Rap1b对糖尿病肾病肾小管上皮细胞氧化损伤及凋亡的影响与机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     糖尿病肾病(Diabetic Nephropathy, DN)是糖尿病最常见并发症,也是引起糖尿病病人死亡的最主要原因。近年来,糖尿病肾病(Diabetic nephropathy, DN)发病率呈逐年上升的趋势,从而致使慢性肾脏疾病(Chronic kidney disease, CKD)的发病率和患病率不断攀升,已成为糖尿病患者的主要死亡原因之一。大量临床研究表明,未控制的高血糖是糖尿病肾病发生发展的关键因素,但其作用机制仍不清楚。因此,明确糖尿病肾病的发病机制,预防或延缓其发生及发展有着重要的科学和社会意义,符合我国国情,并有一定的迫切性。
     大量研究证实肾小管损伤在糖尿病肾损伤中具有重要的意义,在糖尿病肾病的早期即可观察到肾小管细胞的氧化损伤和凋亡。肾小管上皮细胞的凋亡可导致肾小管再吸收和分泌功能异常,促进肾小管上皮细胞的萎缩和间质纤维化,是糖尿病肾病进展为肾衰竭的主要因素。因此,人们开始重视肾小管上皮细胞氧化损伤和凋亡在糖尿病肾病发病机制中的作用。
     有研究表明,活性氧簇(reactive oxygen species, ROS)在高血糖诱导的小管细胞损伤中起重要作用。高血糖造成肾脏小管上皮细胞ROS生成增加,ROS可活化信号转导级联效应(如PKC、MAPK、JAK/STAT等),又可作为胞内信号激活某些转录因子(如NFκB、内皮素-1等),导致TGF-β1等表达增加。上述信号分子进一步诱导ROS产生,不断放大高糖造成的细胞损伤,导致细胞外基质(extracellularmatrix, ECM)合成增加、基底膜增厚、系膜扩张,最终导致进行性的肾小球硬化和肾小管萎缩,引起肾功能下降和衰竭。糖尿病过度产生ROS是糖尿病合并症时细胞损伤的首要和原始启动因子。因此,研究高葡萄糖诱导ROS产生的调控机制是国际肾脏研究领域的热点。
     Rap1 (Ras相关蛋白1)是原癌基因Ras超家族成员之一。Rap1具有广泛的细胞生物学功能,包括细胞生长、分化、肥大、增殖,参与EMT的形成,介导肾小管离子的转运和吸收。已知Ras GTP酶与细胞内ROS产生有关;Ha-Ras-Val12突变可诱导细胞内ROS的产生;C-Raf,一个Rap1b下游蛋白,通过控制线粒体ROS的产生和Ca2+平衡,调节细胞的凋亡[54];Ras/cAMP信号通路调节线粒体膜电位和线粒体ROS的产生,而ROS对Ras/cAMP信号又有反馈调节作用;特别是发现Epac1,一个Rap1的激活蛋白可转移至线粒体并表达在线粒体基质,而Rap1及其下游蛋白Raf也被发现在细胞线粒体,说明Rap1在线粒体ROS产生过程中可能起重要的调节作用。本实验室既往研究显示,原癌基因Ras超家族成员之一的Rap1b,可以通过逆转肾小管上皮细胞中高糖引起的线粒体ROS的生成增加以及细胞色素C的释放,抑制细胞凋亡。在之前的动物模型研究中我们发现大鼠肾组织表达Rap1b,在糖尿病状态下大鼠肾脏表达ROS明显升高,同时伴有肾小管Rap1b的表达显著增高。但具体机制尚不明确。本研究旨在初步探讨糖尿病肾病患者肾脏Rap1b的表达情况,为进一步研究其在糖尿病肾病发病过程中的作用提供实验依据。基于以上分析,我们认为Rap1b可能与糖尿病肾病小管上皮细胞线粒体氧化损伤及细胞凋亡的产生有关,为此,本实验开展如下的研究。
     第一章Rap1b在糖尿病肾病患者肾组织中的表达及其与肾问质纤维化的关系
     目的观察糖尿病肾病患者肾组织中Rap1b的表达,初步探讨Rap1b与糖尿病肾病肾间质纤维化的关系。
     方法随机选取经临床和肾脏病理确诊为糖尿病肾病及微小病变患者(原发性肾病)各6人。采用Masson、PASM、PAS染色观察肾脏普通病理改变;免疫组化检测肾脏组织Rap1b表达变化。
     结果肾脏普通病理结果显示肾活检组织呈典型的糖尿病结节性硬化样改变:肾小球系膜基质中-重度增生,多个节段呈结节状硬化,基底膜弥漫性或节段性增厚僵硬,部分节段毛细血管袢扩张,多灶性肾小管萎缩并伴部分小管代偿性扩张,肾间质多灶性纤维化;对照组患者可见系膜细胞及基质仅节段性轻度增生,基底膜不厚,个别肾小管上皮细胞颗粒样变性,肾间质和肾血管未见明显异常。糖尿病肾病患者肾小管间质损伤程度明显高于对照组。免疫组化显示:对照组患者肾小管上皮细胞有明显的Rap1b表达;而糖尿病肾病患者Rap1b表达上调,尤其在肾小管上皮细胞萎缩及发生肾间质纤维化的区域。
     结论糖尿病肾病患者肾组织,特别是肾小管,Rap1b表达上调;Rap1b表达上调的同时伴有肾小管间质损伤,提示Rap1b可能与糖尿病肾病肾间质纤维化有关。
     第二章Raplb通过线粒体途径调控高葡萄糖诱导的肾小管上皮细胞氧化损伤和凋亡
     目的探讨高葡萄糖对肾小管上皮细胞线粒体氧化应激的损伤机制,以及肾小管上皮细胞Raplb蛋白对高糖诱导的线粒体氧化损伤的保护作用。
     方法用不同浓度D-葡萄糖(5.5mM, 10mM,20mM,30mM)处理正常人近端肾小管上皮细胞株(D-甘露醇作为等渗对照组),在不同时间点提取细胞mRNA和蛋白,通过细胞免疫荧光以及WesteM blot检测高糖对Rap1b蛋白的影响。通过Mito SOX荧光染色、线粒体呼吸链复合物活性检测、线粒体ATP检测、线粒体抗氧化酶活性检测及Real-time PCR,评价高糖对线粒体相关功能的抑制作用。通过细胞免疫荧光以及Westem blot检测高糖对小管上皮细胞的caspase-9、caspase-3的表达以及细胞凋亡的影响。质粒转染cDNA3.1/Rap1b质粒及两个失活性的Rap1b真核表达质粒(Rap1bS17N,第17位丝氨酸突变为天门冬氨酸;Rap1bT61R,第61位苏氨酸突变为精氨酸)使HK2细胞过表达Rap1b,观察Rap1b对高糖诱导的上述指标的变化。
     结果HK-2细胞中高糖导致Rap1b蛋白表达明显下降,尤其是Rap1bGTP呈浓度及时间依赖模式;等渗对照组Rap1b表达与正常对照组比较无显著性差异。
     HK-2细胞经30mM葡萄糖处理后,高糖诱导线粒体呼吸链活性受抑,ATP生成减少,抗氧化酶GSH Px及CAT的活性受抑,MnSOD2的mRNA水平表达升高,线粒体ROS的生成增加,procaspase-9、procaspase-3的表达下降,细胞发生细胞凋亡。而过表达Rap1b蛋白表达,可以逆转上述高糖诱导的线粒体的氧化应激损伤以及细胞凋亡。
     结论Rap1b可以特异性逆转高葡萄糖诱导的线粒体呼吸链活性受抑、ATP生成减少以及抗氧化酶的活性受抑,进而抑制线粒体ROS的生成增加,促进清除,保护细胞,减轻氧化应激引起的细胞凋亡的发生。
     第三章Rap1b通过调节线粒体动力蛋白及线粒体生源基因表达介导高葡萄糖诱导的肾小管上皮细胞氧化损伤和凋亡的调控
     目的探讨Rap1b蛋白对高糖诱导的肾小管上皮细胞氧化损伤及凋亡的作用机制。
     方法常规培养正常人近端肾小管上皮细胞株(HK-2), cDNA3.1/Rap1b质粒转染HK-2细胞,建立稳定表达的细胞株。采用realtime-PCR及Westem blot检测线粒体融合分裂蛋白Drp-1 Mfn2以及线粒体生源基因PGC-1αNRF-1的mRNA水平及蛋白水平的表达。
     结果过表达的Rap1b可以特异性的明显下调高糖诱导的Drp-1的mRNA及蛋白的表达水平的升高,上调Mfn2的表达水平,逆转上述高糖诱导的线粒体融合分裂的失衡状态,加强线粒体融合与分裂过程的协调性。不仅如此,过表达的Rap1b还可以特异性上调由于高糖诱导的线粒体生源基因PGC-1α、NRF-1的表达下降。
     结论Rap1b可能通过调节PGC-1α以及NRF等线粒体生源基因,稳定线粒体融合分裂蛋白的平衡,保护高糖诱导肾小管上皮细胞氧化损伤和凋亡。
Background Diabetic nephropathy (DN) is one of the leading causes to end stage renal disease(ESRD). Approximately 30-40% of patients with typeⅠand 15% with typeⅡDM develop renal dysfunction. High glycemic level contributes to the development of diabetic nephropathy; however, the mechanisms underlying hyperglycemia induced injury are not fully understood. Recent observations indicate that hyperglycemia triggers the generation of free radicals and oxidant stress in renal tubular epithelial cells, which might be one of the important mechanisms in the development of renal dysfunction in diabetic nephropathy. ROS mediates hyperglycemia-induced activation of signal transduction cascades (PKC, mitogen-activated protein kinases, and janus kinase/signal transducers and activators of transcription) and transcription factors (NF-κB, activated protein-1, and specificity protein-1) leading to upregulation of TGF-β1 and ECM accumulation, and finally result in cellular injury in kidney.
