线粒体自噬在SOD1转基因小鼠中的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:肌萎缩侧索硬化(Amyotrophic lateral sclerosis, ALS)是一种进行性加重的神经系统变性疾病,累及上下运动神经元,主要临床表现为进行性加重的肌肉萎缩、肌无力,其感觉系统一般不受累,缺乏有效的治疗方法,病人常在发病后3-5年因呼吸肌麻痹而死亡。90%~95%的ALS为散发性,5%~10%的ALS为家族性,其中约20%的家族性肌萎缩侧索硬化被证实由Cu/Zn超氧化物歧化酶(SOD1)基因突变所致。目前ALS的发病机制尚不清楚,可能是多元的,包括氧化应激、谷氨酸兴奋毒性、线粒体功能障碍、异常的蛋白质聚集、轴索运输障碍和凋亡等。近年来线粒体功能障碍在ALS的发生发展中所起的作用越来越受到人们的重视。线粒体是细胞内最重要细胞器之一,提供细胞生存所需能量,传递细胞信息,介导细胞凋亡,调节钙离子浓度等。运动神经元的线粒体功能是否正常至关重要。
     在生理条件下,机体可以通过自噬途径清除异常的蛋白质和受损的细胞器,如线粒体、内质网、过氧化物酶体等,以实现细胞器的更新,维持细胞稳态,保持旺盛的生理状态,自噬障碍可导致很多神经变性病,过多的或过少的自噬都是有害的。线粒体经自噬途径被选择性的清除,即线粒体自噬。线粒体不断的进行增殖和自噬,来维持线粒体的正常形态、数目和功能等。LC3II(Microtubule-associated protein1light chain3-II, LC3II)特异地参与自噬泡形成,被认为是自噬泡的“标志物”。P62是一种LC3/Atg8连接蛋白,在自噬过程中绝大多数被清除,常被人们作为自噬途径通畅与否的标志物。有研究报道自噬相关基因7(Autophagy-related gene7, Atg7)缺陷的小鼠骨骼肌中出现线粒体肿胀、嵴断裂、呼吸链活性下降等。在ALS中,人们也已发现:线粒体嵴断裂、消失、空泡化、呼吸链活性下降等改变。那么,ALS中线粒体自噬是否存在障碍,这和SOD1蓄积是否存在相关性,仍需进一步研究。
     SOD1-G93A转基因小鼠是目前研究ALS最为理想的动物模型之一。本实验旨在研究线粒体自噬在SOD1-G93A转基因小鼠中的情况,探讨其在ALS的发生和发展中所起的作用。
     方法:选取SOD1-G93A转基因雌性小鼠为实验组,根据病程分为60天组、症状早期组、终末期组,选取90天的雌性阴性小鼠作为对照组,各组12只。以10%水合氯醛(350mg/Kg体重)腹腔注射麻醉,处死小鼠,取腰髓迅速投入液氮冷冻,之后保存于-80℃冰箱;采用Percoll密度梯度离心法分离得到小鼠脊髓线粒体组分和去线粒体胞浆组分;4%多聚甲醛经心脏灌注,之后剥离小鼠腰髓,用4%多聚甲醛浸泡或用2.5%戊二醛固定组织。利用电镜技术、Western blot技术和激光共聚焦技术观察SOD1-G93A转基因小鼠腰髓运动神经元的形态并检测LC3II和P62在小鼠腰髓各组分中的含量。
     结果:
     1.SOD1-G93A转基因小鼠腰髓总的LC3II的含量:利用Western blot技术检测SOD1-G93A转基因小鼠腰髓总的LC3II表达量,示症状早期组和终末期组较对照组增加,60天组较对照组无明显变化。利用激光共聚焦技术检测LC3II与SMI32共定位情况,发现在症状早期和终末期出现荧光斑点状聚集,60天组和阴性对照组均无斑点状聚集。SOD1-G93A转基因小鼠腰髓前角细胞形态学变化:利用电镜我们观察到,症状早期组及终末期组SOD1-G93A转基因小鼠腰髓前角细胞中出现大量空泡聚集,60天组和阴性对照组无明显空泡。
     2.线粒体组分和去线粒体胞浆组分中LC3II的含量:利用Percoll密度梯度离心法分离得到线粒体组分和去线粒体胞浆组分,利用Westernblot技术分别检测两组分中LC3II的蛋白含量,发现症状早期组和终末期组线粒体组分中LC3II的含量较对照组明显增多,去线粒体胞浆组分中LC3II的含量较对照组明显减少。利用激光共聚焦技术检测LC3II与线粒体标记物VDAC共定位情况,示在症状早期组和终末期组VDAC与LC3II共定位增加。
     3.线粒体组分中P62的含量:利用Percoll密度梯度离心法提取线粒体,利用Western blot技术检测线粒体组分中P62含量,发现随着疾病的进展,症状早期组和终末期组P62的含量较阴性对照组明显增加,60天组较对照组无明显变化。
     结论:通过对SOD1-G93A转基因小鼠腰髓前角细胞的形态学观察及对LC3II和P62的测定,本实验结果表明,随着疾病的进展,SOD1-G93A转基因小鼠腰髓总LC3II的蛋白水平是增加的,线粒体组分中LC3II和P62的含量明显增加,去线粒体胞浆组分中LC3II的含量明显减少。这证实了线粒体自噬在SOD1-G93A转基因小鼠中存在障碍,过多的线粒体滞留在线粒体自噬的早期阶段,成为ALS的始动环节或恶化因素。
Objective: Amyotrophic lateral sclerosis (ALS) is a progressiveneurodegenerative disease, affecting upper and lower motor neurons (MNs),characterized by progressive limb weakness and muscle atrophy, whilesensory systems are generally spared. Lack of effective treatment and most ofthe patients die of respiratory failure3-5years later. ALS can be divided intofamilial amyotrophic lateral sclerosis (fALS) accounting for about5%-10%and sporadic amyotrophic lateral sclerosis (sALS) accounting for about90%-95%according to its speciality of episode and heredity. Approximately20%of fALS patients are caused by mutations of copper-zinc superoxidedismutase (SOD1) gene. Until now, the aetiology and pathogenesis of ALSremain largely unknown. Oxidative stress, glutamate excitotoxicity,mitochondrial