高速铁路无砟轨道路堤地基差异沉降传递规律及过渡段动力学试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速铁路路堤多采用优质填料填筑并进行密实压实。依据高速铁路设计技术标准构建而成处于正常状态的路堤型路基结构,长期使用过程中的沉降主要由地基引起。在地基土层变化较大处、不同地基处理措施连接处等路堤地基通常存在较大差异沉降,特别是路基与桥梁交界处的不连续,极易产生明显的路基面不均匀变形,进而导致严重的轨道不平顺问题。地基的差异沉降最终通过路堤反映到路基面,在路堤的传递扩散作用下,路基面的变形形态及不均匀的程度往往不同于地基面。
     京沪高速铁路采用的CRTS II型板式无砟轨道,为约束桥上纵连式无砟轨道结构因温度变化引起的变位,在路桥连接处的路基一侧设置了由摩擦板、过渡板和端刺等构成的长约60m的端刺结构纵向传力锚固体系。端刺结构的设置改变了柔性路堤与刚性桥台直接连接的传统路桥过渡段基本形式。开展CRTS II型板式无砟轨道路桥过渡段振动响应测试分析,掌握振动响应沿线路纵垂向的空间变化特征及与行车速度的关系,对改善端刺结构两端与相邻路桥结构间的纵向连续性有重要意义。
     论文在综合参考了国内外有关研究成果的基础上,对高速铁路路堤地基差异沉降传递规律及CRTS II型板式无砟轨道路桥过渡段的动力学性能进行了试验研究,主要开展了以下几方面的工作:
     1.路堤地基差异沉降传递规律的土工离心模型试验研究
     为研究路堤地基差异沉降在路堤中的传递扩散特性以及对路基面不均匀变形的影响规律,首先将路堤地基差异沉降简化为错台式与渐变式两种差异沉降模式。通过一套自行设计制造的能够在离心机运转状态下,可控制地基差异沉降大小的土工离心模型试验实时精确控制设备,开展了路堤高度分别为3m、6m、9m及地基差异沉降渐变段长度分别为4m、8m、12m的6组土工离心模型试验,重点研究了地基差异沉降引起的路基面不均匀变形沿线路纵向的分布特点。分析了路堤地基差异沉降量大小、路堤高度、地基差异沉降渐变段长度等对路基面不均匀变形的影响。结果表明:地基差异沉降引起的路基面不均匀变形沿线路纵向均呈“S”型分布特征;路基面不均匀变形的折角与地基差异沉降的幅值基本呈线性关系;路基面不均匀变形的折角相同时,高路堤或在路堤底部设置渐变段均会增大地基差异沉降允许值;基于路基面不均匀变形的折角限值,提出了考虑上覆路堤高度及在路堤底部设置渐变段的地基差异沉降控制限值,对完善铁路路基沉降变形控制的参数指标体系有重要意义。
     2.路桥过渡段现场长期测试及沉降评估分析
     结合京沪高速铁路的建设,在高资东特大桥京台和天津特大桥沪台路桥过渡段,开展了基于传感器网络自动测试系统的现场原型长期测试试验。利用京沪高速铁路JHTJ-5标段的沉降评估数据,选取了77个有代表性的路桥过渡段进行了桥台及相邻路基沉降变形数据统计分析。测试分析结果表明:过渡段路堤地基及路基面的沉降变形较小,处于稳定收敛状态,满足设计控制值要求,地基处理措施和路堤填筑技术发挥了明显效果;路堤与桥台间垂向差异沉降随时间增长而逐渐增大,并较快趋于稳定,延长路基放置时间有助于减小过渡段工后差异沉降;路堤填土含水量呈现夏季大冬季小的周期性变化现象,并表现出路基表层的含水量变化受季节影响相对较大、随深度的增加逐渐趋于稳定的趋势;桥台的高度和桥台桩基础的深度对桥台沉降影响不大,过渡段地基的沉降随路堤高度及地基加固深度的增大而呈现出小幅增加的趋势;路桥过渡段的沉降沿纵向从桥台至路基逐渐增大,观测期路基面纵坡的变化值为0.03‰~0.44‰,小于路桥过渡段对折角1‰的要求。
     3. CRTS II型板式无砟轨道路桥过渡段动力学测试分析
     结合京沪高速铁路先导段联调联试及综合试验,在濉河特大桥沪台开展了93车次高速运行条件下的路桥过渡段振动特性测试。获得了最高速度达到424km/h的CRTS II型板式无砟轨道路桥过渡段动力响应试验数据。重点测试了CRTS II型板式无砟轨道端刺结构两端与相邻路桥结构连接的关键部位振动位移、振动速度、振动加速度等振动响应,分析了振动响应沿线路纵垂向的空间变化特征及与行车速度的关系。测试结果表明:沿线路纵向的振动响应最大值出现在过渡板端与路基支承层交接处,并呈现出前者支承刚度小于后者的现象;垂向多层的线路结构振动响应沿深度呈递减趋势,结构各层位水平向不连续引起的振动效应表现出与振动源距离成反比的关系,轨道板端经纵联后的振动特性有显著改善;随车速的提高,振动位移表现出线性增加、振动速度与振动加速度呈现出非线性加速增大的规律。
     4.车辆荷载作用下无砟轨道路基力学响应的双弹性地基模型分析方法
     为研究车辆轴载通过无砟轨道系统传递到路基结构的荷载作用特性,引用Winkler弹簧地基上无限长梁模型和Hooke弹性地基的Boussinesq解,运用迭代算法,以地基系数为控制条件,构建了应用Winkler弹簧地基和Hooke弹性地基计算双块式无砟轨道路基在车辆荷载作用下的力学响应分析方法(双弹性地基模型分析法)。计算分析表明:车辆轴重对路基结构应力和变形的影响十分显著,路基结构应力和变形随轴重的增加呈线性增大;轨道刚度对路基面应力和变形影响显著,随轨道刚度的衰减,路基面承受的应力和变形均随之增大,轨道板和支承层断裂等极端情况时尤甚;增加支承层的宽度能显著减小路基面的应力和变形,而增加道床板的宽度则效果不明显;基床表层厚度的变化对路基面的应力和变形影响较小,而基床模量的降低则会显著减小地基支承刚度。
Most of high-speed railway embankments are constructed with high quality filler and high compaction degree. The embankment is constructed according to the design technical specifications of high speed railway and in the normal state, its settlement is mainly induced by the foundation in the process of long time useage.The foundation usually has a large difference settlement in the position of the foundation soil layers with great changes and the joint with defferent foundation treatment.Especially the uneven deformation of subgrade surface will generated on the bridge/approach location and further caused serious track irregularity. There are differences of deformation form and the degree of uneven deformation between the subgrade surface and foundation surface, under the action of transfer diffusion of the embankment.
