大口鳒Psettodes erumei线粒体全序列的研究和鲽形目鱼类系统进化分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究测定大口鳒(Psettodes erumei)线粒体基因组全序列,其长度为17,315bp,共包含22种tRNA基因、2个rRNA基因、13个蛋白编码基因和2个非编码区。各基因在线粒体上的排列位置,与脊椎动物共有的基因次序相同,其中L链仅编码8个tRNA和ND6基因。
     分析大口鳒基因组及各基因片段的碱基组成,整体来说A+T的含量大于G+C。tRNA和rRNA基因碱基组成偏倚较小,蛋白质编码基因呈现显著的反G偏倚,且主要表现在第三个密码子上。以L链为计算标准GC-skew=-0.32,AT-skew=0.08,符合脊椎动物的GC偏倚。
     分析大口鳒各基因的序列特征:tRNA长度变异主要为插入和缺失;蛋白编码基因除COⅠ和COⅢ分别以GTG和CAC为起始密码子外,其余11个基因的起始密码子都为标准起始密码子ATG。终止密码子除TAA、TAG及它们相对应的不完全终止密码子T、TA外,ND1以AGG做为终止密码子,这种现象在鱼类中较少见;22个tRNA中,tRNAscan-SE只识别出21个tRNA的二级结构,tRNA-Set(GCT)则是用软件RNAstructure 4.5识别出其不规则的三叶草结构。在tRNA基因的二级结构中,碱基数目的变异主要存在于DHU环,而非配对碱基对主要存在于接受臂中;分析10中鲽形目鱼类的轻链起始复制区(O_L)的碱基组成和结构,大口鳒的A+T含量最少,仅为16.9%,牙鲆次之为36.5%,而其他种类均高于50%。同时在鲽形目鱼类中,O_L具有典型的“stem-loop”结构,茎区结构较保守。
     设计两对引物扩增大口鳒左眼型和右眼型两个个体的控制区序列。两个个体均在5'端存在相同的56bp重复单元,3'端存在相同的8bp重复单元,只是重复数不同;左眼型个体在5'端有三个单倍型,重复次数分别为5.7:7.7;8.7;在3'端有两个单倍型,重复次数分别为8和23。右眼型个体在5'端有三个单倍型,重复次数分别为3.7;7.7;8.7。在3'端有两个单倍型,重复次数分别为6和25。同时通过与其它鲽形目鱼类比较,标识出大口鳒控制区结构:终止相关序列(TAS)、中央保守区序列(CSB-F、CSB-E、CSB-D),保守序列区序列(CSB-1、CSB-2、CSB-3)。比较8种鲽形目鱼类控制区全序列和只含有单拷贝重复单元的控制区碱基组成,结果显示前者的种间差异明显大于后者,变异系数约是后者的两倍。两者的差异是由于不同种类重复单元的碱基组成、长度及拷贝数不同。
     建立两套系统树,其一为基于控制区部分序列,用BI法和ML法分析,对鲽形目12种鱼类进行系统分析,以鲈形目甲若鲹作为外类群。结果表明:在鲽形目内部大口鳒分类地位最原始;鲽亚目先与鳎亚目聚在一起,后与鳒亚目聚在一起,这与形态特征相符。
     其二为基于mtDNA基因组(控制区除外),用BI法和ML法分析,构建鲽形目系统进化树,种类的选取包含10种鲽形目鱼类和其他与鲽形目进化关系较近30种鱼类,并以鲱形目(远东拟沙丁鱼和太平洋鲱)作为外类群。用DAMBE软件计算平均碱基含量为A 27.6%;C 29.4%,G 16.8%;T 26.2%,转换(Ts)/颠换(Tv)=1.18。系统树结果表明(1)大口鳒处于鲽形目系统分化的最原始位置,和其他学者研究的结果完全一致。大口鳒分类地位的确立,为今后研究鲽形目系统起源至关重要。(2)鲈形目在系统分类中别分为3、4个类群,鲽形目只和鲹科鱼类(鲈形目-Ⅰ)形成姐妹群,和鲈形目的其它类群关系较远。(3)本文虽选取的鲽形目种类很少,但是在目前的水平来看,仍支持鲽形目是单系起源的说法。
Amplified the mitochondrial(mt) genome of P.erumei.The whole sequence was 17,315bp.It contained 22 transfer RNA genes(tRNA),2 ribosomal RNA genes (rRNA),13 protein-coding,genes,2 dominating non-coding regions.Most genes were encoded by the H-strand,except for ND6 and eight tRNA genes.Organization of P. erumei was the same as the typical vertebrate arrangement.
