柑橘全爪螨种群遗传结构及全线粒体基因组序列分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柑橘全爪螨(Panonychus citri)隶属蛛形纲(Arachnida)、蜱螨亚纲(Acari)、叶螨科(’Tetranychidae),是一种世界性分布的柑橘害螨。在我国,该螨发生面积广、种群密度高、为害时间长,是大多数柑橘种植区的关键害虫(螨)之一。该螨能够快速地对多种杀螨剂产生高水平抗性,增加了生产中对其有效防控的难度。目前,对该螨的研究很少涉及种群遗传与进化,这很大程度上源于缺乏有效的分子遗传标记以及单雌DNA提取的困难。深入研究柑橘全爪螨不同地理种群的遗传结构,有利于从分子水平上了解柑橘全爪螨的生态适应机制和成灾规律,为制定有效的控制策略提供理论依据。近年来,叶螨对新型线粒体靶标杀螨剂联苯肼酯等产生了严重抗性,据报道该类抗性源于线粒体cob基因的点突变。因此,测定柑橘全爪螨全线粒体基因组序列,不仅可以丰富蜱螨线粒体基因组数量,推动蜱螨及其它节肢动物动物分子系统学的研究,还可针对突变了的线粒体基因设计引物,进而建立快速、准确的田间抗性诊断技术。
     本学位论文紧密围绕柑橘全爪螨种群遗传与进化这一重要科学问题,致力于发掘柑橘全爪螨的微卫星位点,重点解析该螨的种群遗传结构,测序获得全线粒体基因组序列,分析叶螨线粒体基因组的进化特点,鉴定适于叶螨分子系统学研究的线粒体分子标记,并构建基于全线粒体基因组序列数据的蜱螨系统发生关系。主要研究结果如下:
     1.在提取、纯化柑橘全爪螨基因组DNA的基础上,采用磁珠富集法构建了柑橘全爪螨AC、TC和ATG等3个微卫星富集文库。对3个富集文库的部分阳性克隆进行测序,获得了44个可进行引物设计的微卫星位点。序列分析表明,柑橘全爪螨AC富集文库的微卫星位点大部分以多拷贝的形式存在,部分以微卫星DNA家族的形式存在。因此,TC文库和ATG文库中发掘的微卫星位点更适合作为分子标记研究该螨的种群遗传结构。在富集文库的构建过程中,笔者通过将酶切、接头连接一步化,减少了酶切产物的损失,提高了酶切产物的量,有效地提高了微卫星的富集效率。
     2.联合线粒体cox1基因和核糖体内转录间隔区ITS1序列,分析了15个柑橘全爪螨地理种群的遗传多样性、种群遗传分化及基因交流模式,结果发现:(1)基于线粒体coxl基因的数据显示,15个地理种群中共发现22个单倍型;基于核ITS1序列的数据,共发现134个单倍型。综合两种分子标记的结果推测,15个柑橘全爪螨地理种群具有相对较高的遗传多样性,这可能是该螨在各地能够频繁成灾、对杀螨剂快速产生抗性的遗传基础;(2)系统发育树和单倍型进化网络图显示,来自同一种群或相同柑橘种植区的柑橘全爪螨的cox1单倍型或ITS1单倍型,均未能聚集在一起。AMOVA分析表明,柑橘全爪螨在本论文所涉及的长江中上游(UMYR)、云贵高原(YGP)和华南(SC)等3个柑橘种植区间无显著的种群遗传结构。如果分析时去除云南玉溪和湖北丹江口种群时,仅基于线粒体cox1基因数据的AMOVA分析发现,柑橘全爪螨在3个柑橘种植区间存在显著的种群遗传结构。仅基于核ITS1序列数据的AMOVA分析表明,当来自长江中上游柑橘种植区(UMYR)和云贵高原柑橘种植区(YGP)的种群作为一个组群时,柑橘全爪螨存在显著的种群遗传结构。此外,基于核ITS1序列数据的AMOVA分析还发现,寄主植物对柑橘全爪螨种群遗传结构具有显著影响。总体上看,柑橘全爪螨大多数种群间遗传分化不显著,这可能是因为受到部分种群之间存在高水平的基因流、保留有较大的祖先多态性以及自然选择(如寄主植物、杀螨剂等)等多个因素的共同影响;(3)尽管大多数种群间遗传分化不显著,特别是一些地理上相距很远的种群间还存在高水平的基因流(如眉山和广东种群间),但基于两种分子标记的Mantel检验结果均表明,地理隔离仍然是柑橘全爪螨种群遗传分化的重要原因之一。柑橘全爪螨体小、无翅,主动迁移能力非常有限。因此,柑橘全爪螨的长距离迁移和种群间的基因交流,很大程度上依赖于柑橘种苗的运输等人类活动;(4)基于两种分子标记的中性检验、误配分析及星状分布的单倍型进化网络图均支持,柑橘全爪螨在历史上经历了种群扩张事件;(5)基于上述研究结果及柑橘全爪螨快速发展的抗药性问题,在制定该螨的控制策略时,对于抗性基因在不同种群间的扩散及进化应予高度重视。
     3.采用Long-PCR和Sub-PCR技术,克服了叶螨线粒体基因序列高A+T含量及基因高度重排等因素造成的PCR扩增、测序困难等问题,成功测定了柑橘全爪螨全线粒体基因组序列。柑橘全爪螨全线粒体基因组具有以下特点:(1)柑橘全爪螨线粒体基因组在目前已测序的节肢动物中最小,但并不缺失经典后生动物线粒体基因组所包含的37个基因;(2)与节肢动物线粒体基因的模式排序(鲎的线粒体基因排序)相比,柑橘全爪螨线粒体基因组发生了一系列的重排事件,其中2个蛋白质编码基因区块的倒位最为显著,此外,24个RNA基因也高度重排;(3)柑橘全爪螨线粒体最大的非编码区长度仅为57 bp,完全由碱基A和T组成,且可形成稳定的茎环二级结构,推测该非编码区是线粒体控制区;(4)柑橘全爪螨线粒体基因组具有极高的A+T含量,在已测序的蜱螨线粒体基因中仅略低于苹果全爪螨。这种高的A+T含量,也反应在蛋白质编码基因的密码子使用上,即以A或T结尾的密码子,占绝对优势。在62种无脊椎动物线粒体密码子中,柑橘全爪螨线粒体基因组仅使用了其中的57个密码子,而未使用5个富含GC的密码子。此外,与大多数后生动物相反,柑橘全爪螨线粒体基因组J-链的GC-偏斜为正值;(5)柑橘全爪螨线粒体基因组中仅3个tRNA基因(trnN、trnL2和trnK)能形成经典的三叶草结构,而其余19个tRNA基因均缺少D-臂或T-臂;trnI的反密码子环为非典型的8个核苷酸,trnM和trnSl在反密码子茎上各有1个碱基错配,13个tRNA基因在氨基酸接受臂上存在1至3个不等的碱基错配;(6)柑橘全爪螨线粒体基因组2个rRNA基因发生倒位而由J-链编码, rrnL和rrnS长度的显著减小导致其丢失了多个螺旋结构,但与苍白纤恙螨(Leptotrombidium pallidum)和户尘螨(Dermatophagoides pteronyssinus)具有相似的茎环二级结构。
     4.以全爪螨属的柑橘全爪螨(包括2个地理种群)、苹果全爪螨和叶螨属的二斑叶螨、神泽叶螨为对象,采用比较基因组学和生物信息学的研究手段,从科内、属内和种内等三个层次,系统分析了叶螨线粒体基因组的分子进化特征及其遗传分化水平。结果表明:(1)4种叶螨线粒体基因组在已测节肢动物中最小,但均包含经典后生动物线粒体基因组所具有的37个基因。与其它蜱螨和节肢动物相比,叶螨线粒体基因组的相对减小,主要体现在蛋白质编码基因、rrnL口控制区的长度都显著缩短;(2)4种叶螨线粒体基因排序完全一致,具有极高的A+T含量,蛋白质编码基因存在强烈的密码子使用偏向性,但全爪螨属物种未使用的富含GC的密码子数量略高于叶螨属物种;(3)全爪螨属物种J-链的GC-偏斜为正值,A+T富集区的二级结构具有2个茎环结构,而叶螨属J-链的GC-偏斜为负值,A+T富集区的二级结构仅有1个茎环结构;(4)4种叶螨线粒体基因组中的tRNA基因极不典型,19个tRNA基因均缺少D-臂或T-臂,有的tRNA基因甚至同时缺少D-臂和T-臂。此外,部分tRNA基因与邻近基因高度重叠,部分tRNA基因在氨基酸接受臂或反密码子茎上存在碱基错配,而trnl的反密码子环均为非典型的8个核苷酸。但是,叶螨的这些不典型tRNA基因不可能是假基因,因为22个tRNA基因序列在4种叶螨中高度保守,特别是反密码子臂;氨基酸接受臂上或反密码子茎上的碱基错配可通过转录后的RNA编辑而得以校正;在线虫中已证实,缺少T-臂的tRNA基因具有正常的生物学功能;不典型的tRNA基因在真螨总目中非常普遍。然而,由于对同时缺少D-臂和T-臂的tRNA基因是否具有正常的生物学功能还未知,因此有必要进一步开展功能性验证实验;(5)4种叶螨线粒体基因组的rRNA基因具有相似的二级结构,但柑橘全爪螨的rrnL有其余3种叶螨均缺少的H3螺旋结构。与5′-端相比,rrnL的3′-端在4种叶螨线粒体基因组中更为保守,特别是螺旋结构G16-G20,而rrnS二级结构中的19、21、32、33、49和50等6个螺旋结构最为保守;(6)基于全线粒体基因组序列、13个蛋白质编码基因序列、24个RNA基因序列的分析表明,4种叶螨属间的遗传分化程度远大于属内和种内。二斑叶螨和神泽叶螨之间的P-距离小于苹果全爪螨和柑橘全爪螨间的P-距离,但远高于柑橘全爪螨两个品系间的P-距离;(7)叶螨线粒体基因组的13个蛋白质编码基因中,仅3个基因(cob、cox3和nad1)的密码子数在4种叶螨中完全一致,其余10个基因的密码子数均不相同。序列进化分析表明,cox1、cox2和cob最为保守,表明适于叶螨较高分类阶元的系统发生关系研究;而atp8、nad2、nad6和nad4L等4个基因的遗传分化较高,适于作为分子标记来研究叶螨种内的遗传多样性或界定近缘物种间的系统亲缘关系。
     5.基于已测序的28种蜱螨线粒体全基因组序列数据,在系统评价碱基组成异质性的基础上,采用最大似然法(ML)和贝叶斯推断法(BI)构建了蜱螨亚纲内各类群的系统发生关系。尽管28种蜱螨线粒体基因组序列存在显著的碱基组成异质性,但基于PCG123、PCG12和PCG2等3个数据集构建的ML树和BI树,以及基于PCG-RNA和PCG1等2个数据集构建的ML树,均很好地反应出目前普遍接受的蜱螨亚纲内各类群的系统发育关系,支持蜱螨亚纲中寄螨总目和真螨总目均为单系群的观点。寄螨总目的蜱目和中气门目均为单系群,蜱目由硬蜱和软蜱两个互为姊妹群关系的单系群构成,而中气门目中的植绥螨总科与皮刺螨总科互为姊妹群,两者再与胭螨总科构成姊妹群关系。真螨总目由绒螨目和疥螨目两个互为姊妹群的单系群组成;绒螨目的游殖螨亚目和寄殖螨亚目为两个单系群。
The citrus red mite, Panonychus citri (McGregor) (Arachnida, Acari: Tetranychidae), has a worldwide distribution and is regarded as one of the most important citrus pests in many countries. In China, the distribution range of this mite covers all citrus planting regions. This mite is often difficult to manage because their ability to rapidly develop resistance to various acaricides. Currently, few studies on P. citri focus on the population genetics and evolution, largely because of the lack of efficient genetic markers and the difficulty in DNA extraction from a single mite. Reliable estimates of genetic diversity and population genetic structure of P. citri from different geographical regions are crucial to gain insight into the role of different evolutionary forces and environmental factors in determining population dynamics, and to make a decision on effective pest management strategies. Recently, it has been reported that the resistance of spider mites to the acaricide bifenazate is highly correlated with the remarkable mutations in the mitochondrial cob gene. Therefore, sequencing the complete mitochondrial (mt) genome of P. citri not only increases the amount of Acari mt genomes, prompts the molecular systematics of Acari and other arthropods, but also allows the identification of specific changes of mitochondrial cob and the subsequent development of robust diagnostics, which are essential in resistance management.