     Ras superfamily of small molecular weight G-proteins was reported to be as an important factor participating in mitochondrial dynamics, resulting in mitochondrial dysfunction. To be a member of Ras superfamily, Ras-proximate-1b (Rap1b) is a homolog of a well-characterized small GTPase and is known to antagonize the mitogenic and transforming activity of Ras. Recently, Raplb signal has received more and more attention in nephrology because it was found to be involved in progression of renal diseases such as diabetic nephrology and glomerulonephritis. However, very limited literature information is available that documents the effects of Rap1b in HG-induced intracellular ROS generation in the mitochondria of tubular cells in hyperglycemia-induced injury models. Researches have shown that Rap1b is upregulated in the hyperglycemic state and is known to increase B-Raf, an antiapoptotic effector protein. And in addition, our previous studies observed that Raplb ameliorates glucose-induced mitochondrial dysfunction against oxidase stress and thus prevents the apoptosis in renal tubular cells in diabetic nephrology (DN). However, the mechanism is unclear. To this end, experimental research is carried out as follow.
     ChapterⅠThe expression of Raplb in the kidney of diabetic nephropathy patients
     Objective To observe the expression of Rap1b in the kidney in order to investigate the relationship of Rap1b and high gluose ambience in diabetic nephropathy patients.
     Methods 12 patients were enrolled into the study, they were diagnosed as DN (n=6) or minimal changes disease (primary kidney disease, control group, n=6) based on clinical manifestations and renal pathology. Renal pathological changes were observed by Masson, PASM and PAS staining. Interstitial damage score and collagen deposition score were evaluated. The expression of Rap1b was tested by immunohistochemistry and the relationship of Rap1b and tubular interstitial damage in DN was analyzed.
     Results Masson, PASM and PAS staining showed that there were many lesions in the kidneys of DN patients such as moderate to severe proliferation of mesangial matrix, nodular sclerosis, diffuse or segmental thickening of the basement membrane, tubular atrophy and compensatory expansion, local interstitial fibrosis. Meanwhile, the lesions in the kidneys of minimal change disease patients were less severe. There were mild mesangial cell and matrix proliferation, basement membrane is not thick, mild granular degeneration and vacuolar degeneration in renal tubular epithelial cells and no significant abnormalities in interstitial and renal vascular. Interstitial damage score and collagen deposition score in the kidneys of DN patients were higher than that in control group. Immunohistochemistry showed that the expression of Raplb was significantly up-regulated in DN patients compared with that in control group.
     Conclusion The expression of Raplb is significantly up-regulated in the kidney of DN patients and Raplb is negatively related with renal interstitial fibrosis.
     ChapterⅡ. The expression of Raplb and its role in the process of high glucose induced mitochondrial oxidative injury in human renal tubular epithelial cells
     Objective To detect the expression of Raplb in human renal proximal epithelial cell lines (HK-2) and investigate the role of Raplb in the development of high glucose induced induced mitochondrial oxidative injury and apoptosis in HK-2.
     Methods The cells were exposed respectively in different concentrations of D-glucose(5.5,10,20,30 mM). The expression of Raplb protein was examined by Western Blot. The mitochondrial ROS was detected by Mitosox staining using confocal microscopy. Respiratory Chain Complex Activities assay, ATP assay, Catalase and GSH-Px assay were detected for mitochondrial function. Western blot and Realtime PCR were examined for procaspase-9, procaspase-3 and MnSOD2. Cell apoptosis was measured by Hoechst 33258 staining using fluorescence microscopy. Wild-Type Rap1b plasmid (cDNA3.1/Rap1b) and the Rap1b mutant plasmid (Rap1bS17N and Rap1bT61R) were transfected into HK-2 cells using lipofectamine 2000, respectively. After selection of stable transfectants, cells were maintained in the defined medium.30mM D-glucose was added (5.5mM D-glucose as control).And the detections above were examined in order to investigate the effect of Rap1b on the high glucose-induced mitochondrial injury.
     Results Stimulation of HK-2 with 30mM D-glucose resulted in a significant decrease in the expression of Raplb protein, compared with medium control group. However, there was no significant difference between the control and D-mannitol group. Decrease of Raplb GTP protein in HK-2 treated by different concentrations of high glucose in a time-dependent manner. In additon, HK-2 treated with 30mM D-glucose resulted in a time-dependent decrease in the expression of Raplb GTP protein, with the peak at 2h. Compared to control (5.5 mM),30 mM D-gluocse (HG) induced mitochondrial dysfunction, including decreased activity of respiratory chain complexⅢactivity, the level of ATP and the decreased capacity of the cellular antioxidant defense system(Catalase, GSH Px and MnSOD2). HG increases overproduction of mitochondrial superoxide. Pro-caspase-3 and pro-caspase-9 were both decreased accompanied by increasing cellular apoptosis. However, over-expression of Rap1b partially reversed such abnormalities.
     Conclusion Raplb could also protect mitochondria from high glucose-induced injury by reversing the decreased activity of respiratory chain complexⅢactivity, the level of ATP, the decreased capacity of the cellular antioxidant defense system, alteration of expression of Pro-caspase-3 and pro-caspase-9. These data show Rap1b contributes for the inhibition of mitochondria-mediated pathway of apoptosis induced by high glucose.
     ChapterⅢRap1b regulates high glucose induced mitochondrial oxidative injury via modulation of balance of fusion and fission in mitochondria in renal tubular epithelial cells
     Objective To investigate the mechanism by which Rap1b modulates the process of high glucose induced mitochondrial oxidative injury in renal tubular epithelial cells (HK-2).