     Nucleotide composition in mtDNA genome of P.erumei were A 27.8%,T 23.9%,G 16.3%,C 2.1%,A+T 51.7%,a strong bias against the use of'G'.GC-skew =-0.32,AT-skew=0.08,which were typical in vertebrates.P.erumei mt genome protein-coding genes used ATG as the initiation codons with the only exception of COⅠand COⅢ,which used GTG and CAC.Stop codons included TAA,TAG,TGG and incomplete stop codons T or TA.The base composition of Light-strand replication(O_L)exhibited unsimilarity to the corresponding region in the other flatfishes.The A+T of O_L of P.erumei was only 20.5%,this was much lower than 36.5%(Palichthys olivaceus) and other flatfishes(more than 50%).In flatfishes the secondary structure of O_L consisted of a conserve stem(TTCCC~*GCCT/ AAGGG~*CGGA) and loop structure.
     Designed two primer pairs L-Pro/HLOOP and eru21/CX4 divided control region into 5' end and 3' end.There were 56bp tandemly repeated sequence in the 5' end and 8bp tandemly repeated sequence in the 3'end respectively.The 5'end in eyes sinistral specimen had three different clongs,the number copies were 8.7,7.7,5.7.And 3'end has two different clongs,the number copie were 8 and 23.The control region in eyes dextra specimen had three kinds of clongs in 5'end,the number copies were 7.7;8.7;3.7,there were two clongs in 3'end,the number copies 6 and 25.It also exhibited the typical tripartite structure with a central domain and two adjacent variable domains(ETAS and CSB).All blocks of conserved sequences,TAS, CSB-D,E,F,CSB-1,2,3could be identified.The difference of base composition of complete CR sequences was greater than that of CR sequence excluding the repeated regions in nine species of flatfishes,and the variation coefficient of the former was about twice of the latter,which was mainly due to the sequences variation in base composition,length and copy numbers of repeated regions.
     Phylogenetic analysed of flatfishes with the Bayesian and ML method based on mtDNA genome(without CR) and CR.On both trees,P.erumei was the lowest group in the flatfishes,this was the same as morphological data.So maked sure evolutionary position of the P.erumei in flatfishes was very importantly to discuss the original of flatfishes in the future.At our level,the result considered that the hypothesis of monophyletic of flatfishes was stands,From our study it seemed to us that flatfishes's sister group was Carangidae(Perciformes-Ⅰ) with a high bootstrap support value.
引文
徐宏发,王静波.分子系统学研究进展.生态学杂志,2001,20(3):41-46
    钟扬,黄德世.计算机辅助分支分析:方法和程序.武汉植物学研究,1990:8(2):199-200
    钟金城,陈智华.分子遗传学与动物育种.成都:四川大学出版社,2001,182-187.