     In this study, we constructed the P. citri microsatellite-enriched libraries, analyzed the genetic structure of the P. citri populations using the mitochondrial coxl gene and ribosomal internal transcribed spacer 1 (ITS1), sequenced the complete mt genome of P. citri and provided a comparison to other Acari. Additionally, we identified several mitochondrial genes as potential markers for population genetics/phylogenetics studies for spider mites, and assessed the utility of complete mt genome sequences as molecular markers for phylogenetic analyses of Acari. The main results are as follows:
     1. Three microsatellite-enriched libraries of AC-repeat, TC-repeat, and ATG-repeat were constructed for P. citri using microsatellite-enrichment method. A total of 44 unique microsatellite loci, which can be used to design PCR primers, were obtained by sequencing partial positive clones. Sequence analyses showed that a much larger proportion of microsatellite loci of AC library shared the same flanking regions and some were present as multi-copy microsatellite DNA families. Therefore, the microsatellite loci from TC and ATG libraries will be more suitable for the study of population genetic structure of P. citri. The DNA digestion and ligation were performed simultaneously, which enhanced the concentration of enzyme-digested products and the efficiency of microsatellite enrichment.
     2. The genetic diversity, population differentiation, and gene flow among 15 P. citri populations were investigated using the mitochondrial coxl gene and ITS1 sequence. The main results are:(1) There were 22 haplotypes among 15 geographical populations based on the coxl gene, whereas total 134 haplotypes were found in these populations based on the ITS1 sequence. Comprehensively analyses of these results, we proposed that the P. citri populations may have relatively high genetic diversity, which probably is one of the most important reasons that this mite has the ability to severely infest citrus and rapidly develop resistance to various acaricides. (2) The phylogenetic tree and haplotype network showed that the coxl or ITS1 haplotypes from the same citrus planting regions or populations did not cluster together. AMOVA analyses showed that there was no significant population genetic structure among the P. citri populations examined. However, an AMOVA without Yuxi and Danjiangkou populations found a weak, but significant geographic structuring(coxl). Also, when all populations from citrus belt of upper and middle reaches of Yangtze River (UMYR) and citrus base of Yungui Plateau (YGP) were considered as a large group, a significant population structure was detected at this large scale (ITS1). Additionally, the influence of host plants on the genetic structure of P. citri populations was detected by the AMOVA analysis for five host-related groups based on the ITS1 sequences. On the whole, there was no significant genetic differentiation among most populations, which can be contribute to several factors together, i.e. ongoing gene flow, the retention of ancestral polymorphisms, and natural selection (e.g., host plants, acaricides). (3) Although no significant genetic differentiation among most populations, even there were high levels of gene flow among some geographically far populations (e.g., Meishan and Guangdong populations), the Mantel tests showed that the isolation by distance was a factor responsible for the genetic differentiation. Due to its small body size and wingless, the dispersal ability of P. citri is very limited. Thus, long-distance dispersal and gene flow of P. citri among populations may largely rely on passive dispersal by the movement of plants between populations and other human activities. (4) The results of neutrality tests, mismatch analyses, and star-like network strongly supported that P. citri in China have undergone population expansion in the past. (5) Considering that Chinese P. citri populations have developed resistance to various acaricides and current high gene flow exists between some populations, great attention should be paid to the spread of acaricide-resistance alleles to help gain insight into P. citri resistance management.
     3. Overcoming the difficulty in the PCR amplification and sequencing resulting from the high A+T content and gene rearrangement, the complete mt genome of P. citri was successfully sequenced using Long-PCR and Sub-PCR techniques. This mt genome has several features:(1) This is the smallest mt genome among arthropods sequenced so far, but it does not lack anyone of 37 genes typical of metazoan mt genomes. (2) Compared to Limulus polyphemus, which is considered as the representative ground pattern for arthropod mt genomes, a series of gene rearrangements have occurred in the evolutionary history of P. citri, and the most striking features are the inversions of two segments containing several protein-coding genes. In addition,24 RNA genes are highly rearranged. (3) The largest non-coding region is only 57 bp long, and is completely comprised of adenines and thymines. and can be folded into stable stem-loop structure, indicating that this region possibly functions as a control region. (4) The mt genome of P. citri has high A+T content, making it the second highest within sequenced Acari. The high A+T content also reflected in the codon usage of protein-coding genes, i.e., codons harbouring A or T in the third position are always overused as compared to other synonymous codons. Among 62 amino-acid encoding codons of invertebrate mitochondrial code, the P. citri mt genome uses 57 codons and never utilizes the five G+C rich codons. The P. citri mt genome is characterized by a positive GC-skew, which is reverse to that of most metazoans mt genomes. (5) The tRNA genes found in the P. citri mt genome are extremely truncated:only three tRNA genes (trnN, trnL2, and trnK) can potentially fold into a typical cloverleaf structure, whereas all the remaining 19 tRNA genes appear to lack the sequence to code the D-or T-arm. Thirteen tRNA genes have 1-3 bp mismatches in the amino acceptor stem, and trnl has eight nucleotides in the anticodon loop. In addition, two tRNA genes(trnM and trnSl) have a single mismatch in the anticodon stem. (6) The two genes encoding the large and small rRNA subunits(rrnL and rrnS) are inverted to the J-strand. The substantial reduction of rrnL and rrnS lead to the loss of several stem-loop structures, as found in the other two mites Leptotrombidium pallidum and Dermatophagoides pteronyssinus.
     4. The genetic divergence and molecular evolution of mt genomes of spider mites were analyzed from three levels (within family, genus, and species) using comparative genomics and bioinformatics. (1) The mt genomes of spider mites are smallest within the sequenced arthropods, but contain 37 genes typically found in most metazoans. The relatively small size is primarily due to the significant size reduction of PCGs, rrnL, and the putative control region in comparison with other arthropods and Acari. (2) The mt genomes of four spider mites have the same gene order, similarly high A+T content, and strong codon usage bias, but Panonychus had more GC-rich codons never used than Tetranychus. (3) The Panonychus J-strand has a positive GC-skew, which is contrast to that of Tetranychus. Two stem-loop structures of A+T-rich region were found in Panonychus, but only one in Tetranychus. (4) The tRNA genes found in the Tetranychidae mt genomes are extremely short, and 19 tRNA genes lack the D-or T-arm, even some tRNA genes lack the two arms simultaneously. There are several unusual features, such as gene overlap between adjacent tRNA genes, mismatched base at amino acid acceptor stem or anticodon stem,8 nucleotides at anticodon loop of trnI. However, these genes are not likely to be pseudogenes. First of all, their sequences are highly conserved among spider mites, especially for anticodon arm. Secondly, it has been shown that in the nematode Ascaris suum the tRNA genes that lack either the D-or T-arm are functional. Thirdly, stem mismatches and sequence overlap are common for mitochondrial tRNA genes of Acariform mites, and are probably repaired by a posttranscriptional editing process. However, functional tRNA genes that lack both the D-and T-arms have not been found before. Therefore, further experiments are needed to investigate whether these truly tRNA genes lack both D-and T-arms and if so, whether they are functional. (5) The rrnS and rrnL of four Tetranychidae mt genomes have similar stem-loop structures, but the helix H3 appears to only be present in P. citri. Compared to the 5'-end, the 3'-end of rrnL structure is more conserved among Tetranychidae. especially for the helices G16-G20. The most conserved sequences of rrnS among Tetranychidae are found in the helices 19,21,32,33,49, and 50. (6) The genetic divergence of complete mt genome sequences,13 protein-coding genes and 24 RNA genes are high among genera compared to that within genus or species. The average values of P-distance between two Tetranychus species are lower than those between two Panonychus species, but higher than those between the two P. citri strains. The cytochrome oxidase subunits (cox1, cox2) and cytochrome b (cob) are the slowest evolving genes and proteins, making them useful markers for investigating phylogenetic relationships at higher taxonomic levels. In addition, the atp8, nad2, nad6 and nad4L show high P-distance and Ka, implying that they can be used as potential markers to analyze intraspecific relationships within the Tetranychidae species.