     CRTS II slab ballastless track was put to use in the Beijing-Shanghai highspeed railway.In order to restrain displacement of longitudinal connected slab ballastless track on the bridge caused by temperature change,the60m long anchorage system which is made of friction slab interim plate and end thorns structure et al was built on the subgrade of the bridge/approach location.The existence of the end thorns structure changes the traditional bridge/approach location basic form of flexible embankment directly connected to the rigid abutment.Developing the vibration characteristics test on CRTS II slab ballastless track bridge/approach location and mastering the vibration response of spatial change characteristics along the road longitudinal and vertical direction and the relationship between the speed of train and the vibration response have significant to improve continuity between the both ends of end thorns structure and the road and bridge structure connected position.
     Then refer to the research on this area both inside and outside,the experimental study were developed about the transfer behavior of high-speed railway embankment foundation differential settlement and the dynamic performance on CRTS Ⅱ slab ballastless track bridge/approach location.This paper has done some research on the following aspects.
     1. Transfer Behavior of Differential Settlement of Embankment Foundation Based on Centrifugal Model Tests
     To study the embankment foundation differential settlement transfer behavior in the embankment and the influence mechanism on the uneven deformation of subgrade surface, firstly differential settlement of embankment foundation is respectively simplified as two kinds of models(stagger-step model and gradual change model). Through a set of own-designed and manufactured precise control equipment, which can real-time control foundation differential settlement in centrifuge operational state, carry out6centrifuge model tests, etc,the embankment height of3m,6m,9m, and foundation gradient segment length of4m,8m,12m. Focus on measuring distribution of uneven deformation along the road longitudinally, caused by the differential settlement of foundation subgrade surface. Analysis the affection to the uneven deformation of subgrade surface, including differential settlement size of embankment foundation, height of embankment, the length of gradual section of differential settlement. Test study show as follows:Uneven deformation of subgrade surface which caused by differential settlement shows "S" distribution Characteristics; the relationship between angular of uneven deformation on subgrade surface and amplitude of differential settlement in foundation is generally a linear. When there are the same angular of uneven deformation on subgrade surface, high embankment or set the gradual section on the bottom of the embankment will increase the allowed values of differential settlement on foundation. Based on the limited angular values of uneven deformation on subgrade surface, put forward the control limit of differential settlement on foundation, considering height of overlain embankment and the gradual section set on the bottom of the embankment foundation. It means a lot to the parameter system of settlement deformation control about railway subgrade.
