2-氨基壬烷-6-甲氧基四氢萘盐酸盐(10b)体外抗真菌活性及作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白念珠菌感染由于在艾滋病患者,器官移植患者以及其他免疫缺陷患者中具有高发病率和高死亡率的特点,已成为一个严重的医学问题。尽管抗真菌药物品种不断增加,但仍然满足不了病情复杂患者对控制感染越来越高的需求。本课题的研究目的是探讨具有新型化学结构的抗真菌化合物2-氨基壬烷-6-甲氧基四氢萘盐酸盐(10b)的体外抗真菌活性和作用机制,为降低真菌相关感染提供有用的信息和策略。微量液基稀释法结果显示10b对氟康唑敏感白念珠菌以及氟康唑耐药白念珠菌均有良好的抗真菌活性,MIC80值的范围从0.031μg/ml到8μg/ml,活性强与氟康唑或酮康唑相当或者更强;对氟康唑耐药白念珠菌的抗真菌活性强大,其作用普遍强于酮康唑,尤其对氟康唑高度耐药的实验室诱导白念珠菌SC5314R(对氟康唑和伊曲康唑都高度耐药,MIC80值均为256μg/ml)作用更加显著,MIC80值为0.125μg/ml。琼脂平皿纸片扩散实验进一步证实10b对氟康唑耐药白念珠菌的抗真菌活性强于氟康唑和酮康唑并且表现出一定的杀菌作用。生长曲线实验,半数抑菌浓度(IC50)测定以及最低杀菌浓度(MFC)测定等多种实验手段和方法均证实10b具有强大的体外抗真菌活性。结晶紫染色实验以及XTT还原分析实验考察了10b对白念珠菌生物被膜的影响,结果显示10b对白念珠菌生物被膜的形成以及成熟(48 h)白念珠菌生物被膜细胞代谢活性均有强大的抑制作用,并且抑制能力强于法尼醇。激光共聚焦显微镜观察也进一步证实了10b强大的抑制白念珠菌生物被膜的作用:正常白念珠菌生物被膜表现为主要由假菌丝和真菌丝组成的典型三维空间结构;当白念珠菌细胞在0h与10μM法尼醇共孵育48 h后,被膜的形成没有受到抑制,仍然主要由真菌丝和假菌丝组成;与0.1μM的10b共孵育48 h后,尽管真菌丝和假菌丝仍然能够观察到,但被膜典型的三维空间结构(相互缠绕的丝状结构和芽生孢子基底层)受到了破坏,被膜主要由酵母态细胞组成;当10b的浓度增加10倍(1μM),粘附细胞从酵母态向菌丝态的转变被彻底抑制,导致了被膜的消失或者仅能生成少量的全部由酵母态细胞组成的被膜。为了探讨10b对白念珠菌的作用机制,我们首先采用薄层色谱分析(TLC)和气相色谱-质谱联用(GC/MS)分析考察10b在麦角甾醇生物合成通路上的作用靶点,通过透射电镜观察10b处理后对白念珠菌超微结构的影响,然后采用cDNA芯片分析和realtime RT-PCR分析从分子水平上考察10b处理酵母态白念珠菌以及被膜态白念珠菌基因表达谱的变化,最后采用MTS/PMS还原分析法评价了10b的体外细胞毒性。TLC分析结果显示10b处理后的薄层色谱图上羊毛甾醇及其类似物的斑点与酮康唑处理后完全不同,前者斑点直径明显变小颜色变淡,甚至观察不到而后者与空白对照相比斑点直径显著增加,颜色变深,这说明10b可能抑制了麦角甾醇生物合成通路上羊毛甾醇C-14去甲基酶之外的其他酶,导致羊毛甾醇向其他中间甾醇的转化。GC/MS分析结果显示10b处理组在气相色谱图上出现了与酮康唑处理组完全不同的色谱峰,前者所产生的甾醇成分与erg24菌株所产生的甾醇成分完全相同,均以ergosta-8,14-dienol(ignosterol)作为主要甾醇同时伴随大量ergosta-8,14,22-trienol的产生而后者则以24-methylene-lanost-8-en-3-ol作为主要甾醇。因此,10b在麦角甾醇生物合成通路上的真正作用靶点可能是ERG24基因编码的甾醇C-14还原酶而不是ERG11基因编码的羊毛甾醇C-14去甲基酶。为了证实上述观点,我们比较了10b和甾醇C-14还原酶抑制剂丁苯吗啉(Fm)处理野生型白念珠菌(BWP17)以及erg24菌株(NJ51-2)所产生的甾醇成分种类及含量变化情况。虽然10b与吗啉类都属于甾醇C-14还原酶抑制剂,但两者在麦角甾醇生物合成通路上的作用机制仍然存在差异。吗啉类除抑制甾醇C-14还原酶外,还抑制由ERG2基因编码的甾醇C-8异构酶,因此丁苯吗啉处理的野生型白念珠菌(BWP17)除以ergosta-8.14-dienol(ignosterol)作为主要甾醇外,还出现ergosta-8-en-3-ol的堆积。由于甾醇C-8异构酶位于甾醇C-14还原酶下游,因此丁苯吗啉处理的erg24菌株(NJ51-2)所产生的甾醇种类及比例均与未处理的erg24菌株完全相同。10b处理的erg24菌株(NJ51-2)所产生的甾醇成分与未处理的erg24菌株(NJ51-2)所产生的甾醇成分完全相同,但两者ergosta-8,14,22-trienol与ignosterol的比例却不同。10b处理组所产生的ergosta-8,14,22-trienol量明显高于未处理组,这表明10b在麦角甾醇合成通路上除抑制甾醇C-14还原酶活性外,可能还存在另外一个靶点,并且这个靶点应该位于甾醇C-14还原酶的上游。通过ergosta-8,14,22-trienol与ignosterol比例变化规律,我们推测它可能是与甾醇C-5去饱和酶相关的一个酶。另外,我们发现ignosterol的量随着10b剂量的增加而增加,这表明10b在低浓度时甾醇C-5去饱和酶相关酶是主要的作用靶点;随着10b剂量增加,10b与甾醇C-14还原酶的结和力增强,最终使甾醇C-14还原酶成为占主导作用的靶点。尽管ERG24基因编码的C-14还原酶是酿酒酵母有氧生长所必须的,但白念珠菌erg24突变体却能够在正常有氧条件下在标准限定滋养培养基中生长。电镜观察结果也显示10b处理后细胞膜结构完整,光滑,边界清晰,无胞内物质外流进入胞膜和胞壁之间。这表明10b虽然能够抑制麦角甾醇生物合成通路上的甾醇C-14还原酶和甾醇C-5去饱和酶相关酶的活性,导致麦角甾醇含量急剧降低,但由于中间甾醇的替代作用并不能破坏细胞膜结构的完整性,也不能完全抑制白念珠菌细胞的生长。因此,除了抑制麦角甾醇合成通路上的作用靶点之外,10b强大的抗白念珠菌活性必然还存在更为重要的作用机制。酵母态白念珠菌芯片分析和Real-time RT-PCR分析结果显示10b处理后,能量代谢相关基因,包括糖酵解相关基因(PFK1,CDC19和HXK2),生醇发酵相关基因(PDC11,ALD5和ADH1)以及线粒体呼吸链复合物相关基因(CBP3,COR1和QCR8)的表达水平显著降低。实时荧光定量分析结果显示10b处理白念珠菌后能够显著增加内源性活性氧(ROS)的产生,并且能力强于咪康唑。线粒体功能分析结果表明10b处理后能够降低线粒体膜电位(ΔΨm),泛醌-细胞色素C还原酶(复合物Ⅲ)活性以及细胞内ATP的含量。另外,加入抗氧化剂抗坏血酸(ascorbic acid,AA)能显著降低10b的抗真菌活性。这说明线粒体有氧呼吸链的转换与内源性ROS产生的增加可能在10b抑制酵母态白念珠菌活性过程中起了重要作用。被膜态白念珠菌芯片分析和Real-time RT-PCR分析结果显示10b处理后菌丝特异性基因ECE1表达急剧降低,编码转录抑制因子Nrg1p的基因NRG1表达水平显著增加,这与10b抑制白念珠菌被膜形成的作用直接相关。另外,10b处理后还能引起能量代谢相关基因表达降低,包括糖酵解相关基因(HXK2和PFK1),生醇发酵相关基因(ADH1)以及内源性ROS清除相关基因(SOD5)表达水平显著降低。功能分析结果显示加入抗坏血酸能显著降低10b对成熟白念珠菌生物被膜细胞代谢活性的抑制效率。上述结果表明10b对白念珠菌被膜形成的抑制作用可能主要依赖于改变被膜形成相关基因的表达,阻断白念珠菌从酵母态向菌丝态的转变,最终破坏了白念珠菌生物被膜的形成;线粒体有氧呼吸链的转换与内源性ROS产生的增加可能是10b降低成熟白念珠菌生物被膜细胞代谢活性的重要作用机制。体外细胞毒试验结果表明:虽然10b剂量依赖性地抑制小鼠胚胎成纤维细胞(BALB/C 3T3)以及人正常肝细胞(L-02)的代谢活性,但其对哺乳动物细胞的IC50值远远高于对真菌细胞的MIC50值,这为该类化合物能够继续深入研究提供了基本的安全保证。我们的实验数据为开发针对新的作用靶点,结构新颖的抗真菌药物,克服目前临床日益严重的真菌感染,提供了有意义的信息。
Candida infections have become a serious medical problem due to high incidence and mortality in AIDS patients, transplant recipients and other immunosuppressed individuals. Despite continuous expansion in the arsenal of antifungal drugs, antifungal drugs available cannot meet the increasing requirements for managing infections in medically complex patients.2-aminotetralin derivates were synthesized as novel chemical structural antifungal agents. Of them,10b was found to have the strongest antifungal activity in vitro. The aim of the present work was to further investigate the antifungal activity of 10b as well as its mechanism of action in vitro. Broth microdilution analytic results showed that 10b possessed potent activities against almost all C. albicans isolates, which was similar to or more powerful than that of ketoconazole (KCZ) or fluconazole (FLC) and MIC80 value ranged from 0.063 to 8μg/ml. Despite high resistance to FLC and ICZ (both MIC80 value 256μg/ml) for isolate SC5314R,10b displayed