dysfunction, abnormal protein aggregation, axonal transportbarriers, and apoptosis have been proved to participate in its pathogenesis.Recent years the dysfunction of mitochondria in ALS attracts more and moreattentions. Mitochondria are one of the most important organelles, providingenergy for cell survival, participating in information transmission, mediatingapoptosis, regulating calcium concentration and so on. Normal mitochondrialfunction is crucial for motor neurons.
     In physiological conditions, the organism can remove aberrant proteinsand damaged organelles by autophagy pathway, such as mitochondria,endoplasmic reticulum, peroxisomes, to update cell, maintain cellularhomeostasis and keep its physiological state. Impaired autophagy can lead tomany neurodegenerative diseases, and too much or too little autophagy isharmful. Mitochondria can be selectively cleared by autophagy, termedmitophagy. Mitophagy plays an important role to maintain mitochondrialnormal morphology, number and function. LC3II (Microtubule-associatedprotein1light chain3-II, LC3II) is specifically bound to autophagosome membranes and serves as an autophagic marker protein. P62servers as abridge between LC3II and the ubiquitin-conjugated cargo, which is degradedin the process of autophagy, so people often take p62as a marker ofautophagic flux. Research reported that skeletal muscle in Atg7(autophagyrelated gene7, Atg7) deficient mice showed mitochondria swollen, cristaebroken, respiratory chain activity declined and so on. In ALS, people have alsofound mitochondria cristae fragmentation, vacuolization and the respiratorychain activity decreased. Whether mitophagy in ALS is impaired? Are thereany relation between mitophagy and the accumulation of mutant SOD1? Itsrelevant reports are still poor, and need further study.
     At present, the SOD1-G93A transgenic mice are one of the most idealALS models. Here we focus on mitophagy in SOD1-G93A transgenic mice, tostudy its role in the pathogenesis of ALS.
     Methods: Female SOD1-G93A transgenic mice were used as theexperimental animals. The90days’ female wild type controls served ascontrol group. There were four groups: control group,60-day-old group, onsetstage group and ending stage group. Each group included twelve mice. After10%hydration aldehydes (350mg/kg body weight) intraperitoneal injectionanesthesia, decapitated, extracted the lumbar spinal cord of mice immediately,and they were frozen in liquid nitrogen and stored at-80℃; isolated spinalcord mitochondria and cytoplasm without mitochondria using percoll densitygradient centrifugation; fixated tissues via heart perfusion by4%paraformaldehyde, dissected lumbar spinal cord of mice and fixated them in4%paraformaldehyde or2.5%glutaraldehyde. Using electron microscopy,western blot and confocal microscopy to detect the morphology; the proteinexpression of LC3II and p62in mitochondria and cytoplasm withoutmitochondria.