     2. Long-term Field Test and Settlement Assessment Analysis of Bridge/approcah Location
     Combined with the construction of the Beijing-Shanghai high-speed railway and based on sensor-networks automatic test system, long-term field tests were developed at bridge/approach location of Gaozi'east grand bridge at Beijing direction and Tianjin grand bridge at Shanghai direction. In order to conduct a statistical analysis of settlement deformation data from the abutment and adjacent subgrade,77representative bridge/approach location were selected from the settlement assessment data of Beijing-Shanghai high-speed railway JHTJ-5tenders. Test study show as follows:The settlement deformation of embankment foundation and subgrade surface at bridge/approach location are so smaller that they are all in a stable state and meet the design and control requirements, measures of foundation treatment and embankment filling have played a significant effect.The vertical differential settlement between embankment and the abutment is gradually increasing over time and tends to be stable.Extended roadbed placed time helps to reduce the differential settlement of bridge/approach location.The water content of embankment has a cyclical changed phenomenon that it is high in summer while low in winter. Season change has great influence on subgrade surface water content, with the increase of depth it tend to be stable.the height of the abutment and the depth of pile under abutment have small influence on bridge abutment settlement. With the increasing of embankment height and foundation reinforcement depth, foundation deformation at bridge/approach location tends to be a slight increase.Settlement at bridge/approach location along longitudinal from abutment to embankment is gradually increasing,The longitudinal slope of subgrade is changed at0.03‰-0.44‰, which is less than l‰the required value of deflection angle at bridge/approach location.
     3. Test and Analysis of Vibration Characteristics on CRTS Ⅱ Slab BallastlessTrack Bridge/approach Location
     Combined with comprehensive test of the pilot section of the Beijing-Shanghai high-speed railway, the test of the vibration characteristics of the bridge/approach location under the conditions of high-speed operation of93trips has been carried out in the Sui River bridge abutment to shanghai derection. The maximum speed reached up to424km/h and dynamic response has been obtained. The vibration response of the vibration displacement, vibration velocity, vibration acceleration on the structure key parts of the both ends of the end thorns structure which adjacent to the road and bridge structure connected position were developed, and the relationship between the speed of train and the vibration response are analyzed.Test study show as follows:Along the road longitudinal direction the maximum value of vibration response is located at the junction of the end thorns structure transition board side and the subgrade bearing layer,showing that the support stiffness of the former is less than the latter; On the vertical multi-storey structure layers the vibration response is relatively large when the horizontal direction structure is discontinuity and show a decreasing trend along the depth,but the vibration characteristics is significantly improved when the track slabs are longitudinal connected; With the train speed increased the vibration displacement show a linear increase while the vibration velocity and vibration acceleration show a nonlinear accelerated increase relationship.
     4. Double Elastic Foundation Model Analysis Method of Ballastless Track Subgrade Mechanical Response Under Vehicle Load
     To study the load characteristics of the vehicle axle load through ballastless track system to the subgrade structure, The Winkler spring foundation infinite beam model and Boussinesq solution of Hooke elastic foundation are employed. Using the iterative algorithm and foundation coefficient as control condition,the stress response analysis method of double block ballastless track with vehicle axle loads is built through the use of Winkler spring foundation and Hooke elastic foundation (double elastic foundation model analysis method).Computational analysis shows that vehicle axle load has significant effects on subgrade structural stress and deformation and with the increase of axle load subgrade structural stress and deformation increase linearly.Track stiffness has a significantly influence to the subgrade surface stress and deformation. With the attenuation of track stiffness, the subgrade surface stress and deformation will increase, particularly the extreme cases when the track plate and the supporting layer fracture.Increasing the width of the supporting layer can significantly improve the force and deformation of subgrade surface, but increasing the roadbed slab width is ineffective. Changes in the formation surface thickness of the subgrade surface less impact the force and deformation. The reduction of the modulus of the foundation bed will significantly reduce the ground coefficient.
引文
[1]郝瀛.铁道工程[M].北京:中国铁道出版社,2005.
    [2]王其昌.高速铁路土木工程[M].成都:西南交通大学出版社,1999.
    [3]孙永福.高速铁路:成功与挑战——记第四届世界高速铁路大会[J].中国铁路.2003(8):11-14.
    [4]钱仲侯主编.高速铁路概论(第三版)[M].北京:中国铁道出版社,2006.
    [5]卢祖文.树立全新建设理念,建设—流客运专线[J].铁道工程学报.2005(1):1-9.
    [6]金学松,温泽峰,张卫华,等.世界铁路发展状况及其关键力学问题全国结构工程学术会议特邀报告[J].工程力学.2004:90-104.
    [7]春香.德法日竞争中国高铁[J].交通与运输.2006(3):26-27.
    [8]赵国堂.高速铁路无碴轨道结构[M].中国铁道出版社,2006.
    [9]沈志云.关于高速铁路及高速列车的研究[J].振动.测试与诊断.1998,18(1):1-7.
    [10]周镜主编.风驰电掣走世界——高速铁路工程[M].杭州:浙江科学技术出版社,1999.
    [11]隧道信息中心.韩国汉城—釜山高速铁路建设简介[J].现代隧道技术.2005(1):29.