powerful antifungal activity against this strain, MICgo value being 0.125μg/ml. Agar disk diffusion test further confirmed that 10b possesses more powerful antifungal activity against FLC-resistant isolates than that of FLC and KCZ and exhibits a fungicidal activity to some extent. Growth curve test, Half Inhibitory Concentration (IC50) and Minimal Fungicidal Concentration (MFC) determination also confirmed the potent antifungal activity of 10b. In addition, crystal violet staining method and XTT reduction assay were performed to investigate the anti-biofilm activity of 10b. The analytic results showed 10b dramatically inhibit biofilm formation and siginificantly reduced mature (48 h) biofilm metabolic activity. Moreover, the inhibitory effect of 10b was more powerful than that of farnesole. Confocal laser scanning microscopy (CLSM) showed that preincubated with 0.1μM 10b, the typical architecture of biofilms (intertwining mycelial structures and a basal layer of blastospores) was destructed although pseudohyphae and true hyphae were observed. When the concentration was increased by 10-fold, the adherent yeast cells were successfully prevented from germination and resulted in scant or nonexistent biofilms. To clarify the underlying action mechanism, Thin-Layer Chromatography (TLC) assay and Gas Chromatograph-Mass Spectrometer (GC/MS) assay were performed to investigate the targets of 10b in the ergosterol biosynthetic pathway amd transmission electron micrograph was used to observe the ultrastructure of C. albicans cells. Then, cDNA microarray study and realtime RT-PCR assay were conducted to study and research the genes expression profiles of yeast C. albicans or C. albicans biofilms treated or untreated with 10b. Finally, cytotoxicity of 10b in vitro was assessed by MTS/PMS reduction assay. TLC analytic results showed that sterols in C. albicans strain treated by 10b were evidently different from that of treated by KCZ. Their major differences in sterol classes were most pronounced in lanosterol and its analogues. The spottednesses of lanosterol and its analogues in KCZ-grown cells were significantly bigger and deeper than that of control-grown cells while disappeared in 10b-grown cells. It is presumed that 10b possesses a mode of action different from KCZ in ergosterol biosynthetic pathway.10b might inhibit the activities of ergosteol metabolic enzymes except for lanosterol 14a-demethylase and resulted in lanosterol changing into other intermediate sterols. GC/MS analytic results showed that 10b produced a profile similar to that of homozygous erg24 strain, in which ignosterol and ergosta-8,14,22-trienol were major sterols and no trace of 24-methylene-lanost-8-en-3-ol was found. However, KCZ-grown cells had a profile with 24-methylene-lanost-8-en-3-ol like the predominant sterol. We therefore postulate that sterol C-14-reductase, encoded by ERG24, instead of lanosterol 14α-demethylase, encoded by ERG11, is an important target for 10b in this pathway.10b also showed an action mechanism different from that of morpholines in the ergosterol biosynthetic pathway, although both of them are sterol C-14-reductase inhibitors. Morpholines inhibit sterol C-8 isomerase, encoded by ERG2 gene, resulting in ergosta-8-en-3-ol accumulation. As sterol C-8 isomerase is situated in the downstream of sterol C-14-reductase, Fm-grown erg24 strain produced a profile completely identical to that of erg24 strain. Although the sterol composition of 10b-grown cells was completely identical to that of erg24 strain, the ratio of ergosta-8,14, 22-trienol to ignosterol was different. The content of ergosta-8,14,22-trienol in 10b-treated erg24 strain was much more than that of in erg24 strain without 10b treatment, indicating that there must be another important target upstream sterol C-14 reductase. We deduced that another target was an enzyme related to sterol C-5 desaturase, which catalyzes the conversion of ergosta-8,14,22-trienol to ergosta-5,8,14,22-tetraenol. In addition, we found that the content of ignosterol built up in the wake of increase in the concentration of 10b, indicating that sterol C-5 desaturase related enzyme was the dominant target of 10b at a low concentration, while the affinity of 10b with sterol C-14 reducase augmented along with the increase in the concentration of 10b and finally changed into the fundamental target at a higher concentration. Although the ERG24 gene, encoding the C-14 sterol reductase, has been reported to be essential to the aerobic growth of