     5. Although there was strong compositional heterogeneity among 28 Acari mt genome sequences, the maximum likelihood (ML) and Bayesian inference (BI) trees based on three data sets (PCG123, PCG12, and PCG2), and the ML trees based on another two data sets (PCG-RNA and PCG1) strongly supported the monophyly of Parasitiformes and Acariformes. The monophyly of Ixodida, Mesostigmata, Trombidiformes, and Sarcoptiformes were recovered:the former two consisted of Parasitiformes, and the latter two consisted of Acariformes. The sister-group relationship between Parasitengona and Eleutherengona was resolved within Trombidiformes. Also, the sister-group between Ixodidae and Argasidae was supported within Ixodida. The supported relationship within Mesostigmata was "(Phytoseioidea+ Dermanyssoidea)+Rhodacaroidea".
引文
[1]Zane L, Bargelloni L, Patarnello T.2002. Strategies for microsatellite isolation:a review. Molecular Ecology 11:1-16.
    [2]Toth G, Gaspari Z, Jurka J.2000. Microsatellites in different eukaryotic genomes:Survey and analysis. Genome Research 10:967-981.
    [3]de Meeus T, Beati L, Delaye C, Aeschlimann A, Renaud F.2002. Sex-biased genetic structure in the vector of Lyme disease, Ixodes ricinus. Evolution 56:1802-1807.
    [4]Selkoe KA, Toonen RJ.2006. Microsatellites for ecologists:a practical guide to using and evaluating microsatellite markers. Ecology Letters 9:615-629.
    [5]Sunnucks P.2000. Efficient genetic markers for population biology. Trends in Ecology and Evolution 15:199-203.
    [6]Schlotterer C.2000. Evolutionary dynamics of microsatellite DNA. Chromosoma 109:365-371.
    [7]Bhargava A, Fuentes F.2010. Mutational dynamics of microsatellites. Molecular Biotechnology 44:250-266.
    [8]Ellegren H.2004. Microsatellites:simple sequences with complex evolution. Nature Reviews Genetics 5:435-445.
    [9]Levinson G, Gutman G.1987. Slipped-strand mispairing:a major mechanism for DNA sequence evolution. Molecular Biology and Evolution 4:203-221.
    [10]Estoup A, Jarne P, Cornuet JM.2002. Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. Molecular Ecology 11:1591-1604.
    [11]Kashi Y, King D.2006. Simple sequence repeats as advantageous mutators in evolution. Trends in Genetics 22:253-259.
    [12]Ince AG, Karaca M, Onus AN.2010. Differential expression patterns of genes containing microsatellites in Capsicum annuum L.. Molecular Breeding 25:645-658.
    [13]Fondon JW, Garner HR.2004. Molecular origins of rapid and continuous morphological evolution. Proceedings of the National Academy of Sciences of the United States of America 101:18058-18063.
    [14]Mikheyev AS, Vo T, Wee B, Singer MC, Parmesan C.2010. Rapid microsatellite isolation from a butterfly by De Novo transcriptome sequencing:performance and a comparison with AFLP-derived distances. PLoS One 5:e11212.
    [15]Abdelkrim J, Robertson B, Stanton J, Gemmell N.2009. Fast, cost-effective development of species-specific microsatellite markers by genomic sequencing. Biotechniques 46:185.
    [16]Dutech C, Enjalbert J, Fournier E, Delmotte F, Barres B, Carlier J, Tharreau D, Giraud T.2007. Challenges of microsatellite isolation in fungi. Fungal Genetics and Biology 44:933-949.
    [17]Bloor P, Barker F, Watts P, Noyes H, Kemp S.2001. Microsatellite libraries by enrichment. http://wwwgenomicslivacuk/animal/RESEARCH/MICROSATPDF.
    [18]Meglecz E. Petenian F, Danchin E, Coeur d'Acier A, Rasplus JY, Faure E.2004. High similarity between flanking regions of different microsatellites detected within each of two species of Lepidoptera:Parnassius apollo and Euphydryas aurinia. Molecular Ecology 13: 1693-1700.
    [19]Zhang DX.2004. Lepidopteran microsatellite DNA:redundant but promising. Trends in Ecology & Evolution 19:507-509.
    [20]Fagerberg A, Fulton R, Black WC.2001. Microsatellite loci are not abundant in all arthropod genomes:analyses in the hard tick, Ixodes scapularis and the yellow fever mosquito, Aedes aegypti. Insect Molecular Biology 10:225-236.
    [21]Navajas M, Thistlewood H, Lagnel J, Hughes C.1998. Microsatellite sequences are under-represented in two mite genomes. Insect Molecular Biology 7:249-256.
    [22]Sharma PC, Grover A, Kahl G.2007. Mining microsatellites in eukaryotic genomes. Trends in Biotechnology 25:490-498.
    [23]Zeid M, Yu J, Goldowitz I, Denton M, Costich D, Jayasuriya C, Saha M, Elshire R, Benscher D, Breseghello F.2010. Cross-amplification of EST-derived markers among 16 grass species. Field Crops Research 118:28-35.
    [24]Ince AG, Karaca M, Onus AN.2010. CAPS-microsatellites:use of CAPS method to convert non-polymorphic microsatellites into useful markers. Molecular Breeding 25:491-499.
    [25]Buschiazzo E, Gemmell NJ.2006. The rise, fall and renaissance of microsatellites in eukaryotic genomes. BioEssays 28:1040-1050.
    [26]Navajas-Perez R, Paterson AH.2009. Patterns of tandem repetition in plant whole genome assemblies. Molecular Genetics and Genomics 281:579-590.
    [27]Wang JP, Chen CX, Na JK, Yu QY, Hou SB, Paull R, Moore P, Alam M, Ming R.2008. Genome-wide comparative analyses of microsatellites in Papaya. Tropical Plant Biology 1: 278-292.
    [28]Walton SF, Currie BJ, Kemp DJ.1997. A DNA fingerprinting system for the ectoparasite Sarcoptes scabiei. Molecular and Biochemical Parasitology 85:187-196.
    [29]Delaye C, Aeschlimann A, Renaud F, Rosenthal B, De Mees T.1998. Isolation and characterization of microsatellite markers in the Ixodes ricinus complex (Acari:Ixodidae). Molecular Ecology 7:360-361.
    [30]Walton SF, Dougall A, Pizzutto S, Holt D, Taplin D, Arlian LG. Morgan M, Currie BJ, Kemp DJ.2004. Genetic epidemiology of Sarcoptes scabiei (Acari:Sarcoptidae) in northern Australia. International Journal for Parasitology 34:839-849.
    [31]Bailly X, Migeon A, Navajas M.2004. Analysis of microsatellite variation in the spider mite pest Tetranychus turkestani (Acari:Tetranychidae) reveals population genetic structure and raises questions about related ecological factors. Biological Journal of the Linnean Society 82:69-78.
    [32]Osakabe M, Hinomoto N, Toda S, Komazaki S, Goka K.2000. Molecular cloning and characterization of a microsatellite locus found in an RAPD marker of a spider mite, Panonychus citri (Acari:Tetranychidae). Experimental and Applied Acarology 24:385-395.
    [33]Uesugi R, Osakabe M.2007. Isolation and characterization of microsatellite loci in the two-spotted spider mite, Tetranychus urticae (Acari:Tetranychidae). Molecular Ecology Notes 7:290-292.
    [34]Navajas M, Perrot-Minnot MJ, Lagnel J, Migeon A, Bourse T, Cornuet JM.2002. Genetic structure of a greenhouse population of the spider mite Tetranychus urticae:spatio-temporal analysis with microsatellite markers. Insect Molecular Biology 11:157-165.
    [35]Nishimura S, Hinomoto N, Takafuji A.2003. Isolation, characterization, inheritance and linkage of microsatellite markers in Tetranychus kanzawai (Acari:Tetranychidae). Experimental and Applied Acarology 31:93-103.
    [36]Weeks A, Marec F, Breeuwer J.2001. A mite species that consists entirely of haploid females. Science 292:2479-2482.
    [37]Hinomoto N, Maeda T.2005. Isolation of microsatellite markers in Neoseiulus womersleyi Schicha (Acari:Phytoseiidae). Journal of the Acarological Society of Japan 14:25-30.
    [38]Solignac M, Vautrin D, Pizzo A, Navajas M, Le Conte Y, Cornuet JM.2003. Characterization of microsatellite markers for the apicultural pest Varroa destructor (Acari:Varroidae) and its relatives. Molecular Ecology Notes 3:556-559.
    [39]Evans LM, Dawson DA, Wall R, Burke T, Stevens J.2003. Isolation of Psoroptes scab mite microsatellite markers (Acari:Psoroptidae). Molecular Ecology Notes 3:420-424.
    [40]Evans JD.2000. Microsatellite loci in the honey bee parasitic mite Varroa jacobsoni. Molecular Ecology 9:1436-1438.
    [41]Learmount J, Conyers C, Chaudhry M, Macnicoll A.2003. Isolation and characterization of microsatellite loci in the flour mite Acarus siro. Molecular Ecology Notes 3:604-606.
    [42]Asadi M, Higaki T, Hinomoto N, Saboori A, Naghavi MR.2009. Isolation and characterization of polymorphic microsatellite loci from the water mite Hygrobates fluviatilis (Acari: Hydrachnidia:Hygrobatidae). Molecular Ecology Resources 9:793-795.
    [43]Fuente J, Garcia-Garcia JC, Gonzalez DM, Izquierdo G, Ochagavia ME.2000. Molecular analysis of Boophilus spp. (Acari:Ixodidae) tick strains. Veterinary Parasitology 92: 209-222.