    [12]Uic. High Speed Around the World Maps[R]. Paris:International Union of Railways Lecture,2010.
    [13]俞展猷.国外高速列车发展简述与我国提速列车试验的回顾——纪念郑武线高速试验成功一周年[J].铁道机车车辆.2005(3):1-7.
    [14]华茂昆.中国铁路提速之路[M].北京:中国铁道出版社,2002.
    [15]铁道勘察与设计编辑部.全国铁路六次提速概况一览[J].铁道勘察与设计.2007(2):64.
    [16]肖彦君.我国既有铁路提速的试验研究[J].中国铁道科学.2000,21(1):9-17.
    [17]刘震.中国第一条客运专线——秦沈客运专线[J].2006(4):21.
    [18]肖彦君.秦沈客运专线综合试验研究[J].中国铁道科学.2003,24(5):137-144.
    [19]国家《中长期铁路网规划》之规划方案、实施计划、规划特点[J].铁道勘测与设计.2007(2):61-63.
    [20]铁道运输与经济编辑部.《中长期铁路网规划(2008年调整)》颁布实施[J].铁道运输与经济.2009(1):5.
    [21]铁道部政治部宣传部.京沪高速铁路工程概况[J].中国铁路.2008(5):10-14.
    [22]梁成谷.京沪高速铁路开工建设[J].中国铁路.2008(5):7-9.
    [23]本刊记者.京沪高速铁路开通运营[J].中国铁路.2011(7):1-3.
    [24]李世斌.我国高速铁路技术跻身世界四强[J].郑铁科技通讯.2011(3):1-4.
    [25]Li D, Otter D, Carr G. Railway bridge approaches under heavy axle load traffic:Problems, causes, and remedies[C]. Commerce Way, Whitehall Industrial Estate, Colchester, ESSEX CO2 8HP, United Kingdom: Professional Engineering Publishing,2010.
    [26]Esveld C. Modern railway track[M]. Zaltbommel:MRT-Productions,2001.
    [27]杨广庆,刘宪福,叶朝良.高速铁路路基与桥梁过渡段技术措施分析[J].铁道标准设计.1999(5):38-39.
    [28]Hyslip J P, Li D, Mcdaniel C R. Railway bridge transition case study[C]. In Proceedings of 8th International Conference on Bearing Capacity of Roads, Railways and Airfields.University of Illinois at Urbana-Champaign, Illinois: 2009.
    [29]Tutumluer E, Stark T D, Mishra D, et al. Investigation and Mitigation of Differential Movement at Railway Transitions for US High Speed Passenger Rail and Joint Passenger/Freight Corridors.[C]. Proceedings of the ASME Joint Rail Conference,Philadelphia, Pennsylvania, USA:2012.
    [30]胡汉兵.动力荷载作用下铁路过渡段工作特性分析[J].水利水电快报.2008,29(8):43-50.
    [31]Zhai W M, True H. Vehicle-track dynamics on a ramp and on the bridge: Simulation and measurements[J]. Vehicle System Dynamics.2000, 33(SUPPL.):604-615.
    [32]杨广庆,刘树山,刘田明.高速铁路路基设计与施工[M].北京:中国铁道出版社,1999.
    [33]Han J, Gabr M A. Numerical analysis of geosynthetic-reinforced and pile-supported earth platforms over soft soil[J]. Journal of Geotechnical and Geoenvironmental Engineering.2002,128(1):44-53.
    [34]Horvath J S. Integral-abutment bridges:problems and innovative solutions using EPS geofoam and other geosynthetics[J]. Res. Rpt. No. CE/GE-00. 2000,2.
    [35]Leubke R W. Solving Typical Subgrade Problems with Geotextile[J]. Railway Track and Structures.1982,6:26-60.
    [36]Monley G J, Wu J T H. Tensile reinforcement effects on bridge-approach settlement[J]. Journal of geotechnical engineering.1993,119(4):749-762.
    [37]Puppala A J, Saride S, Archeewa E, et al. Recommendations for Design, Construction, and Maintenance of Bridge Approach Slabs:Synthesis Report[R]. University of Texas at Arlington,2009.
    [38]Skinner G D, Kerry Rowe R. Design and behaviour of a geosynthetic reinforced retaining wall and bridge abutment on a yielding foundation[J]. Geotextiles and Geomembranes.2005,23(3):234-260.
    [39]Tatsuoka F, Tateyama M, Mohri Y, et al. Remedial treatment of soil structures using geosynthetic-reinforcing technology[J]. Geotextiles and Geomembranes.2007,25(4):204-220.
    [40]梁波,蔡英,罗强,等.土工合成材料在高速铁路桥路过渡段中的应用[J].铁道学报.1999,21(4):64-67.
    [41]Coelho B, Holscher P, Priest J, et al. An assessment of transition zone performance[C].55 City Road, London, EC1Y 1SP, United Kingdom:SAGE Publications Ltd,2011.