     Methods Wild-Type Raplb plasmid (cDNA3.1/Rap1b) and the Rap1b mutant plasmid (Rap1bS17N and Rap1bT61R) were transfected into HK-2 cells using lipofectamine 2000, respectively. After selection of stable transfectants, cells were maintained in the defined medium. 30mM D-glucose was added (5.5mM D-glucose as control). Real-time PCR and Western blot were detected for mitochondrial fusion and fission proteins(Drpl,Mfh2) and mitochondria-related transcription factors PGC-1αand NRF-1.
     Results
     After 48h of treatment, high glucose triggers the development of imbalance of fusion and fission in mitochondria, including increased Drp1 and decreased Mfh2 in mRNA levels and protein levels. In addition, mitochondria-related transcription factors PGC-1a and NRF-1 were both decreased. While the effect was significantly reversed in Raplb transfected HK-2 cells, compared with that in Rap1b mutant plasmid.
     Conclusion Overexpression of Raplb might reverse the effects of oxidative injury induced by 30mM D-glucose in HK-2 via maintaining the PGC-1a/NRF-1-regulated fusion and fission in mitochondria.
引文
[1]M. Shlipak. Diabetic nephropathy:preventing progression. Am Fam Physician,83, 732.
    [2]E.M. Al-Harbi, E.M. Farid, K.A. Gumaa, E.M. Masuadi, and J. Singh. Angiotensin-converting enzyme gene polymorphisms and T2DM in a case-control association study of the Bahraini population. Mol Cell Biochem, 350,119-125.
    [3]Y.S. Kanwar, L. Sun, P. Xie, F.Y. Liu, and S. Chen. A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annu Rev Pathol,6,395-423.
    [4]A. Mimenza-Alvarado, and S. Aguilar-Navarro. [Pharmacological treatment of diabetic neuropathy in the elderly]. Rev Invest Clin,62,375-383.
    [5]R.A. Mahdy, W.M. Nada, K.M. Hadhoud, and S.A. El-Tarhony. The role of vascular endothelial growth factor in the progression of diabetic vascular complications. Eye (Lond),24,1576-1584.
    [6]E.Y. Park, and T.Y. Kim. Autoantibodies found in type-2 diabetes with AIT test may be associated with its nephropathic complication. Diabetes Res Clin Pract, 90, e3-4.
    [7]V. Sepe, P. Esposito, L. Sacco, A. Ceci, A. Magrassi, M.T. Negri, C. Libetta, and A. Dal Canton. Peritonitis in type 2 diabetes mellitus due to Ochrobactrum anthropi complicating automated peritoneal dialysis. Acta Diabetol,47,341-344.
    [8]L.M. Villeneuve, M.A. Reddy, and R. Natarajan. Epigenetics:Deciphering its role in Diabetes and its Chronic Complications. Clin Exp Pharmacol Physiol,
    [9]M.K. Svensson, and J.W. Eriksson. Change in the Amount of Body Fat and IL-6 Levels is Related to Altered Insulin Sensitivity in Type 1 Diabetes Patients with or without Diabetic Nephropathy. Horm Metab Res,43,209-215.
    [10]T.L Chang, J.T. Park, J.K. Kim, S.J. Kim, H.J. Oh, D.E. Yoo, S.H. Han, T.H. Yoo, and S.W. Kang. Renal outcomes in patients with type 2 diabetes with or without coexisting non-diabetic renal disease. Diabetes Res Clin Pract,
    [11]M.C. Hsieh, Y.T. Hsieh, T.J. Cho, J.F. Chen, S.D. Lin, H.C. Chen, and S.T. Tu. Remission of diabetic nephropathy in type 2 diabetic Asian population:role of tight glucose and blood pressure control. Eur J Clin Invest,
    [12]B.I. Freedman, Z.K. Shihabi, L. Andries, C.Y. Cardona, T.P. Peacock, J.R. Byers, G.B. Russell, R.J. Stratta, and A.J. Bleyer. Relationship between assays of glycemia in diabetic subjects with advanced chronic kidney disease. Am J Nephrol,31,375-379.
    [13]M. Ounissi, T. Ben Abdallah, E. Abderrahim, F. Ben Hamida, R. Goucha, H. Ben Maiz, and A. Kheder. [Peritoneal dialysis in the elderly]. Tunis Med,2009,87, 742-746.
    [14]P.S. Passadakis, and D.G Oreopoulos. Diabetic patients on peritoneal dialysis. Semin Dial,23,191-197.
    [15]K. Fukami, S. Yamagishi, S. Ueda, and S. Okuda. Novel therapeutic targets for diabetic nephropathy. Endocr Metab Immune Disord Drug Targets,2007,7, 83-92.
    [16]K. Fukami, S. Yamagishi, S. Ueda, and S. Okuda. Role of AGEs in diabetic nephropathy. Curr Pharm Des,2008,14,946-952.
    [17]C.J. Lagranha, P. Fiorino, D.E. Casarini, B.D. Schaan, and M.C. Irigoyen. [Molecular bases of diabetic nephropathy]. Arq Bras Endocrinol Metabol,2007, 51,901-912.
    [18]A.L. Tan, J.M. Forbes, and M.E. Cooper. AGE, RAGE, and ROS in diabetic nephropathy. Semin Nephrol,2007,27,130-143.
    [19]S. Yamagishi, K. Fukami, S. Ueda, and S. Okuda. Molecular mechanisms of diabetic nephropathy and its therapeutic intervention. Curr Drug Targets,2007,8, 952-959.
    [20]K. Foster, L. Salinas-Madrigal, B. Miller, and H. Liapis. Diabetic glomerulopathy: unusual patterns and dual disease. Semin Diagn Pathol,2002,19,160-174.
    [21]F. Giacco, and M. Brownlee. Oxidative stress and diabetic complications. Circ Res,107,1058-1070.
    [22]J. Hur, K.A. Sullivan, A.D. Schuyler, Y. Hong, M. Pande, D.J. States, H.V. Jagadish, and E.L. Feldman. Literature-based discovery of diabetes- and ROS-related targets. BMC Med Genomics,3,49.
    [23]S. Yamagishi, and T. Matsui. Advanced glycation end products, oxidative stress and diabetic nephropathy. Oxid Med Cell Longev,3,101-108.
    [24]T.J. Hsieh, P. Fustier, C.C. Wei, S.L. Zhang, J.G Filep, S.S. Tang, J.R. Ingelfinger, I.G Fantus, P. Hamet, and J.S. Chan. Reactive oxygen species blockade and action of insulin on expression of angiotensinogen gene in proximal tubular cells. J Endocrinol,2004,183,535-550.
    [25]T.J. Hsieh, S.L. Zhang, J.G Filep, S.S. Tang, J.R. Ingelfinger, and J.S. Chan. High glucose stimulates angiotensinogen gene expression via reactive oxygen species generation in rat kidney proximal tubular cells. Endocrinology,2002,143, 2975-2985.
    [26]G Wolf. New insights into the pathophysiology of diabetic nephropathy:from haemodynamics to molecular pathology. Eur J Clin Invest,2004,34,785-796.
    [27]D.K. Furstenau, N. Mitra, F. Wan, R. Lewis, M.D. Feldman, D.L. Fraker, and M.A. Guvakova. Ras-related protein 1 and the insulin-like growth factor type I receptor are associated with risk of progression in patients diagnosed with carcinoma in situ. Breast Cancer Res Treat,
    [28]C.Y. Jeon, H.J. Kim, J.Y. Lee, J.B. Kim, S.C. Kim, and J.B. Park. p190RhoGAP and Rap-dependent RhoGAP (ARAP3) inactivate RhoA in response to nerve growth factor leading to neurite outgrowth from PC12 cells. Exp Mol Med,42, 335-344.