    [44]Koffi BB, Risterucci AM, Joulia D, Durand P, Barre N, De Meeus T, Chevillon C.2006. Characterization of polymorphic microsatellite loci within a young Boophilus microplus metapopulation. Molecular Ecology Notes 6:502-504.
    [45]Chigagure N, Baxter G, Barker S.2000. Microsatellite loci of the cattle tick Boophilus microplus (Acari:Ixodidae). Experimental and Applied Acarology 24:951-956.
    [46]Kirchoff VS, Peacock MM, Teglas MB.2008. Identification and characterization of 14 polymorphic microsatellite loci in the argasid tick Ornithodoros coriaceus. Molecular Ecology Resources 8:446-448.
    [47]Roed KH, Hasle G, Midthjell V, Skretting G, Leinaas HP.2006. Identification and characterization of 17 microsatellite primers for the tick, Ixodes ricinus, using enriched genomic libraries. Molecular Ecology Notes 6:1165-1167.
    [48]Guzinski J, Saint KM, Gardner MG, Donnellan SC, Bull CM.2008. Development of microsatellite markers and analysis of their inheritance in the Australian reptile tick, Bothriocroton hydrosauri. Molecular Ecology Resources 8:443-445.
    [49]McCoy KD, Tirard C.2000. Isolation and characterization of microsatellites in the seabird ectoparasite Ixodes uriae. Molecular Ecology 9:2212-2213.
    [50]Navajas M, Fenton B.2000. The application of molecular markers in the study of diversity in acarology:a review. Experimental and Applied Acarology 24:751-774.
    [51]Osakabe M, Goka K, Toda S, Shintaku T, Amano H.2005. Significance of habitat type for the genetic population structure of Panonychus citri (Acari:Tetranychidae). Experimental and Applied Acarology 36:25-40.
    [52]Bolland H, Gutierrez J, Flechtmann C.1998. World catalogue of the spider mite family (Acari: Tetranychidae). Leiden:Brill Academic Publishers.
    [53]Carbonnelle S, Hance T, Migeon A, Baret P, Cros-Arteil S, Navajas M.2007. Microsatellite markers reveal spatial genetic structure of Tetranychus urticae (Acari:Tetranychidae) populations along a latitudinal gradient in Europe. Experimental and Applied Acarology 41: 225-241.
    [54]Rosenthal BM, Spielman A.2004. Reduced variation among northern deer tick populations at an autosomal microsatellite locus. Journal of Vector Ecology 29:227-235.
    [55]Uesugi R, Kunimoto Y, Osakabe M.2009. The fine-scale genetic structure of the two-spotted spider mite in a commercial greenhouse. Experimental and Applied Acarology 47:99-109.
    [56]Magalhaes S, Forbes MR, Skoracka A, Osakabe M, Chevillon C, Mccoy KD.2007. Host race formation in the Acari. Experimental and Applied Acarology 42:225-238.
    [57]Nishimura S, Hinomoto N, Takafuji A.2005. Gene flow and spatio-temporal genetic variation among sympatric populations of Tetranychus kanzawai (Acari:Tetranychidae) occurring on different host plants, as estimated by microsatellite gene diversity. Experimental and Applied Acarology 35:59-71.
    [58]Groot T, Janssen A, Pallini A, Breeuwer J.2005. Adaptation in the asexual false spider mite Brevipalpus phoenicis:evidence for frozen niche variation. Experimental and Applied Acarology 36:165-176.
    [59]McCoy KD, Boulinier T, Tirard C, Michalakis Y.2003. Host-dependent genetic structure of parasite populations:Differential dispersal of seabird tick host races. Evolution 57:288-296.
    [60]McCoy KD, Tirard C, Michalakis Y.2003. Spatial genetic structure of the ectoparasite Ixodes uriae within breeding cliffs of its colonial seabird host. Heredity 91:422-429.
    [61]McCoy KD, Boulinier T, Tirard C, Michalakis Y.2001. Host specificity of a generalist parasite: genetic evidence of sympatric host races in the seabird tick Ixodes uriae. Journal of Evolutionary Biology 14:395-405.
    [62]McCoy KD, Chapuis E, Tirard C, Boulinier T, Michalakis Y, Bohec CL, Maho YL, Gauthier-Clerc M.2005. Recurrent evolution of host-specialized races in a globally distributed parasite. Proceedings of the Royal Society B:Biological Sciences 272: 2389-2395.
    [63]McCoy KD, Boulinier T, Tirard C.2005. Comparative host-parasite population structures: disentangling prospecting and dispersal in the black-legged kittiwake Rissa tridactyla. Molecular Ecology 14:2825-2838.
    [64]Alasaad S, Soglia D, Sarasa M, Soriguer RC, Perez JM, Granados JE, Rasero R, Zhu XQ, Rossi L.2008. Skin-scale genetic structure of Sarcoptes scabiei populations from individual hosts:empirical evidence from Iberian ibex-derived mites. Parasitology Research 104: 101-105.
    [65]Walton S.1999. Genetically distinct dog-derived and human-derived Sarcoptes scabiei in scabies-endemic communities in northern Australia. The American Journal of Tropical Medicine and Hygiene 61:542-547.
    [66]Satoh Y, Yano S, Takafuji A.2001. Mating strategy of spider mite, Tetranychus urticae (Acari: Tetranychidae) males:postcopulatory guarding to assure paternity. Applied Entomology and Zoology 36:41-45.
    [67]Oku K.2008. Is only the first mating effective for females in the Kanzawa spider mite, Tetranychus kanzawai (Acari:Tetranychidae)? Experimental and Applied Acarology 45: 53-57.
    [68]McCoy KD, Tirard C.2002. Reproductive strategies of the seabird tick Ixodes uriae (Acari: Ixodidae). Journal of Parasitology 88:813-816.
    [69]Hasle G, Roed KH, Leinaas HP.2008. Multiple paternity in Ixodes ricinus (Acari:Ixodidae), assessed by microsatellite markers. Journal of Parasitology 94:345-347.
    [70]Ullmann AJ, Piesman J, Dolan MC, Black WC.2003. A preliminary linkage map of the hard tick, Ixodes scapularis. Insect Molecular Biology 12:201-210.
    [71]da Fonseca R, Johnson W, O'Brien S, Ramos M, Antunes A.2008. The adaptive evolution of the mammalian mitochondrial genome. BMC Genomics 9:119.
    [72]Brand M.1997. Regulation analysis of energy metabolism. The Journal of Experimental Biology 200:193-202.
    [73]Kroemer G, Dallaporta B, Resche-Rigon M.1998. The mitochondrial death/life regulator in apoptosis and necrosis. Annual Review of Physiology 60:619-642.
    [74]Navarro A, Boveris A.2007. The mitochondrial energy transduction system and the aging process. American Journal of Physiology-Cell Physiology 292:C670.
    [75]Ballard J, Whitlock M.2004. The incomplete natural history of mitochondria. Molecular Ecology 13:729-744.
    [76]Kumar A, Agarwal S, Heyman JA, Matson S, Heidtman M, Piccirillo S, Umansky L, Drawid A, Jansen R, Liu Y, Cheung KH, Miller P, Gerstein M, Roeder GS, Snyder M.2002. Subcellular localization of the yeast proteome. Genes and Development 16:707-719.
    [77]Anderson S, Bankier A, Barrell B, De Bruijn M, Coulson A, Drouin J, Eperon I, Nierlich D, Roe B, Sanger F.1981. Sequence and organization of the human mitochondrial genome. Nature 290:457-465.
    [78]Jonckheere AI, Hogeveen M, Nijtmans LGJ, van den Brand MAM, Janssen AJM, Diepstra JHS, van den Brandt FCA, van den Heuvel LP, Hol FA, Hofste TGJ, Kapusta L, Dillmann U, Shamdeen MG, Smeitink JAM, Rodenburg RJT.2008. A novel mitochondrial ATP8 gene mutation in a patient with apical hypertrophic cardiomyopathy and neuropathy. Journal of Medical Genetics 45:129-133.
    [79]Cardol P, Gonzalez-Halphen D, Reyes-Prieto A, Baurain D, Matagne RF, Remacle C.2005. The mitochondrial oxidative phosphorylation proteome of Chlamydomonas reinhardtii deduced from the genome sequencing project. Plant Physiology 137:447-459.
    [80]Wolfsberg TG, Schafer S, Tatusov RL, Tatusov TA.2001. Organelle genome resource at NCBI. Trends in Biochemical Sciences 26:199-203.
    [81]O'Brien EA, Zhang Y. Yang LS. Wang E, Marie V, Lang BF, Burger G.2006. GOBASE--a database of organelle and bacterial genome information. Nucleic Acids Research 34: D697-D699.
    [82]Jameson D, Gibson AP, Hudelot C, Higgs PG.2003. OGRe:a relational database for comparative analysis of mitochondrial genomes. Nucleic Acids Research 31:202-206.
    [83]Feijao PC, Neiva LS, Azeredo-Espin AML, Lessinger AC.2006. AMiGA:the arthropodan mitochondrial genomes accessible database. Bioinformatics 22:902-903.
    [84]Lee Y, Oh J, Kim Y, Kim N, Yang S, Hwang U.2007. Mitome:dynamic and interactive database for comparative mitochondrial genomics in metazoan animals. Nucleic Acids Research 16:16.
    [85]Simon C, Buckley TR, Frati F, Stewart JB, Beckenbach AT.2006. Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA. Annual Review of Ecology, Evolution, and Svstematics 37:545-579.
    [86]Boore JL, Macey JR, Medina M.2005. Sequencing and comparing whole mitochondrial genomes of animals. Methods in Enzymology 395:311-348.
    [87]Hu M, Jex AR, Campbell BE, Gasser RB.2007. Long PCR amplification of the entire mitochondrial genome from individual helminths for direct sequencing. Nature Protocols 2: 2339-2344.
    [88]Nabholz B, Jarvis ED, Ellegren H.2010. Obtaining mtDNA genomes from next-generation transcriptome sequencing:A case study on the basal Passerida (Aves:Passeriformes) phylogeny. Molecular Phylogenetics and Evolution 57:466-470.