    陈复生 付承玉 汪泰初.动物线粒体基因分子系统学研究进展.安徽农业科学.2003,31(4):596-598,601
    李建华,王继文.动物线粒体DNA在进化遗传学研究中的应用.生物学通报,2005,40(2):5-7
    李思忠,王惠民.中国动物志--硬骨鱼纲 鲽形目.北京:科学出版社,1995
    赵凯.鱼类线粒体DNA(mtDNA)及其在分子系统学中的应用.青海大学学报:自然科学版,2006,24(2):49-53
    苏瑛.动物mtDNA控制区及保守与异质。四川动物,2005.24(4):669-672
    赫崇波,曹洁,刘卫东,周遵春,葛陇利,高祥刚,王效敏。圆斑星鲽及相关种类线粒体DNA 控制区结构分析.HEREDITAS,2007.29(7):829-836
    刘焕章.鱼类线粒体DNA控制区的结构与进化:以鲚鲅鱼类为例[J].自然科学进展,2002,12(3):266-270
    朱世华,郑文娟,邹记兴,杨迎春,沈锡权.鲹科鱼类线粒体DNA控制区结构及系统发育关系.动物学研究,2007,28(6):606-614
    张四明,吴清江,张亚平.中华鲟(Acipenser sinensis)及相关种类的mtDNA控制区串联重复序列及其进化意义[J].中国生物化学与分子生物学报,2000,16(4):458-461
    唐文乔,胡雪莲,杨金权.从线粒体控制区全序列变异看短颌鲚和湖鲚的物种有效性.生物多样性,2007,15(3):224-231
    Archie C.L.,Lee M.I.,Sokol R.J.,and Norman G..The effects of methadone treatment on the reactivity of the nonstress test.Obstet Gynecol,1989.74(2):254-255
    Anderson S.,Bankier A.T.,Barrell B.G.,debruijn M.H.L.,et al.Sequence and organization of the human mitochondrial genome.Nature,1981,290:457-465.
    Asakawa S.,Kumazawa Y..Araki T.,Himeno H.,Miura K.,and Watanabe K.Strand-specific nucleotide composition bias in echinoderm and vertebrate mitochondrial genomes.J Mol Evol,1991.32(6):511-520
    Avise J.C., and Bowen B.W.. Investigating sea turtle migration using DNA markers. Curr Opin Genet Dev , 1994. 4 (6): 881-886
    Avise J.C. and Lansman R.A.. Polymorphism of mitochondrial DNA in populations of high naimals. Evolution of genes and Proteins. Sinacer Associates, Sunderlnad, Mass. 1983,65-138.
    Bermingham E, Arise J.C. Molecular zoogeography of freshwater fishes in the Southeastern United States .Genetics, 1986 .113:939-965
    Berendzen, P.B., Dimmick, W.W. Phylogenetic Relationships of Pleuronectiformes Based on Molecular Evidence. Copeia, 2002, 3: 641-652.
    Bibb M.J., Van Etten, R.A., Wright, C.T., Walberg, M.W., and Clayton, D.A.. Sequence and gene organization of mouse mitochondrial DNA. Cell, 1981, 26 (2):167-180.
    Bostein D., WhiteR.L., SkolnickM., and DavisR.W.. Construction of genetic linkage map in man usin grestriction fragment length polymorphisms , Am.J.Hum. Genet., 1993. 31:314-318
    Boulenger G.A., Notes on the classification of teleostean Fishes,IV. On the systematic position of the Pleuronectidae. Ann.Mag.Nat.Hist, 1902,10: 295-304.
    Brown W. M., Restriction endonuclease cleavage maps of animal mitochondrial DNAs. Proc Natl. Acad. Sci., USA, 1974, 71:4617-4634
    Brown W.M.. Evolution of animal mitochondrial DNA. Sinacer Associates, Sunderland, Mass., 1983, 61-68.
    Chabanaud, P. Le Probleme de la phylogenese des Heterosomata. Bull. Inst. Oceanogr. (Monaco) 1949,950:1-24.
    Chapleau, F. Pleuronectiforms relationships: a cladistic reassessment. Bull.Mar.Sci., 1993, 52: 516-540.
    Chapleau, F., and A.Keast. A phylogenetic reassessment of monophyletic status of the family Soleidae, with comments on the suborder Soleoidei (Pices: Pleuronectiformes). Can. J. Zool. 1988, 66: 2797-2810.Chang Y.S., Huang F.L., Lo T.. The complete nucleotide sequence and gene organization of carp (Cyprinus carpio)mitochondrial genome. J Mol Evol, 1994,138-155.