    [42]Read D, Li D. Design of track transitions[R]. Transit Cooperative Research Program:Research Results Digest 79. Federal Transit Administration,2006.
    [43]Parsons Brinckerhoff Quade Douglas I. Track Design Handbook for Light Rail Transit[S]. Transportation Research Board, National Research Council, Washington, DC.,2000.
    [44]Armitage R J, Sharpe P, Heggie W G, et al. Innovative Design of Transition Zones[C]. In Proceedings, Railway Engineering 2002. Engineering Technics Press. Edinburgh:2002.
    [45]Bilow D N, Li D. Concrete slab track test on the high tonnage loop at the transportation technology center[C]. In Proceedings of the 2005 AREMA Annual Conference..AREMA:2005.
    [46]Kramer S L, Sajer P. Bridge approach slab effectiveness.Final Report[R]. Washington State Department ofTransportation,1991.
    [47]Cai C S, Shi X M, Voyiadjis G Z, et al. Structural performance of bridge approach slabs under given embankment settlement[J]. Journal of Bridge Engineering.2005,10(4):482-489.
    [48]杨学祥.埋置一端固定的弹性地基梁解决“桥头跳车”的设想与分析[J].长江大学学报(自科版).2005,2(2):177-179.
    [49]杨学祥.均布荷载下一端固定的文克尔地基梁的基底压力特性及其工程意义[J].工程力学.2006,23(11):76-79.
    [50]孙筠.已建软基桥梁桥头跳车的处治方法机理分析及试验研究[D].浙江大学,2010.
    [51]孙筠,蔡可键.深层混凝土过渡板的弹性地基梁(板)分析[J].工程力学.2012,29(增刊1):35-40.
    [52]Jamnongpipatkul P, Dechasakulsom M, Sukolrat J. Application of air foam stabilized soil for bridge-embankment transition zone in Thailand[C]. Changsha, Hunan, China:American Society of Civil Engineers,2009.
    [53]Rose J G. Asphalt track beds:selection, design, installation practices, long-term performances & material properties[C]. In Proceedings of the Railway Engineering-2000 Third International Conference and Exhibition, London:2000.
    [54]Rose J, Walker L A, Li D. Heavy haul asphalt underlayment trackbeds: Pressure, deflection, materials, properties measurements[C]. In Proceed-ings, Railway Engineering 2002. Engineering Tech-nics Press. Edinburgh:2002.
    [55]Li D, Rose J, Lees H, et al. Hot-mix asphalt trackbed performance evaluation at Alps, New Mexico[C]. In Proceedings of the Technology Digest TD 01-015. Associ-ation of American Railroads, Transportation Technology Center, Inc:2001.
    [56]Rose J, Anderson J. Long-Term Performance of Asphalt Underlayment Trackbeds for Special Trackbed Applications[C]. American Railway Engineering and Maintenance-of-Way Association (AREMA) Annual Conference and Exposition, Louisville, KY:2006.
    [57]Li D, Davis D. Transition of railroad bridge approaches[J]. Journal of Geotechnical and Geoenvironmental Engineering.2005,131(11): 1392-1398.
    [58]杨长卫,张建经,朱浩波,等.高速铁路路桥(涵)过渡段的新型设计方法研究[J].铁道科学与工程学报.2011,8(5):6-11.
    [59]杨忠,蒋宗全,谢凯军.桥涵过渡段采用碾压混凝土填筑工艺技术研究[J].水利水电施工.2009(2):86-88.
    [60]Davis D D, Otter D, Li D, et al. Bridge approach performance in revenue service[J]. RT and S:Railway Track and Structures.2003,99(12):18-20.
    [61]Li D, Smith L, Doe B, et al. Study of bridge approach and track transition degradation-factors and mitigation[R]. Federal Railroad Administration Contract DTFR53-01-H-00305,2003.
    [62]Patel N, Jordan H. Ballasted track transitions[C]. Proceedings of the 1996 Rapid Transit Conference of the American Public Transit Association.Washington,D.,116-126:1996.
    [63]Kerr A D, Moroney B E. Track transition problems and remedies[R]. Bulletin 742-American railway engineering association:267-298,1993.
    [64]Sussman T R, Selig E T. Track Component Contributions to Track Stiffness[C]. E. T. Selig, Inc. Amherst, MA.:1998.
    [65]Nicks J E. The bump at the end of the railway bridge[D]. United States-Texas:Texas A & M University,2009.
    [66]Michas G. Slab track systems for high-speed railways.[D]. Stockholm, Sweden:The Royal Institute of Technolgoy,2012.
    [67]Kerr A D, Bathurst L A. Pads ease track transitions[J]. Railway Track and Structures.2000,96(8):57-64.