    [89]Valach M, Tomaska L, Nosek J.2008. Preparation of yeast mitochondrial DNA for direct sequence analysis. Current Genetics 54:105-109.
    [90]Blair C, Murphy RW.2011. Recent trends in molecular phylogenetic analysis:Where to next? Journal of Heredity 102:130-138.
    [91]Huang YL, Huang CC, Tang CY, Lu CL.2010. SoRT2:a tool for sorting genomes and reconstructing phylogenetic trees by reversals, generalized transpositions and translocations. Nucleic Acids Research 38:W221-W227.
    [92]Lin CH. Zhao H, Lowcay SH, Shahab A, Bourque G.2010. webMGR:an online tool for the multiple genome rearrangement problem. Bioinformatics 26:408-410.
    [93]Zuker M.2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research 31:3406-3415.
    [94]Lowe T, Eddy S.1997. tRNAscan-SE:A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research 25:955-964.
    [95]Laslett D, Canback B.2008. ARWEN:a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics 24:172-175.
    [96]Boore JL.2006. The use of genome-level characters for phylogenetic reconstruction. Trends in Ecology and Evolution 21:439-446.
    [97]Dowton M, Castro LR, Austin AD.2002. Mitochondrial gene rearrangements as phylogenetic characters in the invertebrates:the examination of genome'morphology'. Invertebrate Systematics 16:345-356.
    [98]Masta SE.2010. Mitochondrial rRNA secondary structures and genome arrangements distinguish chelicerates:comparisons with a harvestman (Arachnida:Opiliones:Phalangium opilio). Gene 449:9-21.
    [99]Gissi C, Iannelli F, Pesole G.2008. Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species. Heredity 101:301-320.
    [100]Boore IL.1999. Animal mitochondrial genomes. Nucleic Acids Research 27:1767-1780.
    [101]Valles Y, Halanych KM, Boore JL.2008. Group Ⅱ introns break new boundaries:presence in a bilaterian's genome. PLoS One 3:1488.
    [102]Papillon D, Perez Y, Caubit X, Le Parco Y.2004. Identification of chaetognaths as protostomes is supported by the analysis of their mitochondrial genome. Molecular Biology and Evolution 21:2122-2129.
    [103]Jeyaprakash A, Hoy MA.2007. The mitochondrial genome of the predatory mite Metaseiulus occidentalis (Arthropoda:Chelicerata:Acari:Phytoseiidae) is unexpectedly large and contains several novel features. Gene 391:264-274.
    [104]Milbury C, Gaffney P.2005. Complete mitochondrial DNA sequence of the eastern oyster Crassostrea virginica. Marine Biotechnology 7:697-712.
    [105]Shao RF, Mitani H, Barker SC, Takahashi M, Fukunaga M.2005. Novel mitochondrial gene content and gene arrangement indicate illegitimate inter-mtDNA recombination in the chigger mite, Leptotrombidium pallidum. Journal of Molecular Evolution 60:764-773.
    [106]Haen KM, Lang BF, Pomponi SA, Lavrov DV.2007. Glass sponges and bilaterian animals share derived mitochondrial genomic features:a common ancestry or parallel evolution? Molecular Biology and Evolution 24:1518-1527.
    [107]Dermauw W, Vanholme B, Tirry L, Van Leeuwen T.2010. Mitochondrial genome analysis of the predatory mite Phytoseiulus persimilis and a revisit of the Metaseiulus occidentalis mitochondrial genome. Genome 53:285-301.
    [108]Wang X, Lavrov DV.2008. Seventeen new complete mtDNA sequences reveal extensive mitochondrial genome evolution within the Demospongiae. PLoS One 3:e2723.
    [109]Bridge D, Cunningham CW, Schierwater B, DeSalle R, Buss LW.1992. Class-level relationships in the phylum Cnidaria:evidence from mitochondrial genome structure. Proceedings of the National Academy of Sciences of the United States of America 89: 8750-8753.
    [110]Voigt O, Erpenbeck D, Worheide G.2008. A fragmented metazoan organellar genome:the two mitochondrial chromosomes of Hydra magnipapillata. BMC Genomics 9:350.
    [111]Burger G, Forget L, Zhu Y, Gray M, Lang B.2003. Unique mitochondrial genome architecture in unicellular relatives of animals. Proceedings of the National Academy of Sciences of the United States of America 100:892-897.
    [112]Suga K, Welch DBM, Tanaka Y, Sakakura Y, Hagiwarak A.2008. Two circular chromosomes of unequal copy number make up the mitochondrial genome of the rotifer Brachionus plicatilis. Molecular Biology and Evolution 25:1129-1137.
    [113]Shao RF, Kirkness EF, Barker SC.2009. The single mitochondrial chromosome typical of animals has evolved into 18 minichromosomes in the human body louse, Pediculus humanus. Genome Research 19:904-912.
    [114]Valach M, Farkas Z, Fricova D, Kovac J, Brejova B, Vinar T, Pfeiffer I, Kucsera J, Tomaska L, Lang BF, Nosek J.2011. Evolution of linear chromosomes and multipartite genomes in yeast mitochondria. Nucleic Acids Research:doi:10.1093/nar/gkq1345.
    [115]Rand DM.2009.'Why genomes in pieces?'revisited:Sucking lice do their own thing in mtDNA circle game. Genome Research 19:700-702.
    [116]Reeve AK, Krishnan KJ, Turnbull D.2008. Mitochondrial DNA Mutations in Disease, Aging, and Neurodegeneration. Mitochondria and Oxidative Stress in Neurodegenerative Disorders 1147:21-29.
    [117]Wanrooij S, Falkenberg M.2010. The human mitochondrial replication fork in health and disease. Biochimica et Biophysica Acta-Bioenergetics 1797:1378-1388.
    [118]Kyriakouli DS, Boesch P, Taylor RW, Lightowlers RN.2008. Progress and prospects:gene therapy for mitochondrial DNA disease. Gene Therapy 15:1017-1023.
    [119]Shadel GS, Clayton DA.1997. Mitochondrial DNA maintenance in vertebrates. Annual Review of Biochemistry 66:409-435.
    [120]Taanman JW.1999. The mitochondrial genome:structure, transcription, translation and replication. Biochimica et Biophysica Acta-Bioenergetics 1410:103-123.
    [121]Zhang DX, Hewitt GM.1997. Insect mitochondrial control region:A review of its structure, evolution and usefulness in evolutionary studies. Biochemical Systematics and Ecology 25: 99-120.
    [122]Wolstenholme DR.1992. Animal mitochondrial DNA:structure and evolution. International Review of Cytology 141:173-216.
    [123]Kilpert F, Podsiadlowski L.2006. The complete mitochondrial genome of the common sea slater, Ligia oceanica (Crustacea, Isopoda) bears a novel gene order and unusual control region features. BMC Genomics 7:241.
    [124]Comandi S, Carapelli A, Podsiadlowski L, Nardi F, Frati F.2009. The complete mitochondrial genome of Atelura formicaria (Hexapoda:Zygentoma) and the phylogenetic relationships of basal insects. Gene 439:25-34.
    [125]Carapelli A, Comandi S, Convey P, Nardi F, Frati F.2008. The complete mitochondrial genome of the Antarctic springtail Cryptopygus antarcticus (Hexapoda:Collembola). BMC Genomics 9:315.
    [126]Oliveira M, Azeredo-Espin A, Lessinger A.2007. The mitochondrial DNA control region of Muscidae flies:evolution and structural conservation in a Dipteran context. Journal of Molecular Evolution 64:519-527.
    [127]Cha SY, Yoon HJ, Lee EM, Yoon MH, Hwang JS, Jin BR, Han YS, Kim I.2007. The complete nucleotide sequence and gene organization of the mitochondrial genome of the bumblebee, Bombus ignitus (Hymenoptera:Apidae). Gene 392:206-220.
    [128]Saito S, Tamura K, Aotsuka T.2005. Replication origin of mitochondrial DNA in insects. Genetics 171:1695-1705.
    [129]Price DH, Gray MW.1999. Confirmation of predicted edits and demonstration of unpredicted edits in Acanthamoeba castellanii mitochondrial tRNAs. Current Genetics 35:23-29.
    [130]Gott JM, Somerlot BH, Gray MW.2010. Two forms of RNA editing are required for tRNA maturation in Physarum mitochondria. RNA 16:482-488.
    [131]Abad MG, Rao BS, Jackman JE.2010. Template-dependent 3'-5'nucleotide addition is a shared feature of tRNAHis guanylyltransferase enzymes from multiple domains of life. Proceedings of the National Academy of Sciences 107:674-679.
    [132]Leigh J, Lang BF.2004. Mitochondrial 3'tRNA editing in the jakobid Seculamonas ecuadoriensis:A novel mechanism and implications for tRNA processing. RNA 10:615-621.
    [133]Lavrov DV, Brown WM, Boore JL.2000. A novel type of RNA editing occurs in the mitochondrial tRNAs of the centipede Lithobius forficatus. Proceedings of the National Academy of Sciences of the United States of America 97:13738-13742.
    [134]Lonergan KM, Gray MW.1993. Editing of transfer RNAs in Acanthamoeba castellanii mitochondria. Science 259:812.
    [135]Price DH, Gray M.1998. Editing of tRNA. In:Grosjean H, Benne R, editors. Modification and Editing of RNA. Washington:ASM Press. pp.289-306.
    [136]Yokobori S, Paabo S.1995. Transfer RNA editing in land snail mitochondria. Proceedings of the National Academy of Sciences of the United States of America 92:10432-10435.
    [137]Morl M, Dorner M, Paabo S.1995. C to U editing and modifications during the maturation of the mitochondrial tRNAASP in marsupials. Nucleic Acids Research 23:3380-3384.
    [138]Tomita K, Ueda T, Watanabe K.1996. RNA editing in the acceptor stem of squid mitochondrial tRNATyr. Nucleic Acids Research 24:4987-4991.