     Results:
     1. The protein levels of LC3II in the lumbar spinal cord of ALS mice:using western blot, we find the protein levels of LC3II increase at the onsetstage and ending stage compared with WT mice. There is no obvious difference between the60-day-old group and control group. Confocalmicroscopy shows that LC3II immunofluorescence turns into a population ofpuncta in SMI32labeled MNs at the onset and ending stages of ALS, whileLC3II immunofluorescence lightly distributed homogeneously in thecytoplasm of MNs in WT mice and60d ALS mice. The morphologicalchanges in the lumbar spinal cord MNs of SOD1-G93A transgenic mice: usingelectron microscopy, we find there are a lot of autophagosomes in the MNs atthe onset and ending stage of ALS, while no accumulation of autophagosomesat the control group and60-day-old group.
     2. The protein levels of LC3II in isolated mitochondria and cytoplasmwithout mitochondria by western blot: the protein levels of LC3II inmitochondria increase at the onset and ending stages of ALS mice, while itdecreased in cytoplasm without mitochondria. By double stainings of LC3IIand mitochondria marker VDAC, we find VDAC immunopositive clustersco-localized with LC3II-positive puncta in MNs of ALS at the onset andending stages of ALS.
     3. The protein levels of p62in isolated mitochondria by western blot: theprotein levels of p62combined with mitochondria increase at the onset andending stages of ALS mice; there is no significant difference of the proteinlevels of p62combined with mitochondria between WT mice and60d groupof ALS mice.
     Conclusions: By morphological observation, protein quantitation andco-localization observation, we find: with the progress of ALS, the proteinlevels of LC3II in lumbar spinal cord increase; the protein levels of LC3II andp62in mitochondria component increase; the protein levels of LC3II incytoplasm without mitochondria decrease. This indicates that mitophagy inSOD1transgenic mice is impaired: excessive mitochondria stay at the earlystage of mitophagy, which may be the initiating or deteriorative factor of ALS.
引文
1Klionsky DJ. Autophagy: from phenomenology to molecular understand-ing in less than a decade. Nat Rev Mol Cell Biol,2007,8:931-937
    2Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologueof yeast Apg8p, is localized in autophagosome membranes after process-ing. EMBO J,2000,19:5720-5728
    3Eskelinen EL, Saftig P. Autophagy: a lysosomal degradation pathwaywith a centraI role in health and disease. Biochim Biophys Acta,2009,1793(4):664-673
    4Bjorkoy G, Lamark T, Brech A, et al. p62/SQSTM1forms proteinaggregates degraded by autophagy and has a protective effect onhuntingtin-induced cell death. J Cell Biol,2005,171:603-614
    5Klionsky DJ, Abeliovich H, Agostinis P, et al. Guidelines for the use andinterpretation of assays for monitoring autophagy in higher eukaryotes. Autopha-gy,2008,4:151-175
    6Klionsky DJ, Cuervo AM, Seglen PO. Methods for monitoringautophagy from yeast to human. Autophagy,2007,3(3):181-206
    7Ferrucci M, Fulceri F, Toti L, et al. Protein clearing pathways in ALS.Arch Ital Biol,2011,149(1):121-149
    8Sims NR, Anderson MF. Isolation of mitochondria from rat brain usingPercoll density gradient centrifugation. Nature Protocol,2008,3:1228-1239
    9Seglen PO, Bohley P. Autophagy and other vacuolar protein degradationmechanisms. Experientia,1992,48(2):158-172
    10Wang CW, Kliomky DJ. The molecular mechanism of autophagy. MolMed,2003,9(3-4):65-76
    11Takano-Ohmuro H, Mukaida M, Kominami E, et al. Autophagy inembryonic erythroid cells: its role in maturation. Eur J Cell Biol,2000,79:759-764