Saccharomyces cerevisiae, the erg24 mutant of C. albicans is capable of growth under normal aerobic conditions on standard defined and enriched media. Transmission electron micrographs show that 10b treatment cannot changes the integration and permeability of the fungal membrane. This indicates that the major mechanism of action of 10b against C. albicans is uncorrelated to inhibiting the activity of sterol C-14 reducase in ergosterol biosynthetic pathway. Then a cDNA microarray study and real-time RT-PCR assay were performed to further clarify the mechanism of action of 10b. Yeast C. albicans cDNA microarray and realtime RT-PCR analytic results showed that 10b treatment resulted in marked down-regulation in metabolism-related genes, including glycolysis-related genes (e.g., PFK1, CDC19 and HXK2), fermentation-related genes (e.g., PDC11, ALD5 and ADH1) and respiratory electron transport chain-related genes (e.g., CBP3, COR1 and QCR8). Real-time fluorimetric assay revealed that 10b treatment increased generation of endogenous reactive oxygen species (ROS), which was similar to or more powerful than that of miconazole (MCZ). Function analytic results shawed that 10b treatment decreased mitochondrial membrane potential (ΔΨm), ubiquinone-cytochrome C reductase (complex III) activity and intracellular ATP level in C. albicans SC5314 strain. Besides, addition of antioxidant ascorbic acid (AA) reduced the antifungal activity of 10b significantly. These results suggest that mitochondrial aerobic respiration shift and endogenous ROS augmentation might contribute to the antifungal activity of 10b against yeast C. albicans. C. albicans biofilm cDNA microarray and realtime RT-PCR results showed that 10b treatment resulted in a striking down-regulation of hypha-specific gene ECE1 and a marked up-regulation of transcriptional repressors NRG1 in C. albicans biofilms, which is directly linked to inhibit biofilm formation. Moreover, the expressions of glycolysis related genes (e.g., HXK2 and PFK1), fermentation-related genes (e.g., ADH1) and antioxidant defense (e.g., SOD5) were decreased markedly. Functional analysis indicated that addition of anti-oxidant ascorbic acid reduced inhibitory efficiency of 10b on mature biofilm. These results indicated that inhibition of 10b on biofilm formation possibly depends on impairing the ability of C. albicans to change its morphology via altering the expression of biofilm formation genes. Mitochondrial aerobic respiration shift and endogenous ROS augmentation might be a major contribution to reduce mature biofilm metabolic activity. Although 10b seemed to reduce MTS/PMS reduction in a dose dependent manner, IC50 value for mammalian cells was much higher than MIC50 value for C. albicdns. This indicates that the formulation is preliminarily safe and warrants further study for possible human applications. Our data provide useful information for the development of new antifungal agents with novel chemical structure and distinct targets in ergosterol biosynthetic pathway and of new strategies to reduce candida infections.
引文
[1]White TC,Marr KA and Bowden RA.Clinical,cellular,and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev1998,11(2):382-402.
    [2]Kalb VF, Woods CW, Turi TG, et al. Primary structure of the P450 lanosterol-emethylase gene from Saccharomyces cerevisiae. DNA 1987,6:529-537.
    [3]Marcireau C, Guyonnet D, Karst F.Construction and growth properties of a yeast strain defective in sterol 14-reductase. Curr.Genet 1992,22:267-272.
    [4]Jia N, Arthington SB, Lee W, et al.Candida albicans Sterol C-14 Reductase, Encoded by the ERG24 Gene, as a Potential Antifungal Target Site. Antimicrob Agents Chemother 2002,46:947-957.
    [5]Jabra-Rizk MA, Falkler WA, Meiller TF. Fungal Biofilms and Drug Resistance. Emerg Infect Dis 2004,10:14-19.
    [6]Denning DW. Echinocandins;a new class of antifungal.J Antimicrob Chemother 2002,49:889-891.
    [7]Yeaman MR,.Yount NY.Mechanisms of antimicrobial peptideaction and resistance. Pharmacol 2003,55:27-55.
    [8]Kong W, Wei J, Abidi P, et al.Berberine is a novel cholesterol loweridrug working through a unique mechinism distinct from statins.Natu Medicine 2004,10: 1344-1351.
    [9]Passos XS, Castro AC, Pires JS,et al.Composition and antifungal activity of the essential oils of Caryocar brasiliensis. Pharm Biol 2003,41:321-326.
    [10]Lemos JA, Passos XS,Fernandes OF, et al.Antifungal activity from Ocimum gratissimumL. towards Cryptococcus neoformans. Mem Inst Oswaldo Cruz 2005, 100:55-58.