    [139]Reichert A, Rothbauer U, Morl M.1998. Processing and editing of overlapping tRNAs in human mitochondria. Journal of Biological Chemistry 273:31977-31984.
    [140]袁明龙,刘永华,王保军,彭洪波,刘怀,王进军.2009.柑橘全爪螨抗药性研究进展. 粮食安全与植保科技创新.北京:中国农业科学技术出版社.pp.343-350.
    [141]Li X, Schuler MA, Berenbaum MR.2007. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annual Review of Entomology 52:231-253.
    [142]Van Leeuwen T, Vontas J, Tsagkarakou A, Dermauw W, Tirry L.2010. Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari:A review. Insect Biochemistry and Molecular Biology 40:563-572.
    [143]Van Pottelberge S, Van Leeuwen T, Nauen R, Tirry L.2009. Resistance mechanisms to mitochondrial electron transport inhibitors in a field-collected strain of Tetranychus urticae Koch (Acari:Tetranychidae). Bulletin of Entomological Research 99:23-31.
    [144]Kim YJ, Park HM, Cho JR, Ahn YJ.2006. Multiple resistance and biochemical mechanisms of pyridaben resistance in Tetranychus urticae (Acari:Tetranychidae). Journal of Economic Entomology 99:954-958.
    [145]Lummen P.2007. Mitochondrial electron transport complexes as biochemical target sites for insecticides and acaricids. In:Ishaaya I, Horowitz AR, Nauen R. editors. Insecticides Design Using Advanced Technologies:Springer Berlin Heidelberg. pp.197-215.
    [146]Dekeyser MA.2005. Acaricide mode of action. Pest Management Science 61:103-110.
    [147]Van Leeuwen T, Tirry L, Nauen R.2006. Complete maternal inheritance of bifenazate resistance in Tetranychus urticae Koch (Acari:Tetranychidae) and its implications in mode of action considerations. Insect Biochemistry and Molecular Biology 36:869-877.
    [148]Van Leeuwen T, Vanholme B, Van Pottelberge S, Van Nieuwenhuyse P, Nauen R, Tirry L, Denholm I.2008. Mitochondrial heteroplasmy and the evolution of insecticide resistance: non-Mendelian inheritance in action. Proceedings of the National Academy of Sciences of the United States of America 105:5980-5985.
    [149]Van Nieuwenhuyse P, Van Leeuwen T, Khajehali J, Vanholme B, Tirry L.2009. Mutations in the mitochondrial cytochrome b of Tetranychus urticae Koch (Acari:Tetranychidae) confer cross-resistance between bifenazate and acequinocyl. Pest Management Science 65:404-412.
    [150]Ran C, Chen ZY, Wang JJ.2009. Susceptibility and carboxylesterase activity of five field populations of Panonychus citri (McGregor) (Acari:Tetranychidae) to four acaricides. International Journal of Acarology 35:115-121.
    [151]袁明龙,冉春,李勇,王进军.2008.取食不同柑桔种质资源对柑橘全爪螨药剂敏感性及酯酶同工酶的影响.植物保护学报,35:187-188.
    [152]Osakabe M, Sakagami Y.1993. Estimation of genetic variation in Japanese populations of the citrus red mite, Panonychus citri (McGregor) (Acari:Tetranychidae) on the basis of esterase allele frequencies. Experimental and Applied Acarology 17:749-755.
    [153]Osakabe M.1991. Esterase isozyme patterns corresponding to differences in diapause attribute among the populations of the citrus red mite, Panonychus citri (McGregor) (Acari: Tetranychidae). Bulletin of the Fruit Tree Research Station 21:85-94.
    [154]Uesugi R, Sasawaki T, Osakabe M.2009. Evidence of a high level of gene flow among apple trees in Tetranychus urticae. Experimental and Applied Acarology 49:281-290.
    [155]Solignac M, Cornuet JM, Vautrin D, Le Conte Y, Anderson D, Evans J, Cros-Arteil S, Navajas M.2005. The invasive Korea and Japan types of Varroa destructor, ectoparasitic mites of the Western honeybee(Apis mellifera), are two partly isolated clones. Proceedings of the Royal Society B:Biological Sciences 272:411-419.
    [156]Koffi BB, Meeus T, Barre N, Durand P, Arnathau C, Chevillon C.2006. Founder effects, inbreeding and effective sizes in the Southern cattle tick:the effect of transmission dynamics and implications for pest management. Molecular Ecology 15:4603-4611.
    [157]Weir W, Ben-Miled L, Karagenc T, Katzer F, Darghouth M, Shiels B, Tait A.2007. Genetic exchange and sub-structuring in Theileria annulata populations. Molecular and Biochemical Parasitology 154:170-180.
    [158]Gasparin G, Miyata M, Coutinho LL, Martinez ML, Teodoro RL, Furlong J, Machado MA, Silva MVGB, Sonstegard TS, Regitano LCA.2007. Mapping of quantitative trait loci controlling tick [Riphicephalus (Boophilus) microplus] resistance on bovine chromosomes 5, 7 and 14. Animal Genetics 38:453-459.
    [159]Carapelli A, Lio P, Nardi F, van der Wath E, Frati F.2007. Phylogenetic analysis of mitochondrial protein coding genes confirms the reciprocal paraphyly of Hexapoda and Crustacea. BMC Evolutionary Biology 7:S8.
    [160]Elson J, Lightowlers R.2006. Mitochondrial DNA clonality in the dock:can surveillance swing the case? Trends in Genetics 22:603-607.
    [161]Xie L, Xie RR, Zhang KJ, Hong XY.2008. Genetic relationship between the carmine spider mite Tetranychus cinnabarinus (Boisduval) and the two-spotted mite T. urticae Koch in china based on the mtDNA COI and rDNA ITS2 sequences. Zootaxa:18-32.
    [162]Ros VID, Breeuwer JAJ, Menken SBJ.2008. Origins of asexuality in Bryobia mites (Acari: Tetranychidae). BMC Evolutionary Biology 8:153.
    [163]Ros VID, Breeuwer JAJ.2007. Spider mite (Acari:Tetranychidae) mitochondrial COI phylogeny reviewed:host plant relationships, phylogeography, reproductive parasites and barcoding. Experimental and Applied Acarology 42:239-262.
    [164]Mahani MK, Inomata N, Saboori A, Tabatabaei BES, Ishiyama H, Ariana A, Szmidt AE. 2009. Genetic variation in populations of Allothrombium pulvinum (Acari:Trombidiidae) from Northern Iran revealed by mitochondrial coxl and nuclear rDNA ITS2 sequences. Experimental and Applied Acarology 48:273-289.
    [165]Desloire S, Moro CV, Chauve C, Zenner L.2006. Comparison of four methods of extracting DNA from D. gallinae (Acari:Dermanyssidae). Veterinary Research 37:725-732.
    [166]Navajas M, Lagnel J, Gutierrez J, Boursot P.1998. Species-wide homogeneity of nuclear ribosomal ITS2 sequences in the spider mite Tetranychus urticae contrasts with extensive mitochondrial COI polymorphism. Heredity 80:742-752.
    [167]Navajas M, Gutierrez J, Lagnel J, Boursot P.1996. Mitochondrial cytochrome oxidase I in tetranychid mites:a comparison between molecular phylogeny and changes of morphological and life history traits. Bulletin of Entomological Research 86:407-417.
    [168]Pons J.2006. DNA-based identification of preys from non-destructive, total DNA extractions of predators using arthropod universal primers. Molecular Ecology Notes 6:623-626.
    [169]Ben-David T, Melamed S, Gerson U, Morin S.2007. ITS2 sequences as barcodes for identifying and analyzing spider mites (Acari:Tetranychidae). Experimental and Applied Acarology 41:169-181.
    [170]Tamura K, Dudley J, Nei M, Kumar S.2007. MEGA4:molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24:1596-1599.
    [171]Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG.2007. Clustal W and Clustal X version 2.0. Bioinformatics 23:2947-2948.
    [172]Soller R, Wohltmann A, Witte H, Blohm D.2001. Phylogenetic relationships within terrestrial mites (Acari:Prostigmata, Parasitengona) inferred from comparative DNA sequence analysis of the mitochondrial cytochrome oxidase subunit I gene. Molecular Phylogenetics and Evolution 18:47-53.
    [173]Jeyaprakash A, Hoy MA.2002. Mitochondrial 12S rRNA sequences used to design a molecular ladder assay to identify six commercially available phytoseiids (Acari: Phytoseiidae). Biological Control 25:136-142.
    [174]Yli-Mattila T, Paavanen-Huhtala S, Fenton B, Tuovinen T.2000. Species and strain identification of the predatory mite Euseius finlandicus by RAPD-PCR and ITS sequences. Experimental and Applied Acarology 24:863-880.
    [175]Navajas M, Fournier D, Lagnel J, Gutierrez J, Boursot P.1996. Mitochondrial COI sequences in mites:evidence for variations in base composition. Insect Molecular Biology 5:281-285.
    [176]吉亚杰,张德兴.2004.鳞翅目昆虫基因组中微卫星DNA的特征以及对其分离的影响.动物学报,54:608-614.
    [177]冉春,陈洋,袁明龙,王进军,刘浩强,姚廷山.2008.桔全爪螨田间种群对杀螨剂的敏感性.植物保护学报,35:537-540.
    [178]刘永华,蒋红波,袁明龙,樊钰虎,杨丽红,陈静,王进军.2010.柑橘全爪螨对4种杀螨剂的抗性监测及增效作用研究.果树学报,27:570-574.
    [179]Hu J, Wang C, Wang J, You Y, Chen F.2010. Monitoring of resistance to spirodiclofen and five other acaricides in Panonychus citri collected from Chinese citrus orchards. Pest Management Science 66:1025-1030.
    [180]Chen ZY, Ran C, Zhang L, Dou W, Wang JJ.2009. Susceptibility and esterase activity in citrus red mite Panonychus citri (McGregor)(Acari:Tetranychidae) after selection with phoxim. International Journal of Acarology 35:33-40.