    [68]翟婉明,蔡成标,王其昌.高速铁路轨道刚度与胶垫应用[J].铁路机车车辆.1996,66(6):49-52.
    [69]松平精.关于东海道新干线桥梁绕曲的容许折角限值的研究[R].铁道技术研究所,1961.
    [70]中华人民共和国铁道部.TB10621-2009高速铁路设计规范(试行)[S].北京,2009.
    [71]胡一峰,李怒放.高速铁路无砟轨道路基设计原理[M].北京:中国铁道出版社,2010.
    [72]李殿龙.日本新干线路基的设计与施工[J].中国铁路.1998(9):44-47.
    [73]曾树谷主编.西班牙马德里-塞维利亚高速铁路赫塔费-科尔多瓦段工程施工[M].铁道部科学研究院编译,1999.
    [74]中华人民共和国铁道部.TB 10001-1999铁路路基设计规范[S].北京,1999.
    [75]中华人民共和国铁道部.TB 10001-2005铁路路基设计规范[S].北京,2005.
    [76]中华人民共和国铁道部.铁建设函[2005]285号新建时速200公里客货共 线铁路设计暂行规定[S].北京,2005.
    [77]中华人民共和国铁道部.铁建设函[2005]140号新建时速200-250公里客运专线铁路设计暂行规定[S].北京,2005.
    [78]中华人民共和国铁道部.铁建设函[2005]754号客运专线无碴轨道铁路设计指南[S].北京,2005.
    [79]中华人民共和国铁道部.铁建设[2007]47号新建时速300-350公里客运专线铁路设计暂行规定(上、下)[S].北京,2007.
    [80]罗强,蔡英,翟婉明.高速铁路路桥过渡段的动力学性能分析[J].工程力学.1999,16(5):65-70.
    [81]王其昌,蔡成标,罗强,等.高速铁路路桥过渡段轨道折角限值的分析[J].铁道学报.1998,20(3):109-113.
    [82]罗强,蔡英.高速铁路路桥过渡段变形限值与合理长度研究[J].铁道标准设计.2000,20(6-7):2-4.
    [83]罗强.高速铁路路桥过渡段动力学特性分析及工程试验研究[D].西南交通大学,2003.
    [84]翟婉明.车辆一轨道耦合动力学(第三版)[M].北京:科学出版社,2007.
    [85]蔡成标,徐鹏.高速铁路无砟轨道关键设计参数动力学研究[J].西南交通大学学报.2010,45(4):493-497.
    [86]佐藤吉彦等.以走行安全和乘车舒适性考虑的线路结构的折角限度[R].铁道技术研究所,1972.
    [87]李献民,肖宏彬,王永和.行车速度对桥路过渡段路基动应力的影响[J].地震工程与工程振动.2005,25(1):49-53.
    [88]李献民,王永和,律文田,等.土工格栅加固路桥过渡段的动测试分析[J].中南大学学报(自然科学版).2004,35(5):860-864.
    [89]李献民,王永和,杨果林,等.高速下过渡段路基动响应特性研究[J].岩土工程学报.2004,26(1):100-104.
    [90]李献民,王永和,倪宏革,等.动力分散型机车在路涵过渡段的动应力-应变研究[J].岩土力学.2004,25(7):1167-1170.
    [91]律文田,王永和.秦沈客运专线路桥过渡段路基动应力测试分析[J].岩石力学与工程学报.2004,23(3):500-504.
    [92]聂志红,阮波,李亮.秦沈客运专线路堑段基床结构动态测试分析[J].振动与冲击.2005,24(2):30-32.
    [93]张国祥,方万进.高速铁路涵洞附近路基动力响应试验研究[J].铁道标准设计.2005(1):49-50.
    [94]黄晚清,陆阳,罗书学,等.秦沈客运专线路涵过渡段动应力测试与分析[J].西南交通大学学报.2005,40(2):220-223.
    [95]卿启湘,王永和,赵明华.秦沈客运专线路桥(涵)过渡段路基的动力特性分析[J].岩土力学.2008,29(9):2415-2421.
    [96]陈果元,魏丽敏,杨果林.胡家屯中桥路桥过渡段动力特性试验研究[J].振动与冲击.2010,29(6):184-188.
    [97]陈果元,杨果林,魏丽敏.铁路客运专线路涵过渡段动力特性试验研究[J].铁道科学与工程学报.2010,7(1):47-51.
    [98]刘林芽,雷晓燕,练松良.提速铁路过渡段的动力响应测试分析[J].铁道工程学报.2005,98(5):15-19.
    [99]张泉,罗强.遂渝铁路刚性路基动应力测试分析[J].铁道标准设计.2006(2):18-20.
    [100]颜胜才,罗强.遂渝铁路路涵过渡段动应力测试分析[J].铁道标准设计.2006(7):3-5.