    [11]Smriti KA, Mukhopadhyay K.,Rattan A, etal.In vitro low-level resistance to azoles in Candid albicans is associated with changes in membrane lipid fluidity and asymmetry. Antimicrob Agents Chemother 2002,46:1046-1052.
    [12]Mukhopadhyay KA, Kohli K, Prasad R. Drug susceptibilities of yeast cells are affected by me-mbrane lipid composition. Antimicrob Agents Chemother 2002,46: 3695-3705.
    [13]Maxfield FR. Plasma membrane microdomains.Curr Opin Cell Biol 2002,14:483-487.
    [14]Xu X, Bittman R, Duportail G, et al. Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts).J Biol Chem 2001,276:33540-33546.
    [15]Lavie Y, Liscovitch M.Changes in lipid and protein constituents of rafts and caveolae in multidrug resistance cancer cells and their functional consequences. Glycoconjugate J 2001,17:253-259.
    [16]MacPherson S,Akache B,Weber S,et al. Candida albicans zinc cluster protein Upc2p confers resistance to antifungal drugs and is an activator of ergosterol biosynthetic genes. Antimicrob Agents Chemother 2005,49:1745-52.
    [17]Lambrechts S,Aalders M and Van MJ.Mechanistic study of the photodynamicinactivation of Candida albicans by a cationic porphyrin. Antimicrob Agents C-hemother 2005,49:2026-34.
    [18]Simonetti G,Simonetti N, Villa A. Tetracycline in combination with sodium di-octyl sulfosuccinate show increased antimicrobial activity in resistant microorganisms.J Chemother 2004,16(1):38-44.
    [19]Han Y, Lee J. Berberine synergy with Amphotericin B against disseminated Candidiasis in mice. Biol Pharm Bull 2005,28:541-544.
    [20]Barchiesi F, Spreghini E, Maracci M, et al.In vitro activies of voriconazole in Combination with three other antifungal agents against Candida glabrata. Antimicrob Agents Chemother 2004,48:3317-3322.
    [21]Rex JH, Pappas PG, Karchmer AW, et al. A randomized and blinded multicenter trial of high-dose fluconazole plus placebo versus fluconazole plus Amphotericin B as therapy for candidemia and its consequences in nonneutropenic subjects.Clin Infect Dis 2003,36:1221-1228.
    [22]Bachmann S,Ramage G, Vande Walle K, et al. Antifungal combinations against Candida albicans biofilms In vitro.Antimicrob Agents Chemother 2003,47:3657- 3659.
    [23]Graybill J, Bocanegra R, Najvar L, et al.Addition of caspofungin to fluconazole does not improve outcome in murine candidiasis.Antimicrob Agents Chemother 2003,47: 2373-2375.
    [24]Arikan S, Lozano-Chiu M, Paetznick V, et al.In vitro synergy of caspofungin and amphotericin B against Aspergillus and Fusarium spp.Antimicrob Agents Chemother 2002,46:245-247.
    [25]Shalit I, Shadkchan Y, Samra Z, et al.In vitro synergy of caspofungin and itraconazole against Aspergillus spp. MIC versus minimum effective concentration end points. Antimicrob Agents Chemother 2003,47:1416-1418.
    [26]Perea S,Gonzalez G,Fothergill A, et al. In vitro interaction of caspofungin acetate with voriconazole against clinical isolates of Aspergillus spp.Antimicrob Agents Chemother 2002,46:3039-3041.
    [27]Manavathu EK, Alangaden GJ, Chandrasekar PH. Differential activity of triazoles in two-drugcombinations with the echinocandin caspofungin against Aspergillus fumigatus.J Antimicrob Chemother 2003,51:1423-1425.
    [28]Kontoyiannis DP, Hachem R, Lewis RE,et al.Efficacy and toxicity of caspofungin in combination with liposomal amphotericin B as primary or salvage treatment of invasive aspergill osis in patients with hematologic malignancies. Cancer 2003,98: 292-299.
    [29]Aliff TB, Maslak PG, Jurcic JG, et al. Refractory aspergillosis pneumoniain patients with acute leukemia:successful therapy with combination of aspofungin and liposomal amphotericin B.Cancer 2003,97:1025-1032.
    [30]Bradbury AJ, Costall B, Naylor RJ. Inhibition and facilitation of motor responding of the mouse by actions of dopamine agonists in the forebrain. Neuropharmacology 1984,23:1025-1031.
    [31]Lejeune F, Newman-Tancredi A, Audinot V, et al.Interactions of (1)-and (2)-8-and 7-Hydroxy-2-(Di-n-Propylamino) tetralin at human (h)D3,hD2 and hserotoninlA receptors and their modulation of the activity of serotoninergic and dopaminergic neurones in rats. J Pharmacol Exp Ther 1997,280:1241-49.
    [32]Yao B, Ji HT, Cao YB, Zhou YJ, Zhu J, Lu JG, et al. Synthesis and Antifungal Activities of Novel 2-Aminotetralin Derivatives.Journal of medicinal Chemistry 2007,50:5293-5300.
    [33]National Committee for Clinical Laboratory Standards.Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved standard M27-A2.2002, Wayne, Pa.
    [34]Benjamin JP,Beth AS,Rana AH, et al.Evaluation of Amphotericin B interpretive break points for Candida bloodstream isolates by correlation with therapeutic outcome. Antimicrob Agents Chemother 2006,50:1287-1292.
    [35]Li XG, Yan Z and Xu JP.Quantitative variation of biofilms among strains in natural populations of Candida albicans.Microbiology 2003,149:353-362
    [36]Jain N, Kohli R, Cook E, Gialanella P, Chang T and Fries BC. Biofilm formation by and antifungal susceptibility of Candida isolates from urine.Appl Environ Microbiol 2007,73:1697-1703.
    [37]Hawser S.P. Adhesion of different Candida spp. to plastic:XTT formazan determinations.J Med Vet Mycol 1996,34:407-410.
    [38]Ramage G.,VandeWalle K, Wickes BL and Lopez-Ribot JL. Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms. Antimicrob Agents Chemother 2001,45:2475-2479.
    [39]Kruczak-Filipov P and Shively P. Gram stain procedure. In H. D. Isenberg (ed.), Clinical microbiology procedures handbook, vol.1.American Society for Microbiology, Washington, D.C; 2002, p.1.5.1-1.5.18.