    [181]Yang LH, Huang H, Wang JJ.2010. Antioxidant responses of citrus red mite, Panonychus citri (McGregor)(Acari:Tetranychidae), exposed to thermal stress. Journal of Insect Physiology 56:1871-1876.
    [182]Kasap I.2009. The biology and fecundity of the citrus red mite Panonychus citri (McGregor)(Acari:Tetranychidae) at different temperatures under laboratory conditions. Turkish Journal of Agriculture and Forestry 33:593-600.
    [183]Tsagkarakou A, Navajas M, Lagnel J, Pasteur N.1997. Population structure in the spider mite Tetranychus urticae (Acari:Tetranychidae) from Crete based on multiple allozymes. Heredity 78:84-92.
    [184]Tsagkarakou A, Navajas M, Papaioannou-Souliotis P, Pasteur N.1998. Gene flow among Tetranychus urticae (Acari:Tetranychidae) populations in Greece. Molecular Ecology 7: 71-79.
    [185]Hinomoto N, Takafuji A.2001. Genetic diversity and phylogeny of the Kanzawa spider mite, Tetranychus kanzawai, in Japan. Experimental and Applied Acarology 25:355-370.
    [186]Li T, Chen XL, Hong XY.2009. Population genetic structure of Tetranychus urticae and its sibling species Tetranychus cinnabaribus (Acari:Tetranychidae) in China as inferred from microsatellite data. Annals of the Entomological Society of America 102:674-683.
    [187]Hinomoto N, Osakabe M, Gotoh T, Takafuji A.2001. Phylogenetic analysis of green and red forms of the two-spotted spider mite, Tetranychus urticae Koch (Acari:Tetranychidae), in Japan, based on mitochondrial cytochrome oxidase subunit I sequences. Applied Entomology and Zoology 36:459-464.
    [188]Toda S, Osakabe M, Komazaki S.2000. Interspecific diversity of mitochondrial COI sequences in Japanese Panonychus species (Acari:Tetranychidae). Experimental and Applied Acarology 24:821-829.
    [189]Navia D, de Moraes GJ, Roderick G, Navajas M.2005. The invasive coconut mite Aceria guerreronis (Acari:Eriophyidae):origin and invasion sources inferred from mitochondrial (16S) and nuclear (ITS) sequences. Bulletin of Entomological Research 95:505-516.
    [190]Huelsenbeck JP, Ronquist F.2001. MRBAYES:Bayesian inference of phylogenetic trees. Bioinformatics 17:754-755.
    [191]Clement M, Posada D, Crandall K.2000. TCS:a computer program to estimate gene genealogies. Molecular Ecology 9:1657-1659.
    [192]Excoffier L, Laval G, Schneider S.2005. Arlequin (version 3.0):an integrated software package for population genetics data analysis. Evolutionary bioinformatics online 1:47-50.
    [193]Dupanloup I, Schneider S, Excoffier L.2002. A simulated annealing approach to define the genetic structure of populations. Molecular Ecology 11:2571-2581.
    [194]Posada D.2008. jModelTest:phylogenetic model averaging. Molecular Biology and Evolution 25:1253-1256.
    [195]Jensen JL, Bohonak AJ, Kelley ST.2005. Isolation by distance, web service. BMC Genetics 6: 13.
    [196]Librado P, Rozas J.2009. DnaSP v5:a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451-1452.
    [197]Guindon S, Gascuel O.2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52:696-704.
    [198]Posada D, Crandall K.2001. Intraspecific gene genealogies:trees grafting into networks. Trends in Ecology and Evolution 16:37-45.
    [199]Fu YX.1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915-925.
    [200]Fu YX, Li WH.1993. Statistical tests of neutrality of mutations. Genetics 133:693-709.
    [201]Hurtado MA, Ansaloni T, Cros-Arteil S, Jacas JA, Navajas M.2008. Sequence analysis of the ribosomal internal transcribed spacers region in spider mites (Prostigmata:Tetranychidae) occurring in citrus orchards in Eastern Spain:use for species discrimination. Annals of Applied Biology 153:167-174.
    [202]Bandelt H, Forster P, Rohl A.1999. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16:37-48.
    [203]Ruiz EA, Rinehart JE, Hayes JL, Zuniga G.2009. Effect of geographic isolation on genetic differentiation in Dendroctonus pseudotsugae (Coleoptera:Curculionidae). Hereditas 146: 79-92.
    [204]Pechal J, Austin J, Szalanski A, Gold R, Tomberlin J.2008. Genetic analysis of Periplaneta americana (Blattodea:Blattidae) in central Texas using the ITS1 region. Journal of Agricultural and Urban Entomology 25:179-191.
    [205]Szalanski AL, Austin JW, Mckern JA, Steelman CD, Gold RE.2008. Mitochondrial and ribosomal internal transcribed spacer 1 diversity of Cimex lectularius (Hemiptera: Cimicidae). Journal of Medical Entomology 45:229-236.
    [206]Ramos-Onsins S, Rozas J.2002. Statistical properties of new neutrality tests against population growth. Molecular Biology and Evolution 19:2092-2100.
    [207]Gotoh T, Kitashima Y, Adachi I.2004. Geographic variation of esterase and malate dehydrogenase in two spider mite species, Panonychus osmanthi and P. citri (Acari: Tetranychidae) in Japan. International Journal of Acarology 30:45-54.
    [208]袁明龙.2008.取食不同柑桔种质资源的桔全爪螨对药剂的敏感性及种群遗传分化研究.硕士学位论文.重庆:西南大学.
    [209]Home JB, van Herwerden L, Choat JH, Robertson DR.2008. High population connectivity across the Indo-Pacific:Congruent lack of phylogeographic structure in three reef fish congeners. Molecular Phylogenetics and Evolution 49:629-638.
    [210]Osakabe M, Sakagami Y.1994. RFLP analysis of ribosomal DNA in sibling species of spider mite, genus Panonychus (Acari:Tetranychidae). Insect Molecular Biology 3:63-66.
    [211]Xie L, Hong XY, Xue XF.2006. Population genetic structure of the twospotted spider mite (Acari:Tetranychidae) from China. Annals of the Entomological Society of America 99: 959-965.
    [212]Neigel JE.2002. Is FST obsolete? Conservation Genetics 3:167-173.
    [213]Grbic M, Khila A, Lee KZ, Bjelica A, Grbic V, Whistlecraft J, Verdon L, Navajas M, Nagy L. 2007. Mity model:Tetranychus urticae, a candidate for chelicerate model organism. Bioessays 29:489-496.
    [214]Domes K, Maraun M, Scheu S, Cameron S.2008. The complete mitochondrial genome of the sexual oribatid mite Steganacarus magnus:genome rearrangements and loss of tRNAs. BMC Genomics 9:532.
    [215]Shao RF, Barker SC, Mitani H, Takahashi M, Fukunaga M.2006. Molecular mechanisms for the variation of mitochondrial gene content and gene arrangement among chigger mites of the genus Leptotrombidium (Acari:Acariformes). Journal of Molecular Evolution 63: 251-261.
    [216]Dermauw W, Van Leeuwen T, Vanholme B, Tirry L.2009. The complete mitochondrial genome of the house dust mite Dermatophagoides pteronyssinus (Trouessart):a novel gene arrangement among arthropods. BMC Genomics 10:107.
    [217]Klimov PB, OConnor BM.2009. Improved tRNA prediction in the American house dust mite reveals widespread occurrence of extremely short minimal tRNAs in acariform mites. BMC Genomics 10:598.
    [218]Edwards D, Jackson L, Johnson A, Ernsting B.2011. Mitochondrial genome sequence of Unionicota parkeri (Acari:Trombidiformes:Unionicolidae):molecular synapomorphies between closely-related Unionicola gill mites. Experimental and Applied Acarology:1-13.
    [219]Ernsting B, Edwards D, Aldred K, Fites J, Neff C.2009. Mitochondrial genome sequence of Unionicola foili (Acari:Unionicolidae):a unique gene order with implications for phylogenetic inference. Experimental and Applied Acarology 49:305-316.
    [220]Ojala D, Montoya J, Attardi G.1981. tRNA punctuation model of RNA processing in human mitochondria. Nature 290:470-474.
    [221]Masta SE, Boore JL.2004. The complete mitochondrial genome sequence of the spider Habronattus oregonensis reveals rearranged and extremely truncated tRNAs. Molecular Biology and Evolution 21:893.
    [222]Van Leeuwen T, Van Nieuwenhuyse P, Vanholme B, Dermauw W, Nauen R, Tirry L.2011. Parallel evolution of cytochrome b mediated bifenazate resistance in the citrus red mite Panonychus citri. Insect Molecular Biology 20:135-140.
    [223]Xia X, Xie Z.2001. DAMBE:software package for data analysis in molecular biology and evolution. Journal of Heredity 92:371-373.
    [224]Lavrov DV, Boore JL, Brown WM.2000. The complete mitochondrial DNA sequence of the horseshoe crab Limulus polyphemus. Molecular Biology and Evolution 17:813-824.
    [225]Yasuda N, Hamaguchi M, Sasaki M, Nagai S, Saba M, Nadaoka K.2006. Complete mitochondrial genome sequences for Crown-of-thorns starfish Acanthaster planci and Acanthaster brevispinus. BMC Genomics 7:17.
    [226]Graur D, Li WH.2000. Fundamentals of Molecular Evolution:Sinauer Associates, Sunderland, Massachusetts.
    [227]Saccone C, Gissi C, Lanave C, Larizza A, Pesole G, Reyes A.2000. Evolution of the mitochondrial genetic system:an overview. Gene 261:153-159.
    [228]Pesole G, Gissi C, De Chirico A, Saccone C.1999. Nucleotide substitution rate of mammalian mitochondrial genomes. Journal of Molecular Evolution 48:427-434.
    [229]Roques S, Fox CJ, Villasana MI, Rico C.2006. The complete mitochondrial genome of the whiting, Merlangius merlangus and the haddock, Melanogrammus aeglefinus:A detailed genomic comparison among closely related species of the Gadidae family. Gene 383:12-23.