    [29]A.R. Kidd,3rd, J.L. Snider, T.D. Martin, S.F. Graboski, C.J. Der, and A.D. Cox. Ras-related small GTPases RalA and RalB regulate cellular survival after ionizing radiation. Int J Radiat Oncol Biol Phys,78,205-212.
    [30]S.C. Jeyaraj, N.T. Unger, and M.A. Chotani. Rap1 GTPases:An emerging role in the cardiovasculature. Life Sci,
    [31]G. Vlahou, M. Elias, J.C. von Kleist-Retzow, R.J. Wiesner, and F. Rivero. The Ras related GTPase Miro is not required for mitochondrial transport in Dictyostelium discoideum. Eur J Cell Biol,90,342-355.
    [32]B. Halter, J.L. Gonzalez de Aguilar, F. Rene, S. Petri, B. Fricker, A. Echaniz-Laguna, L. Dupuis, Y. Larmet, and J.P. Loeffler. Oxidative stress in skeletal muscle stimulates early expression of Rad in a mouse model of amyotrophic lateral sclerosis. Free Radic Biol Med,48,915-923.
    [33]H. Kadara, E. Tahara, H.J. Kim, D. Lotan, J. Myers, and R. Lotan. Involvement of Rac in fenretinide-induced apoptosis. Cancer Res,2008,68,4416-4423.
    [34]L. Yi, X.X. Ji, H. Tan, M. Lin, Y. Tang, L. Wen, Y.H. Ma, and Q. Su. Role of Ras-related C3 botulinum toxin substrate 2 (Rac2), NADPH oxidase and reactive oxygen species in diallyl disulphide-induced apoptosis of human leukaemia HL-60 cells. Clin Exp Pharmacol Physiol,37,1147-1153.
    [35]C.D. Nobes, J.B. Reppas, A. Markus, and A.M. Tolkovsky. Active p21Ras is sufficient for rescue of NGF-dependent rat sympathetic neurons. Neuroscience, 1996,70,1067-1079.
    [36]A.V. Kuznetsov, J. Smigelskaite, C. Doblander, M. Janakiraman, M. Hermann, M. Wurm, S.F. Scheidl, R. Sucher, A. Deutschmann, and J. Troppmair. Survival signaling by C-RAF:mitochondrial reactive oxygen species and Ca2+ are critical targets. Mol Cell Biol,2008,28,2304-2313.
    [37]M. Breitenbach, P. Laun, and M. Gimona. The actin cytoskeleton, RAS-cAMP signaling and mitochondrial ROS in yeast apoptosis. Trends Cell Biol,2005,15, 637-639.
    [38]J. Qiao, F.C. Mei, V.L. Popov, L.A. Vergara, and X. Cheng. Cell cycle-dependent subcellular localization of exchange factor directly activated by cAMP. J Biol Chem,2002,277,26581-26586.
    [39]S. Kim, A. Mizoguchi, A. Kikuchi, and Y. Takai. Tissue and subcellular distributions of the smg-21/rapl/Krev-1 proteins which are partly distinct from those of c-ras p21s. Mol Cell Biol,1990,10,2645-2652.
    [40]S. Lin, S. Chugh, X. Pan, E.I. Wallner, J. Wada, and Y.S. Kanwar. Identification of up-regulated Ras-like GTPase, Raplb, by suppression subtractive hybridization. Kidney Int, 2001,60,2129-2141.
    [41]M.G Radford, Jr., J.V. Donadio, Jr., E.J. Bergstralh, and J.P. Grande. Predicting renal outcome in IgA nephropathy. J Am Soc Nephrol,1997,8,199-207.
    [42]S.L. Lin, R.H. Chen, Y.M. Chen, W.C. Chiang, C.F. Lai, K.D. Wu, and T.J. Tsai. Pentoxifylline attenuates tubulointerstitial fibrosis by blocking Smad3/4-activated transcription and profibrogenic effects of connective tissue growth factor. J Am Soc Nephrol,2005,16,2702-2713.
    [43]D.B. Cohen, T.J. Allain, S. Glover, D. Chimbayo, H. Dzamalala, H.W. Hofland, N.P. Banda, and E.E. Zijlstra. A survey of the management, control, and complications of diabetes mellitus in patients attending a diabetes clinic in Blantyre, Malawi, an area of high HIV prevalence. Am J Trop Med Hyg,83, 575-581.
    [44]Z. Liu, C. Fu, W. Wang, and B. Xu. Prevalence of chronic complications of type 2 diabetes mellitus in outpatients-a cross-sectional hospital based survey in urban China. Health Qual Life Outcomes,8,62.
    [45]Y.S. Kanwar, J. Wada, L. Sun, P. Xie, E.I. Wallner, S. Chen, S. Chugh, and F.R. Danesh. Diabetic nephropathy:mechanisms of renal disease progression. Exp Biol Med (Maywood),2008,233,4-11.
    [46]C.J. Magri, and S. Fava. The role of tubular injury in diabetic nephropathy. Eur J Intern Med,2009,20,551-555.
    [47]S.E. Nielsen, T. Sugaya, L. Tarnow, M. Lajer, K.J. Schjoedt, A.S. Astrup, T. Baba, H.H. Parving, and P. Rossing. Tubular and glomerular injury in diabetes and the impact of ACE inhibition. Diabetes Care,2009,32,1684-1688.
    [48]M.H. De Borst, J. Prakash, W.B. Melenhorst, M.C. van den Heuvel, R.J. Kok, G Navis, and H. van Goor. Glomerular and tubular induction of the transcription factor c-Jun in human renal disease. J Pathol,2007,213,219-228.
    [49]M.C. Thomas, W.C. Burns, and M.E. Cooper. Tubular changes in early diabetic nephropathy. Adv Chronic Kidney Dis,2005,12,177-186.
    [50]N. Futrakul, V. Vongthavarawat, S. Sirisalipotch, T. Chairatanarat, P. Futrakul, and S. Suwanwalaikom. Tubular dysfunction and hemodynamic alteration in normoalbuminuric type 2 diabetes. Clin Hemorheol Microcirc,2005,32,59-65.
    [51]R.E. Gilbert, and M.E. Cooper. The tubulointerstitium in progressive diabetic kidney disease:more than an aftermath of glomerular injury? Kidney Int,1999, 56,1627-1637.
    [52]D. Kumar, S. Robertson, and K.D. Burns. Evidence of apoptosis in human diabetic kidney. Mol Cell Biochem,2004,259,67-70.
    [53]D. Kumar, J. Zimpelmann, S. Robertson, and K.D. Burns. Tubular and interstitial cell apoptosis in the streptozotocin-diabetic rat kidney. Nephron Exp Nephrol, 2004,96, e77-88.
    [54]P. Fioretto, D.E. Sutherland, B. Najafian, and M. Mauer. Remodeling of renal interstitial and tubular lesions in pancreas transplant recipients. Kidney Int,2006, 69,907-912.
    [55]M. Wei, S.P. Gaskill, S.M. Haffner, and M.P. Stern. Effects of diabetes and level of glycemia on all-cause and cardiovascular mortality. The San Antonio Heart Study. Diabetes Care,1998,21,1167-1172.
    [56]Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet,1998, 352,837-853.
    [57]The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med,1993,329, 977-986.
    [58]T. Inoguchi, and R. Takayanagi. [Role of oxidative stress in diabetic vascular complications]. Fukuoka Igaku Zasshi,2008,99,47-55.