    Charlesworth B., Sniegowski P., and Stephan W.. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature. 1994,371 (6494): 215-220.
    Charles G. Sibleyand Jon E. Ahlquist .The phylogeny of the hominoid primates, as indicated by DNA-DNA hybridization. J Mol Evol 1984, 20:1-15
    Crozier R.H., Crazier Y. C. The mitochondrial genome of the honeybee Apis mellifera: complete sequence and genome ogrnaization.Geneties.1993,113:97-117
    Denao M. Ethnic variation in Hpa I endonuclease cleavage patterns of human mitochondrial DNA. Proc Natl Acad Sci USA,1981, 5768-5772
    Douzery E., Randi E.. The mitochondrial control region of Cervidae: Evolutionary patterns and phylogenetic content. Mol Biol Evol, 1997, 14 (11): 1154-166.
    Faber J.E., Stepien C.A.. Tandemly Repeated sequences in the mitochondrial DNA control region and phylogeography of the pike-perches Stizostedion. Mol Phylogenet Evol.1998,10 (3): 310-322.
    Faith D. P. Cladistic permutation tests for monophyly and nonmonophyly. Systematic Zoology , 1991.40:366-375.
    Felsenstein J., Cases in which parsimony or compatibility methods will be positively misleading. Systematic Zoology, 1978. 27:401-410.
    Felsenstein J.. Evolutionary trees from DNA sequences: A maximum likelihood approach. J.Mol.Evol. 1981,17: 368-376
    Felsenstein J.. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 1985,39:782-791.
    Felsenstein, J.. PHYLIP: phylogeny inference package.. 1992 , Version 3.4.
    Goodma M. Man's place in the phylogeny of the primates as reflected in serum protein. Classification and Human Evolution, 1963, 204-233
    Grachev M.A., Slobodyanyuk S.J.. Kholodilov S.P. Coparative study of two protein coding regions of mitochondrial DNA from three endemic sculpins (Cottoidei)of Lake Baikal. J Mol Evol, 1992. 34:85-90
    GUINDON S,GASCUEL O. A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst.Biol,2003, 52 (5):696-704.
    Hadrys H., Balick M., and Schierwater B..Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Mol Ecol, 1992. 1(1): 55-63
    Hall B.G. Comparison of the accuracies of several phylogenetic methods using protein and DNA sequences. Mol Biol Evol, 2005. 22 (3): 791-802.
    Hasegawa M., H. Kishion and Saitou, N.. On the maximum likelihood in molecular phylogenetics. Mol.Evol.,1991,32:442-445
    Hastings,W.K.Monte Carlo sampling methods using Markov chains and their applications.Biometrika,1970,57:97-109.
    He Chongbo,Han Jiabo,Ge Longli,Zhou Zunchun,Gao Xianggang,Mu Yunlei,Liu Weidong,Cao Jie,Liu Zhanjiang.Sequence and organization of the complete mitochondrial genomes of spotted halibut(Verasper variegatus) and barfin flounder(Verasper moseri).DNA Seq,2008,19(3):246-255.
    Hendy M.D.and D.Penny.A framework for the quantitative study of evolution trees.Syst.Zool.1989.38:297-309
    Hoarau G.,Holla S.,Lescasse R..Stam W.T.,and Olsen J..Heteroplasmy and evidence for recombination in the mitochondrial control region of the flatfish Platichthys flesus.Mol Biol Evol,2002,19(12):2261-2264
    Hochachkap W.,and Mommsen T.P.鱼类的生物化学与分子生物学.第二卷:分子生物学前沿(吕永华、余来宁译)北京:中国农业出版社,2003.1-32
    Hubby J.L.and R.C.L.Ewontin.A molecular approach to the study of genetic heterozygosity in natural populations I.The number of alleles at different loci in Drosophila pseudoobscura.Genetics,1966.54:577-594.
    Johansen S.,Guddal P.H.,Johansen T..Organization of the mitoehondrial genome of Atlantic cod,Gadus morhua.Nucl Acids Res,1990,18:414-419.
