology (Bethesda) 23,84-94.
    Trimarchi, J.R., Liu, L., Porterfield, D.M., Smith, P.J., and Keefe, D.L. (2000). Oxidative phosphorylation-dependent and -independent oxygen consumption by individual preimplantation mouse embryos. Biol Reprod 62,1866-1874.
    Van Laar, V.S., Dukes, A.A., Cascio, M., and Hastings, T.G. (2008). Proteomic analysis of rat brain mitochondria following exposure to dopamine quinone:implications for Parkinson disease. Neurobiol Dis 29,477-489.
    Virginia E.Papaioannou, R.R.B. (2005). Mouse Phenotypes:a handbook of mutation analysis (Cold Spring Harbor Laboratory Press).
    Wallace, D.C. (2005). A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer:a dawn for evolutionary medicine. Annu Rev Genet 39, 359-407.
    Wang, Q., Liu, Y., Zou, X., An, M., Guan, X., He, J., Tong, Y., and Ji, J. (2008). The Hippocampal Proteomic Analysis of Senescence-Accelerated Mouse:Implications of Uchl3 and Mitofilin in Cognitive Disorder and Mitochondria Dysfunction in SAMP8. Neurochem Res.
    Weissig,V., and Torchilin, V.P. (2001). Drug and DNA delivery to mitochondria. Adv Drug Deliv Rev 49,1-2.
    Wishart, T.M., Paterson, J.M., Short, D.M., Meredith, S., Robertson, K.A., Sutherland, C., Cousin, M.A., Dutia, M.B., and Gillingwater, T.H. (2007). Differential proteomics analysis of synaptic proteins identifies potential cellular targets and protein mediators of synoptic neuroprotection conferred by the slow Wallerian degeneration (Wlds) gene. Mol Cell Proteomics 6,1318-1330.
    Xie, J., Marusich, M.F., Souda, P., Whitelegge, J., and Capaldi, R.A. (2007). The mitochondrial inner membrane protein mitofilin exists as a complex with SAM50, metaxins 1 and 2, coiled-coil-helix coiled-coil-helix domain-containing protein 3 and 6 and DnaJCll. FEBS Lett 581,3545-3549.
    Yang,J., Liu, X., Bhalla K., Kim, C.N., Ibrado, A.M., Cai,J., Peng, T.I., Jones, D.P., and Wang, X. (1997). Prevention of apoptosis by Bcl-2:release of cytochrome c from mitochondria blocked. Science 275,1129-1132.
    刘姗(2007).卵母细胞成熟过程中线粒体的变化.细胞生物学杂志29,31-33.
    Asensio, C. S., Arsenijevic, D., Lehr, L., Giacobino, J. P., Muzzin, P., and Rohner-Jeanrenaud, F. (2008). Effects of leptin on energy metabolism in beta-less mice. Int J Obes (Lond).
    Atzmon, G., Pollin, T. I., Crandall, J., Tanner, K., Schechter, C. B., Scherer, P. E., Rincon, M., Siegel, G., Katz, M., Lipton, R. B., et al. (2008). Adiponectin levels and genotype:a potential regulator of life span in humans. J Gerontol A Biol Sci Med Sci 63,447-453.
    Baker, P. R., Lin, Y., Schopfer, F. J., Woodcock, S. R., Groeger, A. L., Batthyany, C., Sweeney, S., Long, M. H., Iles, K. E., Baker, L. M., et al. (2005). Fatty acid transduction of nitric oxide signaling: multiple nitrated unsaturated fatty acid derivatives exist in human blood and urine and serve as endogenous peroxisome proliferator-activated receptor ligands. J Biol Chem 280, 42464-42475.
    Botolin, S., and McCabe, L. R. (2006). Inhibition of PPARgamma prevents type I diabetic bone marrow adiposity but not bone loss. J Cell Physiol 209,967-976.
    Crabb, D. W., and Liangpunsakul, S. (2006). Alcohol and lipid metabolism. J Gastroenterol Hepatol 21 Suppl 3, S56-60.
    Dalamaga, M., Nikolaidou, A., Karmaniolas, K., Hsi, A., Chamberland, J., Dionyssiou-Asteriou, A., and Mantzoros, C. S. (2007). Circulating adiponectin and leptin in relation to myelodysplastic syndrome:a case-control study. Oncology 73,26-32.
    Dumasia, R., Eagle, K. A., Kline-Rogers, E., May, N., Cho, L., and Mukherjee, D. (2005). Role of PPAR- gamma agonist thiazolidinediones in treatment of pre-diabetic and diabetic individuals:a cardiovascular perspective. Curr Drug Targets Cardiovasc Haematol Disord 5,377-386.
    Edgley, A. J., Thalen, P. G., Dahllof, B., Lanne, B., Ljung, B., and Oakes, N. D. (2006). PPARgamma agonist induced cardiac enlargement is associated with reduced fatty acid and increased glucose utilization in myocardium of Wistar rats. Eur J Pharmacol 538,195-206.
    Fenton, J. I., Birmingham, J. M., Hursting, S. D., and Hord, N. G. (2008). Adiponectin blocks multiple signaling cascades associated with leptin-induced cell proliferation in Apc Min/+ colon epithelial cells. Int J Cancer 122,2437-2445.
    Hollingshead, H. E., Killins, R. L., Borland, M. G., Girroir, E. E., Billin, A. N., Willson, T. M., Sharma, A. K., Amin, S., Gonzalez, F. J., and Peters, J. M. (2007). Peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta) ligands do not potentiate growth of human cancer cell lines. Carcinogenesis 28,2641-2649.
    Rosenbaum, M., and Leibel, R. L. (1998). Leptin:a molecule integrating somatic energy stores, energy expenditure and fertility. Trends Endocrinol Metab 9,117-124.
    Shin, K. C., Chung, J. H., and Lee, K. H. (2007). Effects of TNF-alpha and leptin on weight loss in patients with stable chronic obstructive pulmonary disease. Korean J Intern Med 22,249-255.
    Johannes B. Prins Adipose tissue as an endocrine organ. Best Practice & Research Clinical Endocrinology and Metabolism 2002; 4:639-651
    Erin E. Kershaw, Jefferey S. Flier Adipose tissue as an endocrine organ. J Clinical Endocrinology & Metabolism 2004; 89(6):2548-2556
    Ruth E. Gimeno, Lori D. Klaman Adipose tissue as an active endocrine organ:recent advances. Current Opinion in Pharmacology 2005; 5:122-128
    Paul Trayhurn, John H. Beattie Physiological role of adipose tissue: white adipose tissue as an endocrine and secretary organ. Proceedings of Nutrition Society 2001; 60:329-339

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700