    12Elmore SP, Qian T, Grissom SF, et al. The mitochondrial permeabilitytransition initiates autophagy in rat hepatocytes. FASEB J,2001,15:2286-2287
    13Levine B, Yuan J. Autophagy in cell death: an innocent convict? J ClinInvest,2005,115(10)2679-2688
    14Anglade P, Vyas S, Javoy-Agid F, et al. Apoptosis and autophagy innigral neurons of patients with Parkinson’s disease. HistolHistopathol,1997,12(1):25-31
    15Nixon RA, Wegiel J, Kumar A, et al. Extensive involvement ofautophagy in Alzheimer disease:an immuno-electron microscopy study. JNeuropathol Exp Neurol.2005,64(2)113-122
    16Wu JJ, Quijano C, Chen E, et al. Mitochondrial dysfunction andoxidative stress mediate the physiological impairment induced by thedisruption of autophagy. Aging (Albany NY).2009,1(4):425-437
    17Pizzuti A, Petrucci S. Mitochondrial disfunction as a cause of ALS. ArchItal Biol,2011,149(1):113-119
    18Fornai F, Longone P, Ferrucci M, et al. Autophagy and amyotrophiclateral sclerosis: the multiple roles of lithium. Autophagy,2008,4(4):527-530
    19Fornai F, Longone P, Cafaro L, et al. Lithium delays progression ofamyotrophic lateral sclerosis. Proc Natl Acad Sci USA,2008,105(6):2052-2057
    20Li L, Zhang X, Le W. et al. Altered macroautophagy in the spinal cord ofSOD1mutant mice. Autophagy,2008,4(3):290-293
    21Kopitz J, Kisen GO, Gordon PB, et al. Nonselective autophagy ofcytosolic enzymes by isolated rat hepatocytes. J Cell Biol,1900,111:941-953
    22Kristensen AR, Schandorff S, Hoyer-Hansen M, et al. Ordered organelledegradation during starvation-induced autophagy. Mol Cell Proteomics,2008,7:2419-2428
    23Kirkin V, McEwan DG, Novak I, et al. A role for ubiquitin in selectiveautophagy. Mol. Cell,2009,34:259-269
    24Lamark T, Kirkin V, Dikic I, et al. NBR1and p62as cargo receptors forselective autophagy of ubiquitinated targets. Cell Cycle,2009,8:1986-1990
    25Lynch Day MA, Klionsky DJ. The Cvt pathway as a model for selectiveautophagy. FEBS Lett,2010,584:1359-1366
    26Kim I, Lemasters JJ. Mitochondrial degradation by autophagy(mitophagy) in GFP-LC3transgenic hepatocytes during nutrientdeprivation. Am J Physiol Cell Physiol,2011,300(2): C308-17
    27Moreira PI, Siedlak SL, Wang X, et al. Increased autophagic degradationof mitochondria in Alzheimer disease. Autophagy,2007,3(6):614-615
    28Gottlieb RA, Gustafsson AB. Mitochondrial turnover in the heart.Biochim Biophys Acta,2011,1813(7):1295-1301
    29Twig G, Shirihai OS. The interplay between mitochondrial dynamics andmitophagy. Antioxid Redox Signal,2011,14(10):1939-1951
    30Gomes LC, Scorrano L. High levels of Fis1, a pro-fission mitochondrialprotein, trigger autophagy. Biochim Biophys Acta,2008,1777(7-8):860-866
    1Eskelinen EL. New insights into the mechanisms of macroautophagy inmammalian cells. Int Rev Cell Mol Biol,2008,266:207-247
    2Ashford TP, Porter KR. Cytoplasmic components in hepatic celllysosomes. J Cell Biol,1962,12:198-202
    3Kopitz J, Kisen GO, Gordon PB, et al. Nonselective autophagy ofcytosolic enzymes by isolated rat hepatocytes. J Cell Biol,1900,111:941-953
    4Kristensen AR, Schandorff S, Hoyer-Hansen M, et al. Ordered organelledegradation during starvation-induced autophagy. Mol Cell Proteomics,2008,7:2419-2428
    5Kirkin V, McEwan DG, Novak I, et al. A role for ubiquitin in selectiveautophagy. Mol. Cell,2009,34:259-269
    6Lamark T, Kirkin V, Dikic I, et al. NBR1and p62as cargo receptors forselective autophagy of ubiquitinated targets. Cell Cycle,2009,8:1986-1990
    7Lynch Day MA, Klionsky DJ. The Cvt pathway as a model for selectiveautophagy. FEBS Lett,2010,584:1359-1366
    8Crotzer VL, Blum JS. Autophagy and intracellular surveillance:Modulating MHC class II antigen presentation with stress. Proc NailAcad Sci USA,2005,102(22):7779-7780