    Jondeung A.,Sang-thong P.,and Zardoya R.The complete mitochondrial DNA sequence of the Mekong giant catfish(Pangasianodon gigas),and the phylogenetic relationships among Siluriformes.Gene,2007.387(1-2):49-57
    Jordan,D.S.,Evermann,B.W.The fishes of North and Middle America,Bull.U.S.Natn.Mus.,1898,47:2601-2712.
    Jukes T.H.and C.R.Cantor.Evolution of protein molecules.H.N.Munro.ed,1969.21-132
    Kidd K.K.and L.A.Sgaramella-Zonta,Phylogenetic analysis:Concepts and method.Am.J.Hum.Genet.1971.23:235-252
    Kimura M.,A simple method for estimating evolutionary rates of bases substitutions through comparative studies of nucleotide sequence.J.Mol.Evol,1980.16:111-120
    Kumazawa,Y.,and Nishida,M..Sequence evolution of mitochondrial tRNA genes and deep-branch animal phylogenetics. J Mol Evol, 1993,37 (4): 380-398.
    Kyle, H.M. The asymmetry, metarorphosis and orgain of flat-fishes. Phil.Yrans.Roy.Soc. London (B), 1921,211:75-128.
    Lee W. J., Conroy J., Howell W.H., Kocher T.D., Structure and Evolution of Teleost Mitochondrial Control Regions . J Mol Evol ,1995. 41:54-66
    Madison W. P.. Molecular approaches and the growth of phylogenetic biology. In Molecular Zoology. 1996:47-61
    Manchado M,Catanese G,Infante C. Complete mitochondrial DNA sequence of the Atlantic bluefin tuna Thunnus thynnus. Fish Sci,2004,70:68-73
    Manchado M., Caetano C, Ponce M.,Funes V.,Infante C. The complete mitochondrial genome of the Senegal sole, Solea senegalensis Kaup. DNA Sequence, 2007, 18:169-175.
    Manchenko G.P., Handbook of detection of enzymes on electrophoretic gels. CRC Press, 1994
    Mathewa DH, Disney MD, Childs JL. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure[J]. Proceedings of the National Academy of Sciences USA, 2004,10:7287-7292.
    Metropolis, N.,A.W. Rosenbluth,M.N. Rosenbluth,. Equations of state calculations by fast computing machines.Chem.Phys,1953,21:1087-1091
    Michaclis G. S., Mitochondrial DNA copy number in a bovine ocytes and somatic cell. Dev Biol, 1982,97:246-251
    Miya M,Nishida M.Molecular. phylogeny and evolution of the deep-sea fish genus Sternoptyx. Mol Phylogenet Evol, 1998,10,11-22.
    Miya M,Nishida M.Molecular. phylogeny of the deep-sea fish genus Gonostoma (Teleostei: Stomiiformes) :two paraphyletic clades and resurrection of Sigmops.Copeia,2000,378-389.
    Mjelle K.A., Karlsen B.O., Jorgensen T.E., Mourn T., Johansen S.D.. Halibut mitochondrial genomes contain extensive heteroplasmic tandem repeat arrays involved in DNA recombination .BMC Genomics ,2008,9:10 1-11
    Mulligan T.J., et al., Mitochondrial DNA analysis of walleye Pollock, Theragra chalcogramma, from the Eastern Bering Sea and Shelik of Strait, Gulf of Alaska, fish. Aquat. Sci, 1992, 49: 319-326.
    Nass M.M.K. Fibrous strutures within the matrizx of developing chick embryo mitochondrial. Expeell Res, 1962, 26:424-437
    Nei, M., Kumar, S., and Takahashi, K.. The optimization principle in phylogenetic analysis tends to give incorrect topologies when the number of nucleotides or amino acids used is small. Proc Natl Acad Sci USA, 1998,: 12390-12397.