    [40]Djordjevic D, Wiedmann M and McLandsborough LA. Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Appl Environ Microbiol 2002,68:2950-2958.
    [41]Merritt K, Gaind A and Anderson JM. Detection of bacterial adherence on biomedical polymers. J Biomed Mater Res 1998,39:415-422.
    [42]Merritt K, Hitchins VM and Brown SA. Safety and cleaning of medical materials and devices.J Biomed Mater Res 2000,53:131-136.
    [43]Vidal O,Longin R, Prigent-Combaret C, Dorel C, Hooreman M and Lejune P. Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces:involvement of a new ompR allele that increases curli expression. J Bacteriol 1998,180:2442-2449.
    [44]Watnick PI, Fullner KJ and Kolter R. A role for the mannose-sensitive hemagglutinin in biofilm formation by Vibrio cholerae El Tor. J Bacteriol 1998,181:3606-3609.
    [45]Nickerson KW, Atkin AL and Hornby JM. Quorum sensing in dimorphic fungi: farnesol and beyond. Appl Environ Microbiol 2006,72:3805-3813.
    [46]Hornby JM, Jensen EC,Lisec AD, Tasto JJ, Jahnke B,Shoe-maker R, et al.Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol.Appl Environ Microbiol 2001,67:2982-92.
    [47]Andes D, Nett J, Oschel P, Albrecht R, Marchillo K and Pitula A. Development and characterization of an in vivo central venous catheter Candida albicans biofilm model.Infect Immun 2004,72:6023-31.
    [48]Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL,McCormick T and Ghannoum MA. Biofilm formation by the fungal pathogen Candida albicans:development, architecture, and drug resistance. J Bacteriol 2001,183:5385-94.
    [49]Izano EA, Sadovskaya I, Vinogradov E, Mulks MH, Velliyagounder K and Ragunath C.Poly-N-acetylglucosamine mediates biofilm formation and antibiotic resistance in Actinobacillus pleuropneumoniae. Microb Pathog 2007,43:1-9.
    [50]Oliveira M, Nunes SF, Carneiro C, Bexiga R, Bernardo F and Vilela C.L. Time course of biofilm formation by Staphylococcus aureus and Staphylococcus epidermidis mastitis isolates.Vet Microbiol 2007,124:187-191.
    [51]Wang C, Li M, Dong D, Wang J, Ren J, Otto M, et al. Role of ClpP in biofilm formation and virulence of Staphylococcus epidermidis. Microbes Infect 2007,9: 1376-83.
    [52]Kohrer K and Domdey H.Preparation of high molecular weight RNA. Methods Enzymol 1991,194:398-405.
    [53]Hughes TR, Marton MJ, Jones AR, Roberts CJ, Stoughton R, Armour CD, et al. Functional discovery via a compendium of expression profiles. Cell 2000,102: 109-126.
    [54]Patterson TA, Lobenhofer EK,Fulmer-Smentek SB,Collins PJ,Chu TM, Bao W, et al.Performance comparison of one-color and two-color platforms within the Microarray Quality Control (MAQC) project. Nat Biotech 2006,24:1140-50.
    [55]Kacharmina JE, Crino PB,Eberwine J. Preparation of cDNA from single cells and subcellular regions. Methods Enzymal 1999,303:3-18.
    [56]Feldman AJ, Costouros NQ Wang E, Qian M, Marincola FM, Alexander HR, and Libutti SK. Advantages of mRNA amplification for microarray analysis. Biotechniques 2002,33(4):906-914.
    [57]Pikacek DC, Passerini AG, Shi C, Francesco NM, Manduchi E, Grant G.R, et al. Findelity of enhanced sensitivity of differential transcription profiles following linear amplification of nanogram amounts of endothelial mRNA. Physiol Genomics 2003, 13:147-156.
    [58]Almeida JS, Chen CM, Gorlitsky R, Stanislaus R, Aires-de-Sousa M, Eleuterio P, et al. Replacing cRNA targets with cDNA reduces microarray cross-hybridization. Nature Biotechnology 2006,24 (9):1071-1073.
    [59]Yang YH, Dudoit S,Luu P, Lin DM, Peng V, Ngai J et al.Normalization for cDNA microarray data:a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 2002,30:4e15.
    [60]Tusher V, Tibshirani R, and Chu G. Significance analysis of microarrays applied to transcriptional responses to ionizing radiation. Proc Natl Acad Sci 2001,98: 5116-5121.
    [61]Kobayashi D, Kondo K, Uehara N, Otokozawa S,Tsuji N, Yagihashi A et al. Endogenous reactive oxygen species is an important mediator of miconazole antifungal effect. Antimicrob Agents Chemother 2002,46:3113-3117.
    [62]Daisuke K, kei K, Nobuyuki U, et al.Endogenous reactive oxygen species is an important mediator of miconazole antifungal effect. Antimicrob Agents Chemother 2002,46:3113-3117.
    [63]Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976,72:248-254.
    [64]Kobayashi D, Kondo K, Uehara N, Otokozawa S,N. Tsuji, A. Yagihashi, et al. Endogenous reactive oxygen species is an important mediator of miconazole antifungal effect. Antimicrob.Agents. Chemother 2002,46:3113-3117.
    [65]D.P. Kontoyiannis. Modulation of fluconazole sensitivity by the interaction of mitochondria and erg3p in Saccharomyces cerevisiae. J Antimicrob Chemother 2000, 46:191-197.
    [66]Xu Y, Wang Y, Yan L, Liang RM, Dai BD, Tang RJ, et al.Proteomic Analysis Reveals a Synergistic Mechanism of Fluconazole and Berberine against Fluconazole-Resistant Candida albicans:Endogenous ROS Augmentation. J. Proteome Res 2009,8:5296-5304.
    [67]Mailer K. Superoxide radical as electron donor for oxidative phosphorylation of ADP. Biochem. Biophys. Res. Commun 1990,170:59-64.
    [68]Smith CN, Alexander BR. The relative cytotoxicity of personal care preservative systems in Balb/C 3T3 clone A31 embryonic mouse cells and the e□ect of selected preservative systems upon the toxicity of a standard rinse formulation. Toxicology in Vitro 2005,19:963-969
    [69]Qu XJ, Xia X, Wang YS,et al.Protective effects of Salvia plebeia compound homoplantaginin on hepatocyte injury. Food Chem Toxicol 2009,47:1710-5.