    [101]李佳,罗强,魏永幸,等.遂渝铁路无碴轨道路隧过渡段路基面动应力测试分析[J].铁道标准设计.2008(4):77-81.
    [102]相颖慧,罗强,魏永幸.遂渝铁路无砟轨道涵洞附近CA砂浆层动应力测试分析[J].铁道工程学报.2008(6):43-47.
    [103]马伟斌,韩自力,朱忠林.高速铁路路桥过渡段振动特性试验研究[J].岩土工程学报.2009,31(1):124-128.
    [104]许杰,王峰,项宝余,等.金山铁路既有线路基行车振动特性分析[J].上海交通大学学报.2011,45(5):749-752.
    [105]沈宇鹏,杜嘉俊,汪梨园,等.松软土地区高速铁路路涵过渡段动静态试验研究[J].土木工程学报.2012(08):158-165.
    [106]Coelho B E Z, Holscher P, Barends F B J. Dynamic behaviour of transition zones in railways[C]. IOS Press,2011.
    [107]Plotkin D, Davis D. Bridge approaches and track stiffness[R]. Final Report,DOT/FRA/ORD-08-01 Federal Railroad Administration,2008.
    [108]王于,翟婉明,王其昌,等.一种确定轨道过渡段长度的新方法[J].铁道工程学报.1999(4):25-28.
    [109]蔡成标,翟婉明,王其昌.不同轨下基础轨道连接的动力特性分析[J].铁道学报.2002,24(2):79-82.
    [110]Lei X, Mao L. Dynamic response analyses of vehicle and track coupled system on track transition of conventional high speed railway[J]. Journal of Sound and Vibration.2004,271:1133-1146.
    [111]毛利军,雷晓燕,杜厚智.提速线路轨道过渡段动力响应分析[J].华东交通大学学报.2001,18(1):35-40.
    [112]Banimahd M, Woodward P K.3-Dimensional finite element modelling of railway transitions[C]. In Proceedings of 9th International Conference on Railway Engineering, London:2007.
    [113]Banimahd M, Woodward P K, Kennedy J, et al. Behaviour of train-track interaction in stiffness transitions[C]. In:Proceeding of the institution of civil engineers-transport,2012.
    [114]Dimitrovova Z, Varandas J N. Critical velocity of a load moving on a beam with a sudden change of foundation stiffness:Applications to high-speed trains[J]. Computers & Structures.2009,87(19):1224-1232.
    [115]Gallego Giner I, Lopez Pita A. Numerical simulation of embankment-structure transition design[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit.2009, 223(4):331-343.
    [116]Dahlberg T. Railway track stiffness variations-consequences and countermeasures[J]. International Journal of Civil Engineering.2010,8(1): 1-12.
    [117]Varandas J N, Holscher P, Silva M A G. Dynamic behaviour of railway tracks on transitions zones[J]. Computers and Structures.2011,89(13-14): 1468-1479.
    [118]Shan Y, Albers B, Savidis S A. Influence of different transition zones on the dynamic response of track-subgrade systems[J]. Computers and Geotechnics.2012,48:21-28.
    [119]Insa R, Salvador P, Inarejos J, et al. Analysis of the influence of under sleeper pads on the railway vehicle/track dynamic interaction in transition zones[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit.2012,226(4):409-420.
    [120]Giannakos K, Tsoukantas S. Transition Zone between Ballastless and Ballasted Track:Influence of Changing Stiffness on Acting Forces[J]. Procedia-Social and Behavioral Sciences.2012,48(0):3548-3557.
    [121]梁波,韩自力,张艳美.京秦线提速路涵过渡段动力仿真与试验对比[J].铁道学报.2003,25(5):92-96.
    [122]孟凡会,侯永峰,吴涛.路桥过渡段的三维数值模拟分析[J].岩土力学.2007,28(增刊):849-854.
    [123]蒋关鲁,王力伟,杭红星.基于离心模型试验的路桥变形耦合特性数值模拟研究[J].土木工程学报.2012,45(8):148-157.
    [124]李献民.高速铁路加筋过渡段静动力特性数值分析及试验研究[D].中南大学,2004.
    [125]陈雪华.高速铁路无碴轨道过渡段路基的动力特性研究[D].中南大学,2006.
    [126]马学宁.车—路耦合条件下高速铁路路基及桥路过渡段结构系统动力分析[D].兰州交通大学,2009.
    [127]胡萍.高速铁路无砟轨道密集过渡段路基动力试验与仿真分析[D].中南大学,2010.
    [128]岩土离心模拟技术的原理和工程应用编委会.岩土离心模拟技术的原理和工程应用[M].武汉:长江出版社,2011.
    [129]左东启.模型试验的理论与方法[M].北京:水利水电出版社,1984.
    [130]Bucky P B. Use of models for the study of mining problems[J]. Am.Inst.Met.Eng.Tech.Pub.1931,425:28-30.