    9Yang Z, Klionsky DJ. An overview of the molecular mechanism ofautophagy. Curr.Top. Microbiol.Immunol,2009,335:1-32
    10F’Klionsky DJ. Autophagy in the eukaryotic cell. Eukaryot Cell,2002,l:11-21
    11Geng J, Klionsky DJ. The Atg8and Atg12ubiquitin-like conjugationsystems in macroautophagy.‘Protein modifications: beyond the usualsuspects’ review series. EMBO,2008,9(9):859-864
    12Hailey DW, Rambold AS, Satpute-Krishnan P, et al. Mitochondria supplymembranes for autophagosome biogenesis during starvation. Cell,2010,141:656-667
    13Ravikumar B, Moreau K, Jahreiss L, et al. Plasma membrane contributesto the formation of pre-autophagosomal structures. Nat. Cell Biol,2010,12:747-757
    14Yen WL, Shintani T, Nair U, et al. The conserved oligomeric Golgicomplex is involved in double-membrane vesicle formation duringautophagy. J. Cell Biol,2010,188:101-114
    15Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue ofyeast Apg8p, is localized in autophagosome membranes after processing.EMBO J,2000,19:5720-5728
    16Wang CW, Kliomky DJ. The molecular mechanism of autophagy. MolMed,2003,9(3-4):65-76
    17Klionsky DJ. The molecular machinery of autophagy: unansweredquestions. J Cell Sci,2005,118:7-18
    18Arsham AM, Neufeld TP. Thinking globally and acting locally with TOR.Curr Opin Cell Biol,2006,18:589-597
    19Bhaskar PT, Hay N. The two TORCs and Akt. Dev CelI,2007,12:487-502
    20Sarbassov DD, Ali SM, Sabatini DM. Growing roles for the mTORpathway. Curr Opin Cell Biol,2005, l7:596-603
    21Wullschleger S, Locwith, Hall MN. TOR signaling in growth andmetabolism. Cell,2006,124:471-484
    22Lum JJ, Bauer DE, Kong M, et a1. Growth factor regulation ofautophagy and cell suwival in the absence of apoptosis. Cell,2005,120(2):237-248
    23Hosokawa N, Hara T, Kishi C, et a1. Nutrent-dependent mTORClassociation with the ULKl-Atg13-FIP200complex required forautophagy. Mol Biol Cell,2009,20(7):1981-1991
    24Meijer AJ, Codogno P. Signalling and autophagy regulation in health,aging and disease. Mol Aspects Med,2006,27(5-6):411-425
    25Budanov AV, Karin M. p53target genes sestrinl and sestrin2connectgenotoxic stress and mTOR signaling. Cell,2008,134:451-460
    26Crighton D, Wilkinson S, O’Prey J, et a1. DRAM, a p53-inducedmodulator of autophagy, is critical for apoptosis. Cell,2006,126:121-134
    27Rodriguez-Enriquez S, Kim I, Currin RT, et al. Tracker dyes to probemitochondrial autophagy F94(mitophagy) in rat hepatocytes. Autophagy,2006,2(1):39-46
    28Eskelinen EL, Saftig P. Autophagy: a lysosomal degradation pathwaywith a centraI role in health and disease. Biochim Biophys Acta,2009,1793(4):664-673
    29Bjorkoy G, Lamark T, Brech A, et al. p62/SQSTM1forms proteinaggregates degraded by autophagy and has a protective effect onhuntingtin-induced cell death. J Cell Biol,2005,171:603-614
    30Klionsky DJ, Abeliovich H, Agostinis P, et al. Guidelines for the use andinterpretation of assays for monitoring autophagy in higher eukaryotes.Autophagy,2008,4:151-175
    31Klionsky DJ, Cuervo AM, Seglen PO. Methods for monitoring autophagyfrom yeast to human. Autophagy,2007,3(3):181-206
    32Lemasters JJ. Selective mitochondrial autophagy, or mitophagy, as atargeted defense against oxidative stress, mitochondrial dysfunction, andaging. Rejuvenation Res,2005,8(1):3-5
    33Kanki T, Klionsky DJ. The molecular mechanism of mitochondriaautophagy in yeast. Mol Microbiol,2010,75:795-800
    34Kanki T, Wang K, Cao Y, et al. Atg32is a mitochondrial protein thatconfers selectivity during mitophagy. Dev Cell,2009,17(1):98–109
    35Okamoto K, Kondo-Okamoto N, Ohsumi Y. Mitochondria-anchoredreceptor Atg32mediates degradation of mitochondria via selectiveautophagy. Dev Cell,2009,17(1):87-97