    [70]Sheng CQ, Zhu J, Zhang WN, et al.3D-QSAR and molecular docking studies on benzothiazole derivative as Candida albicans N-myristoyltransferase inhibitors. European Journal of Medicinal Chemist 2007,42:477-486.
    [71]Sheng CQ, Zhang WN, Ji HT, et al.Structure-based optimization of azole antifungal agents by CoMFA, CoMSIA, and molecular docking. J Med Chem 2006,49:2512-2525.
    [72]Ji H, Zhang WN,Zhang M, et al.Structure-Based de Novo Design, Synthesis, and Biological Evaluation of Non-Azole Inhibitors Specific for Lanosterol 14r-Demethylase of Fungi. J Med Chem 2003,46:474-485.
    [73]Zhu J, Lu JG, Zhou YJ,et al. Design, synthesis, and antifungal activities in vitro of novel tetrahydroisoquinoline compounds based on the structure of lanosterol 14a-demethylase (CYP51) of fungi.Bioorganic and Medicinal Chemistry Letters 2006,16:5285-89.
    [74]Jin H, McCaffery JM, Grote E.Ergosterol promotes pheromone signaling and plasma membrane fusion in mating yeast.The Jurnal of cell biology 2008,180:813-826.
    [75]Miao L, Nielsen M, Thewalt J, et al. From lanosterol to cholesterol:structural evolution and differential effects on lipid bilayers.J Biophys 2002,82:1429-1444.
    [76]Shrivastava S,Chattopadhyay A. Influence of cholesterol and ergosterol on membrane dynamics using different fluorescent reporter probes.Biochemical and Biophysical Research Communications 2007,356:705-710.
    [77]Backer DM, Ilyina T, Ma XJ, et al. Genomic profiling of the response of Candida albicans to itraconazole treatment using a DNA microarray. Antimicrob Agent Chemother 2001,45:1660-1670.
    [78]Lu Y, Zhang WL, Wang LL, et al.Transcriptional profiles of the response to ketoconazole and amphotericin B in trichophyton rubrum. Antimicrob Agents Chemother 2007,51:144-153.
    [79]Dixon G.,Scanlon D, Cooper S,et al.A reporter gene assay for fungal sterol biosynthesis inhibitors. J Steroid Biochem Mol Biol 1997,62:2-3;165-167.
    [80]Lai M H, Bard M, Pierson CA, Alexander JF, Goebl M, Carter GT, et al. Identification of a gene family in the Saccharomyces cerevisiae ergosterol biosynthesis pathway. Gene 1994,140:401-449.
    [81]Lorenz RT and Parks LW. Cloning, sequencing and disruption of the gene encoding the C-14 sterol reductase in Saccharomyces cerevisiae. DNA Cell Biol 1992,11: 685-692.
    [82]Marcireaux D, Guyonnet D and Karst F. Construction and growth properties of a yeast strain defective in sterol 14-reductase. Curr. Genet 1992,22:267-272.
    [83]Crowley JH, Smith SJ, Leak FW and Parks LW. Aerobic Isolation of an ERG24 Null Mutant of Saccharomyces cerevisiae. J Bacteriol 1996,178:2991-2993.
    [84]Liang RM, Cao YB, Fan KH, Xu Y, Gao PH, Zhou YJ, et al. 2-Amino-nonyl-6-methoxyl-tetralin muriate inhibits sterol C-14 reductase in the ergosterol biosynthetic pathway. Acta Pharmacologica Sinica 2009,30:1709-1716.
    [85]Muller F, Roberts AG, Bowman MK and Kramer DM. Architecture of the Qo site of the cytochrome bcl complex probed by superoxide production. Biochemistry 2003, 42:6493-6499.
    [86]St-Pierre J, Buckingham JA, Roebuck SJ, and Brand MD.Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 2002,277:44784-90.
    [87]Turrens JF. Superoxide production by the mitochondrial respiratory chain. Biosci Rep 1997,17:3-8.
    [88]Turrens JF. Mitochondrial formation of reactive oxygen species.J Physiol 2003,552: 335-344.
    [89]Campo ML, Kinnally KW and Tedeschi H. The effect of antimycin A on mouse liver inner mitochondrial membrane channel activity. J Biol Chem 1992,267:8123-27.
    [90]Wang Y, Jia XM, Jia JH, Li MB, Cao YY, Gao PH,et al. Ascorbic acid decreases the antifungal effect of fluconazole in the treatment of candidiasis. Clin Exp Pharmacol. Physiol 2009,36:e40-6.
    [91]Ramage G, Saville SP, Wickes BL and Lopez-Ribot JL. Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl Environ Microbiol 2002,68:5459-5463.
    [92]Sato T, Watanabe T, Mikami T and Matsumoto T. Farnesol, a morphogenetic autoregulatory substance in the dimorphic fungus Candida albicans, inhibits hyphae growth through suppression of a mitogen-activated protein kinase cascade. Biol Pharm Bull 2004,27:751-752.
    [93]Nett J and Ande D. Candida albicans biofilm development, modeling a host-pathogen interaction. Curr Opin Microbiol 2006,9:340-345.
    [94]Izano EA, Sadovskaya I, Vinogradov E, Mulks MH, Velliyagounder K and Ragunath C.Poly-N-acetylglucosamine mediates biofilm formation and antibiotic resistance in Actinobacillus pleuropneumoniae. Microb Pathog 2007,43:1-9.
    [95]Oliveira M, Nunes SF, Carneiro C, Bexiga R, Bernardo F and Vilela C.L. Time course of biofilm formation by Staphylococcus aureus and Staphylococcus epidermidis mastitis isolates. Vet Microbiol 2007,124:187-191.
    [96]Wang C, Li M, Dong D, Wang J, Ren J,Otto M, et al.Role of ClpP in biofilm formation and virulence of Staphylococcus epidermidis. Microbes Infect 2007,9: 1376-83.
    [97]Andes D, Nett J,Oschel P,Albrecht R, Marchillo K and Pitula A. Development and characterization of an in vivo central venous catheter Candida albicans biofilm model.Infect Immun 2004,72:6023-31.
    [98]Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL,McCormick T and Ghannoum MA. Biofilm formation by the fungal pathogen Candida albicans:development, architecture, and drug resistance. J Bacteriol 2001,183:5385-94.
    [99]Baillie GS and Douglas LJ.Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents. J Antimicrob Chem 2000,46:397-403.