    [59]D. Giugliano, A. Ceriello, and G Paolisso. Oxidative stress and diabetic vascular complications. Diabetes Care,1996,19,257-267.
    [60]T. Nishikawa, D. Edelstein, X.L. Du, S. Yamagishi, T. Matsumura, Y. Kaneda, M.A. Yorek, D. Beebe, P.J. Oates, H.P. Hammes, I. Giardino, and M. Brownlee. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature,2000,404,787-790.
    H.B. Lee, M.R. Yu, Y. Yang, Z. Jiang, and H. Ha. Reactive oxygen species-regulated signaling pathways in diabetic nephropathy. J Am Soc Nephrol, 2003,14, S241-245.
    [62]L. Sun, P. Xie, J. Wada, N. Kashihara, F.Y. Liu, Y. Zhao, D. Kumar, S.S. Chugh, F.R. Danesh, and Y.S. Kanwar. Raplb GTPase ameliorates glucose-induced mitochondrial dysfunction. J Am Soc Nephrol,2008,19,2293-2301.
    [63]A.O. Phillips, and R. Steadman. Diabetic nephropathy:the central role of renal proximal tubular cells in tubulointerstitial injury. Histol Histopathol,2002,17, 247-252.
    [64]R.E. Gilbert, A. Akdeniz, T.J. Allen, and G Jerums. Urinary transforming growth factor-beta in patients with diabetic nephropathy:implications for the pathogenesis of tubulointerstitial pathology. Nephrol Dial Transplant,2001,16, 2442-2443.
    [65]M. Fujii, T. Inoguchi, S. Sasaki, Y. Maeda, J. Zheng, K. Kobayashi, and R. Takayanagi. Bilirubin and biliverdin protect rodents against diabetic nephropathy by downregulating NAD(P)H oxidase. Kidney Int,78,905-919.
    [66]J.M. Li, and A.M. Shah. ROS generation by nonphagocytic NADPH oxidase: potential relevance in diabetic nephropathy. J Am Soc Nephrol,2003,14, S221-226.
    [67]H. Ha, and H.B. Lee. Reactive oxygen species amplify glucose signalling in renal cells cultured under high glucose and in diabetic kidney. Nephrology (Carlton), 2005,10 Suppl, S7-10.
    [68]B. Karahalil, E. Kesimci, E. Emerce, T. Gumus, and O. Kanbak. The impact of OGG1, MTH1 and MnSOD gene polymorphisms on 8-hydroxy-2'-deoxyguanosine and cellular superoxide dismutase activity in myocardial ischemia-reperfusion. Mol Biol Rep,
    [69]C. Ren, S. Fang, R.O. Wright, H. Suh, and J. Schwartz. Urinary 8-hydroxy-2'-deoxyguanosine as a biomarker of oxidative DNA damage induced by ambient pollution in the Normative Aging Study. Occup Environ Med,
    [70]M. Miyata, H. Kasai, K. Kawai, N. Yamada, M. Tokudome, H.Ichikawa, C. Goto, Y. Tokudome, K. Kuriki, H. Hoshino, K. Shibata, S. Suzuki, M. Kobayashi, H. Goto, M. Ikeda, T. Otsuka, and S. Tokudome. Changes of urinary 8-hydroxydeoxyguanosine levels during a two-day ultramarathon race period in Japanese non-professional runners. Int J Sports Med,2008,29,27-33.
    [71]W.J. Heuett, and V. Periwal. Autoregulation of free radicals via uncoupling protein control in pancreatic beta-cell mitochondria. Biophys J,98,207-217.
    [72]M.L. Brezniceanu, F. Liu, C.C. Wei, S. Tran, S. Sachetelli, S.L. Zhang, D.F. Guo, J.G Filep, J.R. Ingelfinger, and J.S. Chan. Catalase overexpression attenuates angiotensinogen expression and apoptosis in diabetic mice. Kidney Int,2007,71, 912-923.
    [73]P.H. Remans, C.A. Wijbrandts, M.E. Sanders, R.E. Toes, F.C. Breedveld, P.P. Tak, J.M. van Laar, and K.A. Reedquist. CTLA-4IG suppresses reactive oxygen species by preventing synovial adherent cell-induced inactivation of Rap1, a Ras family GTPASE mediator of oxidative stress in rheumatoid arthritis T cells. Arthritis Rheum,2006,54,3135-3143.
    [74]P.H. Remans, S.I. Gringhuis, J.M. van Laar, M.E. Sanders, E.A. Papendrecht-van der Voort, F.J. Zwartkruis, E.W. Levarht, M. Rosas, P.J. Coffer, F.C. Breedveld, J.L. Bos, P.P. Tak, C.L. Verweij, and K.A. Reedquist. Rap1 signaling is required for suppression of Ras-generated reactive oxygen species and protection against oxidative stress in T lymphocytes. J Immunol,2004,173,920-931.
    [75]G Loor, J. Kondapalli, H. Iwase, N.S. Chandel, GB. Waypa, R.D. Guzy, T.L Vanden Hoek, and P.T. Schumacker. Mitochondrial oxidant stress triggers cell death in simulated ischemia-reperfusion. Biochim Biophys Acta,
    [76]H.M. Viola, and L.C. Hool. Targeting Calcium and the Mitochondria in Prevention of Pathology in the Heart. Curr Drug Targets,
    [77]D.M. Arduino, A.R. Esteves, and S.M. Cardoso. Mitochondrial fusion/fission, transport and autophagy in Parkinson's disease:when mitochondria get nasty. Parkinsons Dis,2011,767230.
    [78]L. Chen, Q. Gong, J.P. Stice, and A.A. Knowlton. Mitochondrial OPA1, apoptosis, and heart failure. Cardiovasc Res,2009,84,91-99.
    [79]H.M. Heath-Engel, and G.C. Shore. Mitochondrial membrane dynamics, cristae remodelling and apoptosis. Biochim Biophys Acta,2006,1763,549-560.
    [80]M. Liesa, M. Palacin, and A. Zorzano. Mitochondrial dynamics in mammalian health and disease. Physiol Rev,2009,89,799-845.
    [81]H. Deng, M.W. Dodson, H. Huang, and M. Guo. The Parkinson's disease genes pinkl and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proc Natl Acad Sci U S A,2008,105,14503-14508.
    [82]R. Sugioka, S. Shimizu, and Y. Tsujimoto. Fzol, a protein involved in mitochondrial fusion, inhibits apoptosis. J Biol Chem,2004,279,52726-52734.
    [83]J. Estaquier, and D. Arnoult. Inhibiting Drpl-mediated mitochondrial fission selectively prevents the release of cytochrome c during apoptosis. Cell Death Differ,2007,14,1086-1094.
    [84]S. Frank, B. Gaume, E.S. Bergmann-Leitner, W.W. Leitner, E.G Robert, F. Catez, C.L. Smith, and R.J. Youle. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell,2001,1,515-525.
    [85]G. Szabadkai, A.M. Simoni, M. Chami, M.R. Wieckowski, R.J. Youle, and R. Rizzuto. Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2+-mediated apoptosis. Mol Cell,2004,16,59-68.
    [86]S. Wasiak, R. Zunino, and H.M. McBride. Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. J Cell Biol,2007,177,439-450.
    [87]O.M. de Brito, and L, Scorrano. Mitofusin 2:a mitochondria-shaping protein with signaling roles beyond fusion. Antioxid Redox Signal,2008,10,621-633.
    [88]M. Neuspiel, R. Zunino, S. Gangaraju, P. Rippstein, and H. McBride. Activated mitofusin 2 signals mitochondrial fusion, interferes with Bax activation, and reduces susceptibility to radical induced depolarization. J Biol Chem,2005,280, 25060-25070.