    36Aoki Y, Kanki T, Hirota Y, et al. Phosphorylation of Serine114on Atg32mediates mitophagy. Mol Biol Cell,2011,22(17):3206-3217
    37Twig G, Elorza A, Molina AJ, et al. Fission and selective fusion governmitochondrial segregation and elimination by autophagy. EMBO J,2008,27(2):433-446
    38Romanello V, Guadagnin E, Gomes L,et al. Mitochondrial fission andremodelling contributes to muscle atrophy. EMBO J,2010,29(10):1774-1785
    39Frieden M, James D, Castelbou C, et al. Ca(2+) homeostasis duringmitochondrial fragmentation and perinuclear clustering induced by hFis1.J Biol Chem,2004,279(21):22704-22714
    40Arnoult D, Rismanchi N, Grodet A, et al. Bax/Bak-dependent release ofDDP/TIMM8a promotes Drp1-mediated mitochondrial fission andmitoptosis during programmed cell death. Curr Biol,2005,15(23):2112-2118
    41Navratil M, Terman A, Arriaga EA. Giant mitochondria do not fuse andexchange their contents with normal mitochondria. Exp Cell Res.2008,314(1):164-172
    42Benard G, Bellance N, James D, et al. Mitochondrial bioenergetics andstructural network organization. J Cell Sci,2007,120:838-848
    43Berman SB, Chen YB, Qi B, et al. Increases mitochondrial fission, fusion,and biomass in neurons. J Cell Biol,2009,184:707-719
    44Gomes LC, Di Benedetto G, Scorrano L. During autophagy mitochondriaelongate, are spared from degradation and sustain cell viability. Nat CellBiol,2011,13(5):589-598
    45Gozuacik D, Kimchi A. Autophagy as a cell death and tumor suppressormechanism. Oncogene,2004,23(16):2891-2906
    46Gozuacik D, Kimchi A. Autophagy and cell death. Curr Top Dev Biol,2007,78:217-245
    47Maiuri MC, Zalckvar E, Kimchi A, et al. Self-eating and self-killing:crosstalk between autophagy and apoptosis. Nat Rev MoI CelI Biol,2007,8(9):741-752
    48Zhu JH, Horbinski C, Guo F, et a1. Regulation of autophagy byextracellular signal-regulated protein kinases during1-methyl-4-phenylpyridinium induced cell death. Am J Pathol,2007,170(1):75-86
    49Shintani T, Klionsky DJ. Autophagy in health and disease: adouble-edged sword. Science,2004,306(5698):990-995
    50Hara T, Nakamura K, Matsui M, et al. Suppression of basal autophagy inneural cells causes neurodegenerative disease in mice. Nature,2006,441(7095):885-889
    51Chen N, Karantza-Wadsworth V.Role and regulation of autophagy incancer. Biochim Biophys Acta,2009,1793(9):1516-1523.
    52Hoshino A, Matoba S, Iwai-Kanai E, et al. p53-TIGAR axis attenuatesmitophagy to exacerbate cardiac damage after ischemia. J Mol CellCardiol,2012,52(1):175-184
    53Vives-Bauza C, Zhou C, Huang Y, et al. PINK1-dependent recruitment ofParkin to mitochondria in mitophagy. Proc Natl Acad Sci USA,2010,107(1):378-383
    54Narendra DP, Jin SM, Tanaka A, et al. PINK1is selectively stabilized onimpaired mitochondria to activate Parkin. PLoS Biol,2010,8(1):e1000298
    55Geisler S, Holmstr m KM, Skujat D, et al. PINK1/Parkin-mediatedmitophagy is dependent on VDAC and p62/SQSTM1.Nat Cell Biol,2010,12(2):119-131
    56Kawajiri S, Saiki S, Sato S, et al. PINK1is recruited to mitochondriawith parkin and associates with LC3in mitophagy. FEBS Lett,2010,584(6):1073-1079
    57Chen HY, White E. Role of autophagy in cancer prevention. Cancer PrevRes (Phila),2011,4(7):973-983
    58Cuervo AM. Autophagy: in sickness and in health.Trends Cell Biol,2004,14(2):70-77
    59Cherra SJ, Chu CT. Autophagy in neuroprotection and neurodegeneration:a question of balance. Future Neurol,2008,3:309-323
    60Komatsu M, Waguri S, Chiba T, et al. Loss of autophagy in the centralnervous system causes neurodegeneration in mice. Nature,2006,441:880-884

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700