    [100]Baillie GS and Douglas LJ. Effect of growth rate on resistance of Candida albicans biofilms to antifungal agents. Antimicrob Agents Chemother 1998,42: 1900-1905.
    [101]Baillie GS and Douglas LJ. Iron-limited biofilms of Candida albicans and their susceptibility to amphotericin B. Antimicrob Agents Chemother 1998,42: 2146-2149.
    [102]Nobilel CJ, Nett JE, HerndayAD, Homann OR, Deneault JS, Nantel A, et al. Biofilm Matrix Regulation by Candida albicans Zapl.PLoS Biol 2009,7(6): e1000133.
    [103]Nett J, Lincoln L, Marchillo K, Massey R, Holoyda K, Hoff B, et al.Putative role of beta-1,3 glucans in Candida albicans biofilm resistance. Antimicrob Agents Chemother 2007,51:510-520.
    [104]Liu H.Transcriptional control of dimorphism in Candida albicans. Curr Opin Microbiol 2001,4:728-735.
    [105]Liu H, Kohler J, and Fink GR. Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 1994,266:1723-1726.
    [106]Staab JF, Bradway SD, Fidel PL and Sundstrom P.Adhesive and mammalian Transglut aminase substrate properties of Candida albicans Hwpl.Science 1999,283: 1535-38.
    [107]Bailey DA, Feldmann PJF, Bovey M, Gow NAR and Brown AJP.The Candida albicans HYR1 gene, which is activated in response to hyphal development, belongs to a gene family encoding yeast cell wall proteins. J Bacteriol 1996,178:5353-60.
    [108]Birse CE, Irwin MY, Fonzi WA and Sypherd PS.Cloning and characterization of ECE1,a gene expressed in association with cell elongation of the dimorphic pathogen Candida albicans. Infect Immun 1993,61:3648-3655.
    [109]Calderone RA and Fonzi WA.Virulence factors of Candida albicans.Trends Microbiol 2001,9:327-335.
    [110]Hoyer LL. The ALS gene family of Candida albicans. Trends Microbiol 2001,9: 176-180.
    [111]Zheng X, Wang YM and Wang Y.Hgcl,a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis. EMBO J 2004,23:1845-56.
    [112]Braun BR and Johnson AD. Control of filament formation in Candida albicans by the transcriptional repressor TUP1.Science 1997,277:105-109.
    [113]Braun BR, Kadosh D and Johnson AD.NRG1,a repressor of filamentous growth in Candida albicans, is down-regulated during filament induction. EMBO J 2001,20: 4753-61.
    [114]Li YD, Su C, Mao XM, Cao F and Chen JY. Roles of Candida albicans Sfll in Hyphal Development. Eukaryotic Cell 2007,6:2112-2121.
    [115]Kadosh D and Johnson AD.Rfgl,a protein related to the S.cerevisiae hypoxic regulator Rox1,controls filamentous growth and virulence in C.albicans. Mol Cell Biol 2001,21:2496-2505.
    [116]Kadosh D and Johnson AD.Induction of the Candida albicans filamentous growth program by relief of transcriptional repression:a genome-wide analysis.Mol Biol Cell 2005,16:2903-2912.
    [117]Calderone RA and Fonzi WA. Virulence factors of Candida albicans.Trends Microbiol 2001,9:327-335.
    [118]Murad AM, Leng P, Straffon M, Wishart J, Macaskill S,MacCallum DM, et al. NRG1 represses yeast±hypha morphogenesis and hypha-specific gene expression in Candida albicans. EMBO J 2001,20:4742-52
    [119]Braun BR, Kadosh D and Johnson AD. NRG1,a repressor of filamentous growth in Candida albicans, is down-regulated during filament induction. EMBO J 2001;20: 4753-61.
    [120]Murad AM, Leng P, Straffon M, Wishart J, Macaskill S,MacCallum DM, et al. NRG1 represses yeast±hypha morphogenesis and hypha-specific gene expression in Candida albicans. EMBO J 2001,20:4742-52
    [121]Braun BR, Kadosh D and Johnson AD. NRG1,a repressor of filamentous growth in Candida albicans,is down-regulated during filament induction. EMBO J 2001,20: 4753-61.
    [122]Moran GP, MacCallum DM, Spiering MJ, Coleman1 DC and Sullivan DJ. Differential regulation of the transcriptional repressor NRG1 accounts for altered host-cell interactions in Candida albicans and Candida dubliniensis. Molecular Microbiology 2007,66:915-929.
    [123]Humphreys AM and Gooday GW. Properties of chitinase activities from Mucor mucedo:evidence for a membrane-bound zymogenic form. Journal of General Microbioloai 1984,130:1359-66.
    [124]Hoyer LL. The ALS gene family of Candida albicans. Trends Microbiol 2001, 9:176-180.
    [125]Hoyer LL and Hecht JE. The ALS6 and ALS7 genes of Candida albicans. Yeast 2000,16:847-855.
    [126]Hoyer LL, Payne TL, and Hecht JE. Identification of Candida albicans ALS2 and ALS4 and localization of Als proteins to the fungal cell surface. J.Bacteriol 1998, 180:5334-5343.
    [127]Hoyer LL, Green CB,Oh SH, and Zhao X. Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family—a sticky pursuit. Med Mycol 2008,46:1-15.
    [128]Fu Y, Ibrahim AS,Sheppard DC, Chen YC, French SW, Cutler JE, Filler SG, and Edwards JE. Candida albicans Alslp:an adhesin that is a downstream effector of the EFG1 filamentation pathway. Mol.Microbiol 2002,44:61-72.
    [129]Zhao X, Oh SH, and Hoyer LL. Deletion of ALS5,ALS6 or ALS7 increases adhesion of Candida albicans to human vascular endothelial and buccal epithelial cells. Med Mycol 2007,45:429-434.
    [130]Granger BL, Flenniken ML, Davis DA, Mitchell AP, and Cutler JE. Yeast wall protein 1 of Candida albicans. Microbiology 2005,151:1631-1644.
    [131]Chaffin WL. Candida albicans Cell Wall Proteins. Microbiol Mol Boil R 2008, 72:495-544.
    [132]Prasad, R.,P. De Wergifosse, A. Goffeau, and E.Balzi. Molecular cloning and characterization of a novel gene of Candida albicans, CDR1,conferring multiple resistance to drugs and antifungal.Curr. Genet.1995,27:320-329.