    Nesbo C.L, Arab M.O, Jakobsen K.S., Heteroplasmy. length and sequence variation in the mtDNA control regions of three percid fish species (Perca fluviatilis,Acerina cernua,Stizostedion lucioperca).Genetics, 1998,148:1907-1919
    Noack K,Zordoya R,Meyer A. The complete mitochondrial DNA sequence of the bichir (Polypterus omatipinnis),a basal ray-finned fish:Ancient establishment of the consensus vertebrate gene order[J].Genetics,1996,114 (3).1 165-1180.
    Norman, J.R. A systematic monograp of flatfishes (Heterosomata), I. Psettodidae, Bothidae, Pleuronectidae, 1934,459
    Ojala D.J., Montoya J., and Attardi G. tRNA punctuation model of RNA processing in human mitochondrial DNA. Nature, 1981,290 (5806):470-474.
    Ravago R. G., Monje V. D., Juinio-Menez M. A.. Length and sequence variability in mitochondrial control region of the Milkfish, Chanos chanos. Mar Biotechnol, 2002,4: 40-50.
    Regan,C.T. The origin and evolution of the teleostean fishes of the Order Heterosomata . Ann.Mag.Nat.Hiss., 1910, 6:484-496
    Perna N.T. and Kocher T.D., Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J Mol Evol,1995, 41:352-358
    Pouyaud L., Teugels G.G., Gustiano R., Legendre M., Contribution to the Phylogeny of Pangasiid catfishes based on allozyllles and mitoehondrial DNA J. Fish Biol, 2000. 56:1509-1538.
    Posada D. and Crandall K.A. Modeltest: testing the model of DNA substitution. Bioinformatics, 1998.14 (9): 817-818.
    Ronquist F. and J.P.Huelsenbeck. Bayesian phylogenetic inference under mixed models . Bioinformatics, 2003,19:1571-1574
    Saccone, C, Cantatore, P., Gadaleta, G., Gallerani, R., Lanave, C, Pepe, G., and Kroon, A.M.. The characterization of the area of rat mitochondrial DNA containing the large ribosomal RNA gene. Boll Soc Ital Biol Sper ,198157 (13): 1437-1442.
    Saccone C, Attimonelli M., and Sbisa E., Structural elements highly preserved during the evolution of the D-loop-containing region in vertebrate mitochondrial DNA. J Mol Evol, 1987. 26(3): 205-211
    Saiton K., Hayashizaki K., Yokoyama Y., Asahida T., Toyohara Y., Yamashita Y., Complete nucleotide sequence of Japanese flounder (Paralichthys olivaceus) mitochondrial genome: structural properties and cue for resolving teleostean relationships. J Hered, 2000, 91 (4):271-278.
    Saitou N. and M. Nei, The neighbor-Joining method: A new method for reconstructing phylogenetic trees .Mol.Biol.Evol. 1987 ,4:406-425
    Sbisa E., Tanzariello F., Reyes A., Pesole G., and Saccone C. Mammalian mitochondrial D-loop region structural analysis: identification of new conserved sequences and their functional and evolutionary implications. Gene,1997.205 (1-2):125-140
    Semerikov V.L. and M.Lascoux.1999.Genetic relationshio among Eurasian and American Larix species based on allozymes. Heredity 83,61-70
    Sell J., Spirkovski Z. Mitochondrial DNA diferentiation between two forms of trout Salmo letnica, endemic to the Balkan Lake Ohrid reflects their reproductive isolation. Molecular Ecology, 2004,13:3632-3644
    Sneath P.H.A. and R.R.Sokal. Numberical taxonomy. Freeman, 1973 Spruyt N., Delarbre C, Gachelin G., and Laudet, V. Complete sequence of the amphioxus (Branchiostoma lanceolatum) mitochondrial genome: relations to vertebrates. Nucleic Acids Res,1998. 26 (13): 3279-3285
    Southern S.O., Southern P.J., and Dizon A.E. Molecular characterization of a cloned dolphin mitochondrial genome. J Mol Evol, 1988. 28 (1-2): 31-42
    Swofford D. O., P,J.Wassell and D.m.Hillis,.Chapter 11.Phylogenentic inference in D.M. Hills,C.Moritz and B.K.Mable,Molecular systematics, 2nd, 1996:407-514.