    [230]Oliveira DC, Raychoudhury R, Lavrov DV, Werren JH.2008. Rapidly evolving mitochondrial genome and directional selection in mitochondrial genes in the parasitic wasp nasonia (hymenoptera:pteromalidae). Molecular Biology and Evolution 25:2167-2180.
    [231]Shao RF, Barker SC, Mitani H, Aoki Y, Fukunaga M.2005. Evolution of duplicate control regions in the mitochondrial genomes of metazoa:A case study with Australasian Ixodes ticks. Molecular Biology and Evolution 22:620-629.
    [232]Black WC, Roehrdanz RL.1998. Mitochondrial gene order is not conserved in arthropods: prostriate and metastriate tick mitochondrial genomes. Molecular Biology and Evolution 15: 1772-1785.
    [233]Shao RF, Aoki Y, Mitani H, Tabuchi N, Barker SC, Fukunaga M.2004. The mitochondrial genomes of soft ticks have an arrangement of genes that has remained unchanged for over 400 million years. Insect Molecular Biology 13:219-224.
    [234]Navajas M, Le Conte Y, Solignac M, Cros-Arteil S, Cornuet JM.2002. The complete sequence of the mitochondrial genome of the honeybee ectoparasite mite Varroa destructor (Acari:Mesostigmata). Molecular Biology and Evolution 19:2313-2317.
    [235]Shao RF, Campbell NJH, Barker SC.2001. Numerous gene rearrangements in the mitochondrial genome of the wallaby louse, Heterodoxus macropus (Phthiraptera). Molecular Biology and Evolution 18:858-865.
    [236]Duenas JCR, Gardenal CN, Llinas GA, Panzetta-Dutari GM.2006. Structural organization of the mitochondrial DNA control region in Aedes aegypti. Genome 49:931-937.
    [237]Tsujino F, Kosemura A, Inohira K, Hara T, Otsuka YF, Obara MK, Matsuura ET.2002. Evolution of the A+T-rich region of mitochondrial DNA in the melanogaster species subgroup of Drosophila. Journal of Molecular Evolution 55:573-583.
    [238]Salvato P, Simonato M, Battisti A, Negrisolo E.2008. The complete mitochondrial genome of the bag-shelter moth Ochrogaster lunifer (Lepidoptera, Notodontidae). BMC Genomics 9: 331.
    [239]Zhang DX, Szymura JM, Hewitt GM.1995. Evolution and structural conservation of the control region of insect mitochondrial DNA. Journal of Molecular Evolution 40:382-391.
    [240]Mancini E, De Biase A, Mariottini P, Bellini A, Audisio P.2008. Structure and evolution of the mitochondrial control region of the pollen beetle Meligethes thalassophilus (Coleoptera: Nitidulidae). Genome 51:196-207.
    [241]Schultheis AS, Weigt LA, Hendricks AC.2002. Arrangement and structural conservation of the mitochondrial control region of two species of Plecoptera:utility of tandem repeat-containing regions in studies of population genetics and evolutionary history. Insect Molecular Biology 11:605-610.
    [242]Cameron S, Whiting M.2007. Mitochondrial genomic comparisons of the subterranean termites from the genus Reticulitermes (Insecta:Isoptera:Rhinotermitidae). Genome 50: 188-202.
    [243]Fahrein K, Talarico G, Braband A, Podsiadlowski L.2007. The complete mitochondrial genome of Pseudocellus pearsei (Chelicerata:Ricinulei) and a comparison of mitochondrial gene rearrangements in Arachnida. BMC Genomics 8:386.
    [244]Fahrein K, Masta SE, Podsiadlowski L.2009. The first complete mitochondrial genome sequences of Amblypygi (Chelicerata:Arachnida) reveal conservation of the ancestral arthropod gene order. Genome 52:456-466.
    [245]Boore JL, Brown WM.1998. Big trees from little genomes:mitochondrial gene order as a phylogenetic tool. Current Opinion in Genetics and Development 8:668-674.
    [246]Boore JL, Lavrov DV, Brown WM.1998. Gene translocation links insects and crustaceans. Nature 392:667-668.
    [247]Macey JR, Larson A, Ananjeva NB, Fang Z, Papenfuss TJ.1997. Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome. Molecular Biology and Evolution 14:91-104.
    [248]Lavrov DV, Boore JL, Brown WM.2002. Complete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rearrangements:Duplication and nonrandom loss. Molecular Biology and Evolution 19:163-169.
    [249]Dowton M, Campbell NJH.2001. Intramitochondrial recombination-is it why some mitochondrial genes sleep around? Trends in Ecology and Evolution 16:269-271.
    [250]Campbell NJ, Barker SC.1999. The novel mitochondrial gene arrangement of the cattle tick, Boophilus microplus:Fivefold tandem repetition of a coding region. Molecular Biology and Evolution 16:732-740.
    [251]Schwarz MP, Tierney SM, Cooper SJB, Bull NJ.2004. Molecular phylogenetics of the allodapine bee genus Braunsapis:AT bias and heterogeneous substitution parameters. Molecular Phylogenetics and Evolution 32:110-122.
    [252]Hassanin A, Leger N, Deutsch J.2005. Evidence for multiple reversals of asymmetric mutational constraints during the evolution of the mitochondrial genome of Metazoa, and consequences for phylogenetic inferences. Systematic Biology 54:277-298.
    [253]Perna NT, Kocher TD.1995. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. Journal of Molecular Evolution 41:353-358.
    [254]Swafford L, Bond JE.2009. The symbiotic mites of some Appalachian Xystodesmidae (Diplopoda:Polydesmida) and the complete mitochondrial genome sequence of the mite Stylochyrus rarior (Berlese) (Acari:Mesostigmata:Ologamasidae). Invertebrate Systematics 23:445-451.
    [255]Masta SE.2000. Mitochondrial sequence evolution in spiders:Intraspecific variation in tRNAs lacking the TΨC arm. Molecular Biology and Evolution 17:1091-1100.
    [256]Yamazaki N, Ueshima R, Terrett JA, Yokobori SI, Kaifu M, Segawa R, Kobayashi T, Numachi KI, Ueda T, Nishikawa K.1997. Evolution of pulmonate gastropod mitochondrial genomes:comparisons of gene organizations of Euhadra, Cepaea and Albinaria and implications of unusual tRNA secondary structures. Genetics 145:749-758.
    [257]Masta SE, Boore JL.2008. Parallel evolution of truncated transfer RNA genes in arachnid mitochondrial genomes. Molecular Biology and Evolution 25:949-959.
    [258]Davila S, Pinero D, Bustos P, Cevallos MA, Davila G.2005. The mitochondrial genome sequence of the scorpion Centruroides limpidus (Karsch 1879) (Chelicerata; Arachnida). Gene 360:92-102.
    [259]Podsiadlowski L, Braband A.2006. The complete mitochondrial genome of the sea spider Nymphon gracile (Arthropoda:Pycnogonida). BMC Genomics 7:284.
    [260]Okimoto R, Macfarlane J, Clary D, Wolstenholme D.1992. The mitochondrial genomes of two nematodes, Caenorhabditis elegans and Ascaris suum. Genetics 130:471.
    [261]Park SJ, Lee YS, Hwang U.2007. The complete mitochondrial genome of the sea spider Achelia bituberculata (Pycnogonida, Ammotheidae):arthropod ground pattern of gene arrangement. BMC Genomics 8:343.
    [262]Cui P, Ji R, Ding F, Qi D, Gao H, Meng H, Yu J, Hu S, Zhang H.2007. A complete mitochondrial genome sequence of the wild two-humped camel (Camelus bactrianus ferus): an evolutionary history of camelidae. BMC Genomics 8:241.
    [263]Hebert PDN, Ratnasingham S, de Waard JR.2003. Barcoding animal life:cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London Series B:Biological Sciences 270:S96-99.
    [264]Dunlop JA, Alberti G.2008. The affinities of mites and ticks:a review. Journal of Zoological Systematics and Evolutionary Research 46:1-18.
    [265]Dabert M, Witalinski W, Kazmierski A, Olszanowski Z, Dabert J.2010. Molecular phylogeny of acariform mites (Acari, Arachnida):Strong conflict between phylogenetic signal and long-branch attraction artifacts. Molecular Phylogenetics and Evolution 56:222-241.
    [266]Song H, Sheffield NC, Cameron SL, Miller KB, Whiting MF.2010. When phylogenetic assumptions are violated:base compositional heterogeneity and among-site rate variation in beetle mitochondrial phylogenomics. Systematic Entomology 35:429-448.
    [267]Sheffield NC, Song H, Cameron SL, Whiting MF.2009. Nonstationary Evolution and Compositional Heterogeneity in Beetle Mitochondrial Phylogenomics. Systematic Biology 58: 381-394.
    [268]Masta SE, Longhorn SJ, Boore JL.2009. Arachnid relationships based on mitochondrial genomes:Asymmetric nucleotide and amino acid bias affects phylogenetic analyses. Molecular Phylogenetics and Evolution 50:117-128.
    [269]Pons J, Ribera I, Bertranpetit J. Balke M.2010. Nucleotide substitution rates for the full set of mitochondrial protein-coding genes in Coleoptera. Molecular Phylogenetics and Evolution 56:796-807.
    [270]Mitani H, Talbert A, Fukunaga M.2004. New World relapsing fever Borrelia found in Ornithodoros porcinus ticks in central Tanzania. Microbiology and Immunology 48:501.
    [271]Castresana J.2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17:540-552.
    [272]Schmidt HA, Strimmer K, Vingron M, von Haeseler A.2002. TREE-PUZZLE:maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18: 502-504.
    [273]Jeyaprakash A, Hoy MA.2009. First divergence time estimate of spiders, scorpions, mites and ticks (subphylum:Chelicerata) inferred from mitochondrial phylogeny. Experimental and Applied Acarology 47:1-18.
    [274]Klompen H, Lekveishvili M, Black WC.2007. Phylogeny of parasitiform mites (Acari) based on rRNA. Molecular Phylogenetics and Evolution 43:936-951.
    [275]Barker SC, Murrell A.2004. Systematics and evolution of ticks with a list of valid genus and species names. Parasitology 129:S15-S36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700