    [89]T. Shen, M. Zheng, C. Cao, C. Chen, J. Tang, W. Zhang, H. Cheng, K.H. Chen, and R.P. Xiao. Mitofusin-2 is a major determinant of oxidative stress-mediated heart muscle cell apoptosis. J Biol Chem,2007,282,23354-23361.
    [90]Y. Xia, Y.Q. Wu, Q.C. Zheng, W. Zhang, J.P. Gong, and F.Z. Qiu. [Effect of mitofusin-2 gene in apoptosis of human breast carcinoma cell line in vitro]. Zhonghua Zhong Liu Za Zhi,2007,29,653-656.
    [91]M. Bui, S.Y. Gilady, R.E. Fitzsimmons, M.D. Benson, E.M. Lynes, K. Gesson, N.M. Alto, S. Strack, J.D. Scott, and T. Simmen. Rab32 modulates apoptosis onset and mitochondria-associated membrane (MAM) properties. J Biol Chem, 285,31590-31602.
    [92]L. Hou, J.X. Wang, and X.F. Zhao. Rab32 and the remodeling of the imaginal midgut in Helicoverpa armigera. Amino Acids,40,953-961.
    [93]L. Fang, X.L. Moore, X.M. Gao, A.M. Dart, Y.L. Lim, and X.J. Du. Down-regulation of mitofusin-2 expression in cardiac hypertrophy in vitro and in vivo. Life Sci,2007,80,2154-2160.
    [94]P. Pawlikowska, B. Gajkowska, and A. Orzechowski. Mitofusin 2 (Mfn2):a key player in insulin-dependent myogenesis in vitro. Cell Tissue Res,2007,3275 571-581.
    [95]J. Li, J. Zhou, Y. Li, D. Qin, and P. Li. Mitochondrial fission controls DNA fragmentation by regulating endonuclease G. Free Radic Biol Med,49,622-631.
    [96]S.J. Martin. Mitochondrial fusion:bax to the fussure. Dev Cell,20,142-143.
    [97]L. Scorrano. Multiple functions of mitochondria-shaping proteins. Novartis Found Symp,2007,287,47-55; discussion 55-49.
    [98]A. Santel, and M.T. Fuller. Control of mitochondrial morphology by a human mitofusin. J Cell Sci,2001,114,867-874.
    [99]J.C. Chang, S.J. Kou, W.T. Lin, and C.S. Liu. Regulatory role of mitochondria in oxidative stress and atherosclerosis. World J Cardiol,2,150-159.
    [100]P.H. Ducluzeau, M. Priou, M. Weitheimer, M. Flamment, L. Duluc, F. Iacobazi, R. Soleti, G. Simard, A. Durand, J. Rieusset, R. Andriantsitohaina, and Y. Malthiery. Dynamic regulation of mitochondrial network and oxidative functions during 3T3-L1 fat cell differentiation. J Physiol Biochem,
    [101]K.N. Papanicolaou, R.J. Khairallah, GA. Ngoh, A. Chikando, I. Luptak, K.M. O'Shea, D.D. Riley, J.J. Lugus, W.S. Colucci, W.J. Lederer, W.C. Stanley, and K. Walsh. Mitofusin-2 maintains mitochondrial structure and contributes to stress-induced permeability transition in cardiac myocytes. Mol Cell Biol,31, 1309-1328.
    [102]S. Pich, D. Bach, P. Briones, M. Liesa, M. Camps, X. Testar, M. Palacin, and A. Zorzano. The Charcot-Marie-Tooth type 2A gene product, Mfh2, up-regulates fuel oxidation through expression of OXPHOS system. Hum Mol Genet,2005, 14,1405-1415.
    [103]U. Andersson, and R.C. Scarpulla. Pgc-1-related coactivator, a novel, serum-inducible coactivator of nuclear respiratory factor 1-dependent transcription in mammalian cells. Mol Cell Biol,2001,21,3738-3749.
    [104]K. Baar. Involvement of PPAR gamma co-activator-1, nuclear respiratory factors 1 and 2, and PPAR alpha in the adaptive response to endurance exercise. Proc Nutr Soc,2004,63,269-273.
    [105]K. Vercauteren, R.A. Pasko, N. Gleyzer, V.M. Marino, and R.C. Scarpulla. PGC-1-related coactivator:immediate early expression and characterization of a CREB/NRF-1 binding domain associated with cytochrome c promoter occupancy and respiratory growth. Mol Cell Biol,2006,26,7409-7419.
    [106]P.J. Adhihetty, G Uguccioni, L. Leick, J. Hidalgo, H. Pilegaard, and D.A. Hood. The role of PGC-1 alpha on mitochondrial function and apoptotic susceptibility in muscle. Am J Physiol Cell Physiol,2009,297, C217-225.
    [107]M.I. Hernandez-Alvarez, H. Thabit, N. Burns, S. Shah, I. Brema, M. Hatunic, F. Finucane, M. Liesa, C. Chiellini, D. Naon, A. Zorzano, and J.J. Nolan. Subjects with early-onset type 2 diabetes show defective activation of the skeletal muscle PGC-1{alpha}/Mitofusin-2 regulatory pathway in response to physical activity. Diabetes Care,33,645-651.
    [108]F.X. Soriano, M. Liesa, D. Bach, D.C. Chan, M. Palacin, and A. Zorzano. Evidence for a mitochondrial regulatory pathway defined by peroxisome proliferator-activated receptor-gamma coactivator-1 alpha, estrogen-related receptor-alpha, and mitofusin 2. Diabetes,2006,55,1783-1791.
    [109]P. Boddana, F. Caskey, A. Casula, and D. Ansell. UK Renal Registry 11th Annual Report (December 2008):Chapter 14 UK Renal Registry and international comparisons. Nephron Clin Pract,2009,111 Suppl 1, c269-276.
    [110]A.J. Collins, B. Kasiske, C. Herzog, B. Chavers, R. Foley, D. Gilbertson, R. Grimm, J. Liu, T. Louis, W. Manning, A. Matas, M. McBean, A. Murray, W. St Peter, J. Xue, Q. Fan, H. Guo, S. Li, S. Li, T. Roberts, J. Snyder, C. Solid, C. Wang, E. Weinhandl, C. Arko, S.C. Chen, F. Dalleska, F. Daniels, S. Dunning, J. Ebben, E. Frazier, R. Johnson, D. Sheets, B. Forrest, D. Berrini, E. Constantini, S. Everson, P. Frederick, P. Eggers, and L. Agodoa. Excerpts from the United States Renal Data System 2004 annual data report:atlas of end-stage renal disease in the United States. Am J Kidney Dis,2005,45, A5-7, S1-280.
    [111]C. Maric. Vasoactive hormones and the diabetic kidney. Scientific WorldJournal, 2008,8,470-485.
    [112]A.A. Ghani, S. Al Waheeb, A. Al Sahow, and N. Hussain. Renal biopsy in patients with type 2 diabetes mellitus:indications and nature of the lesions. Ann Saudi Med,2009,29,450-453.
    [113]J.M. Steinke. The natural progression of kidney injury in young type 1 diabetic patients. Curr Diab Rep,2009,9,473-479.
    [114]K.Y. Fu, R. Chen, F. Zhan, J.H. Cai, Y.Y. Xie, Y. Wu, and Y.G. Han. [Clinical and pathological analysis of 217 patients with IgA nephropathy from Hainan Province]. Nan Fang Yi Ke Da Xue Xue Bao,2009,29,1445-1447.
    [115]Y.N. Hall, E.F. Fuentes, G.M. Chertow, and J.L. Olson. Race/ethnicity and disease severity in IgA nephropathy. BMC Nephrol,2004,5,10.