    [133]Krishnamurthy, S.,Gupta, V.,Snehlata, P.,and Prasad, P. Characterization of human steroid hormone transport mediated by Cdrlp, multidrug transporte of Candida albicans, belonging to the ATP binding cassette super family. FEMS Microbiol.Lett.1998,158:69-74.
    [134]Sanglard, D.,F. Ischer, D.Calabrese, P. A. Majcherczyk, and J.Bille. The ATP binding cassette transporter gene CgCDR1 from Candida glabrata is involved in the resistance of clinical isolates to azole antifungal agents. Antimicrob.Agents and Chemother.1999,43:2753-2765.
    [135]Pasrija R, Panwar SL and Prasad R. Multidrug Transporters CaCdrlp and CaMdrlp of Candida albicans Display Different Lipid Specificities:both Ergosterol and Sphingolipids Are Essential for Targeting of CaCdrlp to Membrane Rafts. Antimicrob.Agents and Chemother.2008,52:694-704.
    [136]Crowley JH, Smith SJ, Leak FW, et al.Aerobic Isolation of an ERG24 Null Mutant of Saccharomyces cerevisiae. Journal of Bacterology 1996, 178(10):2991-2993.
    [137]Lorenz RT, and Parks LW.Cloning, sequencing,and disruption of the gene encoding sterol C-14 reductase in Saccharomyces cerevisiae.DNA Cell Biol 1992, 11(9):685-692.
    [138]Marcireau C, Guyonnet D, Karst F. Construction and growth properties of a yeast strain defective in sterol 14-reductase. Curr Genet1992,22(4):267-272.
    [139]Antonius K. Inhibition of the sterol Δ14-reducase and Δ8→Δ7-isomerase in fungi.Biochemical Society Transactions1990,18(l):59-61.
    [140]Smith S.Cloning and sequence analysis of an ERG24 homolog from chizosaharo-myces pombe.Gene1995,155:139-140.
    [141]Jia N, Arthington SB,Lee W, et al.Candida albicans Sterol C-14 Reductase, Encoded by the ERG24 Gene, as a Potential Antifungal Target Site. Antimicrobial Agents and Chemotherapy 2002,46(4):947-957.
    [142]Schrick K, Mayer U, Horrichs A, et al. FACKEL is a sterol C-14 reductase requi-red for organized cell division and expansion in Arabidopsis embryogenesis.GenesDev 2000,14:1471-1484.
    [143]Wagner N, Weber D, Seitz S and Krohne G. The lamin B receptor of Drosophila melanogaster. J Cell Sci 2004,117:2015-2028.
    [144]Woman HJ, Evans CD and Blobel G. The lamin B receptor of the nuclear envelope inner membrane:a polytopic protein with eight potential transmembrane domains. J.Cell Biol 1990,111:1535-1542.
    [145]Georgatos SD.The inner nuclear membrane:simple or very complex? EMBO J 2001,20:2989-2994.
    [146]Silve S,Dupuy PH, Ferrara P, et al.Human lamin B receptor exhibits sterol C 14-reductase activity in Saccharomyces cerevisiae. Biochimicaet BiophysicActa 1998,1392:233-244.
    [147]Crowley JH, Tove S,Parks LW.A calcium-dependent ergosterol mutant of Sacchar-myces cerevisiae. Curr Genet 1998,34:93-99.
    [148]Jang JC, Fujioka S, Tasaka M, et al. A critical role of sterols in embryonic patterning and meristem programming revealed by the fackel mutants of Arabidopsis thaliana. Genes Dev 2000,14(12):1485-97.
    [149]He JX, Fujioka S,Li TC, et al.Sterols Regulate Development and Gene Expression in Arabidopsisl.Plant Physiol 2003,131(3):1258-69.
    [150]Schrick K, Fujioka S, Takatsuto S, et al.A link between sterol biosynthesis, the cell wall, and cellulose in Arabidopsis. The Plant Journal.2004,38:227-243.
    [151]Dreger CK, Konig AR, Spring H, et al.Investigation of nuclear architecture with a domain-presenting expression system. J Struct Biol 2002,140:100-115.
    [152]Duband-Goulet, I. and Courvalin JC.Inner nuclear membrane protein LBR preferentially interacts with DNA secondary structures and nucleosomal linker. Biochemistry 2000,39:6483-6488.
    [153]Makatsori D, Kourmouli N, Polioudaki H, et al.The inner nuclear membrane protein lamin B receptor forms distinct microdomains and links epigenetically marked chromatin to the nuclear envelope. J Bio Chem 2004,279:25567-2573.
    [154]Gajewski A and Krohne G. Subcellular distribution of the Xenopus p58/lamin B receptor in oocytes and eggs. J Cell Sci 1999,112:2583-2596.
    [155]Takano M, Takeuchi M, Ito H, et al. The binding of lamin B receptor to chromatin is egulated byphosphorylation in the RS region. Eur J Biochem 2002,269: 943-953.
    [156]Shultz LD, Lyons BL, Burzenski LM, et al.Mutations at the mouse ichthyosis locus are within the lamin B receptor gene:a single gene model for human Pelger-Huet anomaly. Hum Mol Genet 2003,12:61-69.
    [157]Kawahire S,Takeuchi M, Gohshi T, et al.Autosomal recessive HEM/Greenberg skeletal dysplasia is caused by 3 beta-hydroxysterol delta 14-reductase deficiency due to mutations in the lamin B receptor gene. Am J Hum. Genet 2003 72: 1013-1017.
    [158]Collas P, Courvalin JC and Poccia D.Targeting of membranes to sea urchin sperm chromatin is mediated by a lamin B receptor-like integral membrane protein. J Cell Biol 1996,135:1715-1725.
    [159]Haraguchi T, Koujin T, Hayakawa T, et al.Live fluorescence imaging reveals early recruitment of emerin, LBR, RanBP2,and Nup153 to reforming functional nuclear envelopes. J Cell Sci 2000,113:779-794.
    [160]Irons SL, Evans DE and Brandizzi F.The first 238 amino acids of the human lamin B receptor are targeted to the nuclear envelope in plants. J Exp Bot 2003,54: 943-950.
    [161]Yan M, Shang C, Quanlong L, et al.Lamin B receptor plays a role in stimulating nuclear envelope production and targeting membrane vesicles to chromatin during nuclear envelope assembly through direct interaction with importin β.Journal of Cell Science 2007,120(3):520-530.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700