    [131]Pokrvsky G I, Fiodorov I S. Studies of soil pressures and deformations by means of a centrifuge [C]. Proceedings of the 1st International Conference on Soil Mechanics and Foundation Engineering.[S.l.]:[s.n.],1936.
    [132]Craig W H. Geotechnical centrifuges:past, present and future[J]. Geotechnical Centrifuge Technology.1995:1-18.
    [133]Cheney J A. American literature on geotechnical centrifuge modeling 1931-1984[J]. Centrifuges in soil mechanics.1988:77-80.
    [134]Kimura T. Development of geotechnical centrifuges in Japan[C]. Proc. of Centrifuge 98,Tokyo,Pre-Print volume:23-32,1998.
    [135]Schofield A N. Cambridge geotechnical centrifuge operation[J]. Geotechnique.1980,30(3):227-268.
    [136]Miyake M, Yanagihata T. Heap shape of materials dumped from hopper barges by drum centrifuge[C]. International Society of Offshore and Polar Engineers,1999.
    [137]包承纲.土工离心模型的试验原理[J].长江科学院院报.1998,15(2):2-7.
    [138]邢建营.土工离心模型试验技术的研究和应用[D].西北农林科技大学, 2005.
    [139]Malushitsky Y N. The Centrifugal Model Testing of Waste-heap Embankments[D]. London:Cambridge University Press,1975.
    [140]Ovesen N K. The Use of Physical Model sin Design:the Scaling Law Relationships[C]. Brighton:7th EuropeanConf. On Soil Mechanic sand Foundation Engineering,1979.
    [141]徐光明,章为民.离心模型中的粒径效应和边界效应研究[J].岩土工程学报.1996,18(3):80-86.
    [142]Fuglsang L D, Ovesen N K. The Application of the Theory of Modelling to Centrifuge Studies[C]. Rotterdam:Centrifuge in Soil Mechanics, Craig W.H, James R.G, Schofield A.N(eds), Balkema,1988.
    [143]白冰,周健.土工离心模型试验技术的一些进展[J].西部探矿工程.2000(65):8-11.
    [144]羊晔,刘松玉,邓永锋,等.软土地基过渡段差异沉降控制标准[J].东南大学学报(自然科学版).2008,38(5):834-838.
    [145]张洪亮,胡长顺,吕文江.路桥过渡段容许差异沉降计算模型[J].交通运输工程学报.2005,1(5):19-23.
    [146]周德硅.日本新干线网结构物设计标准解释——(东北、上越、成田用)[J].国外桥梁.1979,7(2):1-54.
    [147]陈虎,罗强,张良,等.离心模型试验中路堤地基差异沉降控制装置的研制[J].长江科学院院报.2012,29(2):72-77.
    [148]中华人民共和国铁道部.TB10102-2010铁路工程土工试验规程[S].北京,2011.
    [149]刘萌成.桥台后回填差异沉降控制标准及设计方法研究[D].南京:东南大学,2005.
    [150]Japanese. Design Standard of Railway Structures, Iso Structures And Soil[S].1992.
    [151]周神根.铁路路基设计动荷载研究[J].路基工程.1996(5):6-11.
    [152]李子春.轨道结构垂向荷载传递与路基附加动应力特性的研究[D].铁道部科学研究院,2000.
    [153]董亮,赵成刚,蔡德钩,等.高速铁路无砟轨道路基动力特性数值模拟和试验研究[J].土木工程学报.2008,41(10):81-86.
    [154]李佳.遂渝铁路无砟轨道路隧过渡段实车测试及路基结构FEM计算[D].西南交通大学,2008.
    [155]铁道科学研究院.遂渝线无砟轨道试验段综合试验路基基床动力特性测试[R].北京,2007.
    [156]铁道科学研究院.武广客运专线武汉综合试验段综合试验研究总报告[R].北京,2009.
    [157]黄晶,罗强,李佳,等.车辆轴载作用下无砟轨道路基面动应力分布规律探讨[J].铁道学报.2010,32(2):60-65.
    [158]王广月,王盛桂,付志前.地基基础工程[M].北京:中国水利水电出版社,2001.
    [159]Budynas R G. Advanced Strength and Applied Stress Analysis[M]. New York:McGraw-Hill Book Company,1977.
    [160]陈仲颐,周景星,王洪谨.土力学[M].北京:清华大学出版社,2006.
    [161]郑刚主编.基础工程[M].北京:中国建材工业出版社,2000.
    [162]张千里,韩自力,吕宾林.高速铁路路基基床结构分析及设计方法[J].中国铁道科学.2005,26(6):53-57.
    [163]铁道科学研究院等.遂渝铁路综合试验测试总报告[R].北京:铁道科学研究院,2007.
    [164]张曙光.京津城际高速铁路系统调试技术[M].北京:中国铁道出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700