    [116]R. Yamamoto, and E. Imai. A novel classification for IgA nephropathy. Kidney Int,2009,76,477-480.
    [117]D.C. Cattran, R. Coppo, H.T. Cook, J. Feehally, I.S. Roberts, S. Troyanov, C.E. Alpers, A. Amore, J. Barratt, F. Berthoux, S. Bonsib, J.A. Bruijn, V. D'Agati, G. D'Amico, S. Emancipator, F. Emma, F. Ferrario, F.C. Fervenza, S. Florquin, A. Fogo, C.C. Geddes, H.J. Groene, M. Haas, A.M. Herzenberg, P.A. Hill, R.J. Hogg, S.I. Hsu, J.C. Jennette, K. Joh, B.A. Julian, T. Kawamura, F.M. Lai, C.B. Leung, L.S. Li, RK. Li, Z.H. Liu, B. Mackinnon, S. Mezzano, F.P. Schena, Y. Tomino, P.D. Walker, H. Wang, J.J. Weening, N. Yoshikawa, and H. Zhang. The Oxford classification of IgA nephropathy:rationale, clinicopathological correlations, and classification. Kidney Int,2009,76,534-545.
    [118]R. Coppo, S. Troyanov, R. Camilla, R.J. Hogg, D.C. Cattran, H.T. Cook, J. Feehally, I.S. Roberts, A. Amore, C.E. Alpers, J. Barratt, F. Berthoux, S. Bonsib, J.A. Bruijn, V. D'Agati, G. D'Amico, S.N. Emancipator, F. Emma, F. Ferrario, F.C. Fervenza, S. Florquin, A.B. Fogo, C.C. Geddes, H.J. Groene, M. Haas, A.M. Herzenberg, P.A. Hill, S.I. Hsu, J.C. Jennette, K. Joh, B.A. Julian, T. Kawamura, F.M. Lai, L.S. Li, P.K. Li, Z.H. Liu, S. Mezzano, F.P. Schena, Y. Tomino, P.D. Walker, H. Wang, J.J. Weening, N. Yoshikawa, and H. Zhang. The Oxford IgA nephropathy clinicopathological classification is valid for children as well as adults. Kidney Int,77,921-927.
    [119]I.S. Roberts, H.T. Cook, S. Troyanov, C.E. Alpers, A. Amore, J. Barratt, F. Berthoux, S. Bonsib, J.A. Bruijn, D.C. Cattran, R. Coppo, V. D'Agati, G. D'Amico, S. Emancipator, F. Emma, J. Feehally, F. Ferrario, F.C. Fervenza, S. Florquin, A. Fogo, C.C. Geddes, H.J. Groene, M. Haas, A.M. Herzenberg, P.A. Hill, R.J. Hogg, S.I. Hsu, J.C. Jennette, K. Joh, B.A. Julian, T. Kawamura, F.M. Lai, L.S. Li, P.K. Li, Z.H. Liu, B. Mackinnon, S. Mezzano, F.P. Schena, Y. Tomino, P.D. Walker, H. Wang, J.J. Weening, N. Yoshikawa, and H. Zhang. The Oxford classification of IgA nephropathy:pathology definitions, correlations, and reproducibility. Kidney Int,2009,76,546-556.
    [120]T.W. Tervaert, A.L. Mooyaart, K. Amann, A.H. Cohen, H.T. Cook, C.B. Drachenberg, F. Ferrario, A.B. Fogo, M. Haas, E. de Heer, K. Joh, L.H. Noel, J. Radhakrishnan, S.V. Seshan, I.M. Bajema, and J.A. Bruijn. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol,21,556-563.
    [121]A. Mataradzija, H. Resic, S. Rasic, N. Kukavica, and F. Masnic. Risk factors for development of cardiovascular complications in patients with chronic renal disease and diabetic nephropathy. Bosn J Basic Med Sci,10 Suppl 1, S44-50.
    [122]F. Waanders, G. Navis, and H. van Goor. Urinary tubular biomarkers of kidney damage:potential value in clinical practice. Am J Kidney Dis,55,813-816.
    [123]E. Ritz. Diabetic nephropathy. Saudi J Kidney Dis Transpl,2006,17,481-490.
    [124]B. Najafian, Y. Kim, J.T. Crosson, and M. Mauer. Atubular glomeruli and glomerulotubular junction abnormalities in diabetic nephropathy. J Am Soc Nephrol,2003,14,908-917.
    [125]S.P. Bagby. Diabetic nephropathy and proximal tubule ROS:challenging our glomerulocentricity. Kidney Int,2007,71,1199-1202.
    [1]Reuther G. and Der C, The Ras branch of small GTPases:Ras family members don't fall far from the tree. Curr. Opin. Cell Biol. (2000) 2(2):157-165.
    [2]Takai Y, Sasaki T, Matozaki T, Small GTP-binding proteins. Physiol Rev. (2001) 81(1):153-208.
    [3]Pizon V, Chardin P, Lerosey I, Olofsson B, Tavitian A, Human cDNAs rap1 and rap2 homologous to the Drosophila gene Dras3 encode proteins closely related to ras in the 'effector' region. Oncogene. (1988) 3(2):201-204.
    [4]Nagata K, Itoh H, Katada T, Takenaka K, Ui M, Kaziro Y, Nozawa Y. Purification, identification, and characterization of two GTP-binding proteins with molecular weights of 25,000 and 21,000 in human platelet cytosol. One is the rap1/smg21/Krev-1 protein and the other is a novel GTP-binding protein. J Biol Chem. (1989) 264(29):17000-17005.
    [5]Pizon V, Lerosey I, Chardin P, Tavitian A, Nucleotide sequence of a human cDNA encoding a ras-related protein (rap1B). Nucleic Acids Res. (1988) 1116(15):7719.
    [6]Branham MT, Bustos MA, De Blas GA, Rehmann H, Zarelli VE, Trevino CL, Darszon A, Mayorga LS, Tomes CN5 Epac activates the small G proteins Rapl and Rab3A to achieve exocytosis.J Biol Chem. (2009)11;284(37):24825-24839.
    [7]Ohba Y, Ikuta K, Ogura A, Requirement for C3G-dependent Rapl activation for cell adhesion and embryogenesis. EMBO J (2001) 20:3333-3341.
    [8]Voss AK, Krebs DL, Thomas T, C3G regulates the size of the cerebral cortex neural precursor population. EMBO J (2006) 25:3652-3663.
    [9]Pannekoek WJ, Kooistra MR, Zwartkruis FJ, Bos JL, Cell-cell junction formation: The role of Rapl and Rapl guanine nucleotide exchange factors. Biochim Biophys Acta. (2009) 1788(4):790-796.
    [10]Severson EA, Lee WY, Capaldo CT, Nusrat A, Parkos CA, Junctional adhesion molecule A interacts with Afadin and PDZ-GEF2 to activate Rap1 A, regulate betal integrin levels, and enhance cell migration. Mol Biol Cell(2009) 20(7):1916-1925.
    [11]Carmona G, Gottig S, Orlandi A, Scheele J, Bauerle T, Jugold M, Kiessling F, Henschler R, Zeiher AM, Dimmeler S, Chavakis E, Role of the small GTPase Rap1 for integrin activity regulation in endothelial cells and angiogenesis. Blood (2009)8 113(2):488-97.
    [12]Mason RM, Wahab NA, Extracellular matrix metabolism in diabetic nephropathy. J Am Soc Nephrol (2003) 14:1358-1373.
    [13]Lin S, Chugh S, Pan X, Wallner EI, Wada J, Kanwar YS, Identification of up-regulated Ras-like GTPase, Raplb, by suppression subtractive hybridization. Kidney Int (2001) 60(6):2129-41.