    Tamura K, Dudley J. Neim,et al. MEGA4: Molecular Evolutionary Genetics analysis (MEGA) Software Version 4.0 . Mol. Bio;. Evol, 2007,24 (8): 1596-1599.
    Tajima F., and Nei M..Biases of the estimates of DNA divergence obtained by the restriction enzyme technique . J.Mol.Evol. 1982.17:115-120
    Thompson J D, Gibson T J, Plewniak F, et al. The Clustal-X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 1997, 25: 4876-4882
    Tinti F. (a),et al.. Mitochondrial DNA variation,phylogenetic relationships,and evolution of four editerranean genera of Soles (Soleidae. Pleuronectiformes). Mar. Biotechnol, 2000, 2: 274-284.
    Tinti F.(b),et al. Molecular systematics of the Atlantic-Mediterranean Solea species. Fish Biology, 2000, 56: 604-614.
    Thomas,W.k., Beckenbach,A.T. Variation in salmonid mitochondrial DNA:evolurionary constrains and mechanisms of substritution. J. Mol Evol. 1989 .29:232-245
    Verneau, O., et al. Phylogeny of flatfishes (Pleuronectiformes): comparisons and contradictions of molecular and morpho-anatomical data. Journal Fish Biology, 1994,45: 685-696.
    Vos P., Hogers R., Bleeker M., Reijans M., Lee T., Homes M., Frijters A., Pot J., Peleman J., Kuiper M., Zabeau M., AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res , 1995.23:4407-4414
    Wang Wei,He Shunping,Chen Yiyu. Mitochondrial d-loop sequence variation and phylogeny of gobiobotine fishes. Progress Nat Sci,2002,12 (11):866-868.
    Walberg M.W., and Clayton D.A., Sequence and properties of the human KB cell and mouse L cell D-loop regions of mitochondrial DNA. Nucleic Acid Res,1981. 9 (20): 5411-5421
    William R. P. and David J .L., Improved tools for biological sequence comparison . Proc. Natl. Acad. Sci. 1988. 85:2444-2448
    Williams J.G.K., Kubelik A.R., Livak K.J., Rafalski J.A, Tingey S.V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res, 1990. 18:7213-7218
    Wilson,T. L., Walmsley, C. M., Menten, K. M.,& Hermsen,W. The discovery of a new masering transition of interstellar methanol .Astron .Astrophys. 1985,147, 19-22
    Wolstenholme, D.R., and Clary, D.O. 1985. Sequence evolution of Drosophila mitochondrial DNA. Genetics 109 (4): 725-744.
    Wolstenholme D.R., Animal mitochondrial DNA: Structure and evolution. Int Rev Cytol , 1992, 141:171-216
    Yamaguchi M,Miya M, Okiyama M,et al. Molecular phylogeny and larval morphological diversity of the lantemfish genus Hygophum (Teleostei:Myctophidae)[J].Mol Phylogenet Evol,2000,15,102-114.
    Yue Genhua, Liew W.C., Orban L. The complete mitochondrial genome of a basal teleost. the Asian arowana (Scleropages formosus, Osteoglossidae). BMC Genomics, 2006,7:242
    Zabeau M., and Vos P.. Selective restriction fragment amplification: ageneral method for DNA fingerprinting. European Patent Application, 1993, 534-858
    Zardoya R,Meyer A. Phylogenetic performance mitochondrial protein coding genes in resolving relationship among vertebrates.Mol Biol Evol,1996,13:932-942.
    Zardoya R.,Meyer A. The complete DNA sequence of the mitochondrial genome of a"Living Fossil"the coelacanth (Latimeria chalumnae).Genetics, 1997, 146 (3):995-1010
    Zuckerkandl E, Pauling L. Evolutionary divergence and convergence in proteins. In:Bryson V, Vogel H. J. eds., Evolving genes and proteins. New York: Academic Press, 1965.97-166

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700