    [14]Lee Hi Bahl, Yu Mi-Ra, Yang Yanqiang, Jiang Zongpei, Ha Hunjoo, Reactive Oxygen Species-Regulated Signaling Pathways in Diabetic Nephropathy. Am Soc Nephrol (2003)14(8 Suppl 3):S241-S245.
    [15]Russell JW, Golovoy D, Vincent AM, Mahendru P, Olzmann JA, Mentzer A, Feldman EL, High glucose-induced oxidative stress and mitochondrial dysfunction in neurons. FASEB J. (2002) 16(13):1738-1748.
    [16]KangD, HamasakiN, Mitochondrial oxidative stress and mitochondrial DNA. Clin Chem Lab Med (2003) 41(10):1281-1288.
    [17]Susztak K, Raff AC, Schiffer M, Bottinger EP, Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes (2006) 55(1):225-233.
    [18]Sun L, Xie P, Wada J, Kashihara N, Liu FY, Zhao Y, Kumar D, Chugh SS, Danesh FR, Kanwar YS, Rap1b GTPase ameliorates glucose-induced mitochondrial dysfunction. J Am Soc Nephrol.(2008) 19(12):2293-301.
    [19]De Falco V, Castellone MD, De Vita G, Cirafici AM, Hershman JM, Guerrero C, Fusco A, Melillo RM, Santoro M. RET/papillary thyroid carcinoma oncogenic signaling through the Rap1 small GTPase. Cancer Res (2007) 67(1):381-90.
    [20]Voss AK, Britto JM, Dixon MP, Sheikh BN, Collin C, Tan SS, Thomas T, C3G regulates cortical neuron migration, preplate splitting and radial glial cell attachment. Development. (2008) 135(12):2139-49.
    [21]Rufanova VA, Lianos E, Alexanian A, Sorokina E, Sharma M, McGinty A, Sorokin A, C3G overexpression in glomerular epithelial cells during anti-GBM-induced glomerulonephritis. Kidney Int (2009) 75(1):31-40.
    [22]Pasel K, Schulz A, Timmermann K, Linnemann K, Hoeltzenbein M, Jaaskelainen J, Functional characterization of the molecular defects causing nephrogenic diabetes insipidus in eight families. J Clin Endocrinol Metab. (2000) 85:1703-1710.
    [23]Lin SH, Bichet DG, Sasaki S, Kuwahara M, Arthus MF, Lonergan M, Two novel aquaporin-2 mutations responsible for congenital nephrogenic diabetes insipidus in Chinese families. J Clin Endocrinol Metab. (2002)87:2694-2700.
    [24]Bougacha-Elleuch N, Lassoued MB, Miled N, Zouari S, Ayadi H, Characterization of V71M mutation in the aquaporin-2 gene causing nephrogenic diabetes insipidus. J Genet. (2008) 87(3):279-82.
    [25]Nedvetsky PI, Tamma G, Beulshausen S, Valenti G, Rosenthal W, Klussmann E, Regulation of aquaporin-2 trafficking. Handb Exp Pharmacol. (2009)190 133-57.
    [26]Li Y, Konings IB, Zhao J, Price LS, de Heer E, Deen PM, Renal expression of exchange protein directly activated by cAMP (Epac) 1 and 2. Am J Physiol Renal Physiol. (2008) 295(2):F525-33.
    [27]Yip KP, Epac-mediated Ca(2+) mobilization and exocytosis in inner medullary collecting duct. Am J Physiol Renal Physiol. (2006) 291(4):882-890.
    [28]Balasubramanian L, Sham JS, Yip KP, Calcium signaling in vasopressin-induced aquaporin-2 trafficking. Pflugers Arch. (2008) 456(4):747-54.
    [29]Tsukamoto N, Hattori M, Yang H, Bos JL, and Minato N, Rapl GTPase-activating protein SPA-1 negatively regulates cell adhesion. J Biol Chem (1999) 274:18463-18469.
    [30]Noda Y, Horikawa S, Furukawa T, Hirai K, Katayama Y, Asai T, Aquaporin-2 trafficking is regulated by PDZ-domain containing protein SPA-1. FEBS Lett. (2004) 568:139-145.
    [31]Noda Y, Horikawa S, Katayama Y, Sasaki S, Water channel aquaporin-2 directly binds to actin. Biochem Biophys Res Commun. (2004) 322:740-745.
    [32]Michel-Calemard L, Dijoud F, Till M, Lambert JC, Vercherat M, Tardy V, Coubes C, Morel Y, Pseudoexon activation in the PKHD1 gene:a French founder intronic mutation FVS46+653A>G causing severe autosomal recessive polycystic kidney disease. Clin Genet. (2009) 75(2):203-6.
    [33]Masyuk TV, Gradilone SA, Masyuk AI, Medina JF, LaRusso NF, The cAMP effectors Epac and protein kinase a (PKA) are involved in the hepatic cystogenesis of an animal model of autosomal recessive polycystic kidney disease (ARPKD). Hepatology. (2009) 49(1):160-74.
    [1]P. Boddana, et al. UK Renal Registry 11th Annual Report (December 2008): Chapter 14 UK Renal Registry and international comparisons. Nephron Clin Pract,2009,111 Suppl 1:c269-76.
    [2]A. J. Collins, et al. Excerpts from the United States Renal Data System 2004 annual data report:atlas of end-stage renal disease in the United States. Am J Kidney Dis,2005,45:A5-7, S1-280.
    [3]C. Maric. Vasoactive hormones and the diabetic kidney. ScientificWorldJournal, 2008,8:470-85.
    [4]A. A. Ghani, et al. Renal biopsy in patients with type 2 diabetes mellitus: indications and nature of the lesions. Ann Saudi Med,2009,29:450-3.
    [5]J. M. Steinke. The natural progression of kidney injury in young type 1 diabetic patients. Curr Diab Rep,2009,9:473-9.
    [6]K. Y. Fu, et al. [Clinical and pathological analysis of 217 patients with IgA nephropathy from Hainan Province]. Nan Fang Yi Ke Da Xue Xue Bao,2009,29: 1445-7.
    [7]Y. N. Hall, et al. Race/ethnicity and disease severity in IgA nephropathy. BMC Nephrol,2004,5:10.
    [8]R. Yamamoto and E. Imai. A novel classification for IgA nephropathy. Kidney Int, 2009,76:477-80.
    [9]D. C. Cattran, et al. The Oxford classification of IgA nephropathy:rationale, clinicopathological correlations, and classification. Kidney Int,2009,76:534-45.
    [10]R. Coppo, et al. The Oxford IgA nephropathy clinicopathological classification is valid for children as well as adults. Kidney Int,77:921-7.
    [11]I. S. Roberts, et al. The Oxford classification of IgA nephropathy:pathology definitions, correlations, and reproducibility. Kidney Int,2009,76:546-56.
    [12]T. W. Tervaert, et al. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol,21:556-63.
    [13]A. Mataradzija, et al. Risk factors for development of cardiovascular complications in patients with chronic renal disease and diabetic nephropathy. Bosn J Basic Med Sci,10 Suppl 1:S44-50.
    [14]F. Waanders, et al. Urinary tubular biomarkers of kidney damage:potential value in clinical practice. Am J Kidney Dis,55:813-6.
    [15]E. Ritz. Diabetic nephropathy. Saudi J Kidney Dis Transpl,2006,17:481-90.
    [16]B. Najafian, et al. Atubular glomeruli and glomerulotubular junction abnormalities in diabetic nephropathy. J Am Soc Nephrol,2003,14:908-17.
    [17]S. P. Bagby. Diabetic nephropathy and proximal tubule ROS:challenging our glomerulocentricity. Kidney Int,2007,71:1199-202.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700